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University of Antilles, Martinique, French West Indies

E-mail: Paul-Emile.Mainge@martinique.univ-ag.fr

Abstract. The purpose of this work is to revisit the numerical approach to classical variational
inequality problems, with monotone and Lipschitz continuous mapping, by means of a regularized

dynamical method. A main feature of the method is that it formally requires only one projection step

onto the feasible set and only one evaluation of the involved mapping (at each iteration), combined
with some viscosity-like regularization process. A strong convergence theorem is established in

a general setting that allows the use of varying step-sizes without any requirement of additional

projections. We also point out that the considered method in absence of regularization does not
generate a Fejer-monotone monotone sequence. So a new analysis is developed for this purpose.
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1. Introduction

Throughout this paper H is a real Hilbert space endowed with inner product and
induced norm denoted by 〈·, ·〉 and | · |, respectively, C is a closed convex subset of
H. Consider the following classical variational inequality problem (first introduced
by Stampacchia in [24]):

find u ∈ C such that 〈Au, v − u〉 ≥ 0 ∀v ∈ C, (1.1)

where A : H → H is assumed to be monotone and L-Lipschitz continuous over H
(for some positive value L), namely

〈Ax−Ay, x− y〉 ≥ 0 ∀(x, y) ∈ H2 (monotonicity), (1.2a)

|Ax−Ay| ≤ L|x− y| ∀(x, y) ∈ H2 (L-Lipschitz continuity). (1.2b)

As a standing assumption we assume that the solution set of (1.1), denoted by S,
is nonempty.

It is well-known that (1.1) encompasses many significant real-world problems aris-
ing in mechanics, economics and so on (see, e.g., [1, 2, 4, 21] and the references
therein). This problem has recently attracted considerable attention and numerous
related algorithmic solutions have been developed (through projection techniques)
under the classical assumption (1.2); see, e.g., [15, 31].
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Definition 1.1. The metric projection PC : H → C is the operator defined for all
x ∈ H by PCx := argminz∈C |z − x|.

Projection-type methods are very useful and natural tools for solving (1.1) since
this latter can be equivalently rewritten as the following fixed point problem:
find u ∈ C such that u = PC(u− λAu), where λ is any positive real number.

Let us recall that the oldest strategy for solving (1.1) under the classical assumption
(1.2) is the so-called extra-gradient method (introduced by Korpelevich [13]) which
consists of the following two-step projection procedure:

xn = PC(xn − λnAxn), xn+1 = PC(xn − λnAxn), (1.3)

where (λn) is a positive sequence that ensures the weak convergence of the method
for the classical step-size requirement

(λn) ⊂ [µ̄, ν̄] for some values µ̄, ν̄ ∈
(
0, 1

L

)
. (1.4)

Afterwards the extra-gradient method were refined through several extensions involv-
ing Armijo-type rules (see, e.g., Khobotov [12] Marcotte [20], Sun [25], Iusem [9],
Tseng [29]) and outer approximation techniques (see, e.g., Solodov and Svaiter [23]).
These methods (by Iusem and Svaiter [11] and Solodov and Svaiter [23]) were able
to drop the Lipschitz continuity condition together with a more effective Armijo-type
line search even for a pseudo-monotone mapping A (also see Iusem and Pérez [10] for
extension to nonsmooth cases of A). However the proposed methods always involve
a projection onto C (at least) at each iteration together with an addition projection
onto either C or onto its intersection with some hyperplane. These methods involves
several evaluations of the operator A at each iteration (including the computation the
trial values for the predictor step-sizes).

Then attempting to enhance the complexity of theses numerical approaches, by
reducing the number of evaluations of the operators PC and A, can be interesting in
situations where the projection on C is hard to compute, but also relative to huge-scale
problems (from control optimal) in which computing a value of A is expensive.

Note that it has been already investigated modified extra-gradient methods with
only one projection onto C per iteration. As a special case of a general algorithm that
can be applied to our problem we mention the following one-step projection method
proposed by Tseng [30]:

yn = PC(xn − λnAxn), xn+1 = yn + λn(Axn −Ayn). (1.5)

This method formally involve one projection step but its convergence was established
by using an Armijo-Goldstein-type stepsize rule for which the trial values of λn re-
quire some projections onto C. Other examples are given by modified extra-gradient
methods with only one projection onto C per iteration together with a cheaper pro-
jection step onto some hyperplane (see, e.g., Censor, Gibali and Reich [5], Malitsky
and Semenov [19]). The algorithm by Malitsky and Semenov [19] was proposed so
as to reduce the complexity of the existing modified extragradient-type methods. It
can be noticed on every iteration of the method discussed in [19] that not only one
projection on C is performed, but also only one value of A is computed. However,
the convergence of these methods were stated under a similar condition to (1.4).
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In this paper we focus our attention on a new numerical approach to problem
(1.1) based on the following projected reflected gradient method recently proposed by
Malitsky [18]:

yn = 2xn − xn−1, xn+1 = PC(xn − λnAyn), (1.6)

with positive step-sizes (λn). This latter process formally involves only one projec-
tion step and one evaluation of A per iteration, while its convergence was mainly

established in the special case of constant step-sizes λn = λ with λ ∈
(

0,
√

2−1
L

)
.

Our purpose here is to revisit the method in [18] through a more general frame-
work (with the same interesting features) that combines varying step-sizes and some
viscosity-like procedure. This latter can be regarded as a regularization process which
is supposed to induce the convergence in norm of the iterates. Another advantage
of this procedure is to allows us to select a particular solution of (1.1). Specifically,
we provide precise conditions for convergence without any additional requirement of
projection for evaluating the step-sizes.

2. The considered algorithm and its related convergence results

2.1. A dynamical projected gradient method. In order to compute a solution
of (1.1) we investigate the following regularized variant of (1.6).

Algorithm 2.1:
(Step 0) Take δ ∈ (0, 1], λ−1 ∈ (0,∞), select any x−1 and x0 of C,

and consider a mapping Q and (αn) ⊂ [0,∞) such that:
(C1) Q : C → C is a strict contraction of modulus ρ ∈ [0, 1),

i.e., |Qx−Qy| ≤ ρ|x− y| for all (x, y) ∈ C2,
(C2) αn ∈ (0, 1], limn→∞ αn = 0,

∑
n αn =∞,

(C3) αn−1/αn ≤ τ (for some positive value τ).
(Step 1) Set θn = λn

δλn−1
and compute (for n ≥ 0):

qn = αnQxn + (1− αn)xn, (2.1a)

ȳn = xn + θn(xn − xn−1), (2.1b)

xn+1 = PC(qn − λnAȳn). (2.1c)

(Step 2) Let n← n+ 1 and goto Step 1.
For the sake of simplicity in this paper we will sometimes use the following

notation: ẋn+1 = xn+1 − xn and F = I −Q.

Remark 2.1. Algorithm 2.1 with αn = 0 and θn = 1 (given by δ = 1 and λn = λ for
some positive λ) reduces to (1.6). So (2.1) can be regarded as a generalized variant of
(1.6). However (2.1) will be shown to be strongly convergent for δ ∈ (0, 1) and other
appropriate conditions on the involved parameters. Note that a preliminary work
regarding weak convergence results was done in [16] by considering the particular
case of (2.1) with αn = 0. It is also interesting to point out that this latter method
does not generate a Fejer-monotone sequence. The techniques of analysis used in this
work are somewhat different from the classical ones.
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2.2. Step-sizes rules and main convergence results. This paper establishes the
convergence in norm of the sequence given by (2.1) relative to convenient choices of
the involved step-sizes. The strong limit attained by (xn) is the unique element x∗ of
S (the solution set of (1.1)) verifying

x∗ = (PS ◦Q)x∗, (2.2)

where PS denotes the metric projection onto S, which equivalently solves the following
(hierarchical) variational inequality problem:

find x∗ ∈ S such that 〈(I −Q)x∗, v − x∗〉 ≥ 0 ∀v ∈ S. (2.3)

Remark 2.2. It is worthwhile recalling that S (the solution set of (1.1) is closed and
convex whenever A is assumed to be monotone ([8]).

Algorithm 2.1 will be first discussed relative to a general framework regarding
the choice of the step-sizes (λn). Two special cases of our general setting will be also
investigated. The first case is related to pre-defined step-sizes (namely, the sequence
(λn) is known in advance). This latter situation encompasses typical choices of pa-
rameters (such as constant step-sizes) but also varying step-sizes. The second case
includes some additional line-search procedure so as to determine convenient choices
of the step-sizes.

2.2.1. General step-sizes rules. For the sake of simplicity, by considering the sequence
(ȳn) generated by Algorithm 2.1, we introduce the set of indexes J and the sequence
(kn) defined by

J = {n ∈ IN | ȳn − ȳn−1 6= 0}, (2.4a)

kn =

{
|Aȳn−Aȳn−1|
|ȳn−ȳn−1| , if n ∈ J,

0, otherwise.
(2.4b)

Given any element ȳ−1 ∈ H (for computing k0) and positive values λ−2 and λ−1 (for
computing λ0), we assume that the following general step-sizes rules with δ ∈ (0, 1)
and ε ∈ (0, 1) are satisfied in Algorithm 2.1 (for all n ≥ 0):

λnkn ≤ εδ(
√

2− 1), (2.5a)

λn ≤ λn−1

(
δ +

λn−1

λn−2

)1/2

, (2.5b)

λn ∈ [µ̄, ν̄] (for some positive values µ̄ and ν̄). (2.5c)

The main convergence result of this section is given below and it establishes the
convergence of Algorithm 2.1 in the above general setting of parameters.

Theorem 2.1. Let (xn) be the sequence generated by Algorithm 2.1 under condition
(1.2) together with (C1)-(C3) and parameters verifying (2.5) with δ ∈ (0, 1) and
ε ∈ (0, 1). Then (xn) converges strongly to the unique solution x∗ of (2.3).

Theorem 2.1 will be proved in Section 5.1.
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2.2.2. Convergence with specific step-size rules. Two specific situations discussed in
[16] and covered by condition (2.5) can be applied to Algorithm 2.1. The first one
is related to the case when some upper bound of L (the Lipschitz constant of A) is
known while the second case is concerned with a line search procedure that excludes
the knowledge of any estimate of L.

A) Classical step-size rules:

Given δ ∈ (0, 1) in Algorithm 2.1 , we choose parameters (λn)n≥−2 such that:

1− δ < λ−1

λ−2
, (2.6a)

1− δ < λn
λn−1

< rn, where rn =
(
δ + λn−1

λn−2

)1/2

(for n ≥ 0), (2.6b)

(λn) ⊂ [µ̄, ν̄] for positive values µ̄, ν̄ ∈
(

0, δ(
√

2−1)
L

)
. (2.6c)

Remark 2.3. It can be observed that rn > 1 whenever λn−1

λn−2
> 1− δ. So it is easily

checked by induction that conditions (2.6a) and (2.6b) altogether make sense besides
rn > 1 (for n ≥ 0). Consequently this latter procedure gives us the possibility (at
each iteration n) of choosing λn such that λn ≥ λn−1 or λn ≤ λn−1 so as to ensure
the last condition (2.6c).

Theorem 2.2. Let (xn) be the sequence generated by Algorithm 2.1 under conditions
(1.2), (C1)-(C3) and (2.6) with δ ∈ (0, 1). Then (xn) converges strongly to the unique
solution x∗ of (2.3).

Proof. Theorem 2.2 is a straightforward consequence of Theorem 2.1 by observing
(from the L-Lipschitz continuity of A) that (2.6c) yields (2.5a) (for some ε ∈ (0, 1))
as well as (2.5c). �

B) Line-search procedure PRGS:

Given δ ∈ (0, 1], ε ∈ (0, 1), y−1 ∈ H and two elements λ−1, λ−2 ∈ (0, ν̄], where
ν̄ is any positive value, we define the step-size λn (n ≥ 0) relative to some other
parameter γ ∈ (0, 1) as follows:

(i1) For any integer i, we set

tn,i := γirn where rn = λn−1

(
δ + λn−1

λn−2

)1/2

,

ȳn,i = xn +
tn,i

δλn−1
(xn − xn−1),

kn,i =

{
|Aȳn,i−Aȳn−1|
|ȳn,i−ȳn−1| , if ȳn,i − ȳn−1 6= 0,

0, otherwise.

(i2) Next, we choose λn = tn,in , where in is the smallest nonnegative integer i
verifying the following conditions:

tn,i ≤ ν̄, (2.7a)

tn,ikn,i ≤ εδ(
√

2− 1). (2.7b)

Let us prove that the above procedure makes sense.
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Lemma 2.1. If A satisfies the Lipschitz continuity condition (1.2b), then procedure
PRGS is well-defined.

Moreover (2.7) is satisfied whenever tn,i ≤ c, where c = min{ν̄, εδ (
√

2−1)
L }.

Proof. From the L-Lipschitz continuity of A we easily observe that (2.7b) is satisfied

whenever tn,i ≤ εδ (
√

2−1)
L . So it can be noticed that (2.7) holds for any small enough

positive value tn,i such that tn,i ≤ c. �

Lemma 2.2. If A satisfies the Lipschitz continuity condition (1.2b), then the sequence
(λn) generated by procedure PRGS is bounded away from zero.

The proof of Lemma 2.2 follows the same lines as for the case αn = 0 discussed in
[16] but it is given (for the sake of completeness) in the last section of this paper.

Theorem 2.3. Let (xn) be the sequence generated by Algorithm 2.1 under condition
(1.2), (C1)-(C3) together with (λn) given by Procedure PRGS. Then (xn) converges
strongly to the unique solution x∗ of (2.3).

Proof. Theorem 2.3 is a straightforward consequence of Theorem 2.1 and Lemmas
2.1 and 2.2. �

3. Estimates and preliminaries

In this section we give a series of preliminary estimates that will be used for the
convergence analysis of Algorithm 2.1.

3.1. Preliminaries. To begin with, we recall some classical results that can be also
found in [18].

Remark 3.1. For any (u, v, w,w1) ∈ H4 and for any c ∈ (0,+∞) we have

〈u, v〉 = −(1/2)|u− v|2 + (1/2)|u|2 + (1/2)|v|2; (3.1a)

2|u||v| ≤ c|u|2 +
1

c
|v|2; (3.1b)

|u− v|2 ≤ (1 + c)|u− w|2 +

(
1 +

1

c

)
|u− w|2; (3.1c)

2|u− v||w| ≤
(

(1 +
√

2)|u− w1|2 + |w1 − v|2 +
√

2|w|2
)
. (3.1d)

Note that (3.1b) is nothing but the Peter-Paul inequality, (3.1c) is immediate from
(3.1b), while (3.1d) is deduced from the following two inequalities obtained from
(3.1b) and (3.1c), respectively:

2|u− v||w| ≤
(

1√
2
|u− v|2 +

√
2|w|

)
,

|u− v|2 ≤ (2 +
√

2)|u− w1|2 +
√

2|w1 − v|2.

Now, we recall some properties of the metric projection from H onto C.
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Remark 3.2. The operator PC : H → C is nonexpansive and satisfies the following
classical inequalities (see, e.g., [28]):

〈x− PCx, PCx− y〉 ≥ 0 for any (x, y) ∈ H × C, (3.2a)

|x− y|2 ≥ |x− PCx|2 + |y − PCx|2 for any (x, y) ∈ H × C. (3.2b)

3.2. General estimates on the numerical method. Let us establish some esti-
mates related to sequences ((zn, ȳn, qn, xn)) ⊂ H2×C2 and ((λn, θn, αn)) ⊂ (0,+∞)3

such that
qn = xn − αnFxn, (3.3a)

yn = xn + θn(xn − xn−1), (3.3b)

zn = qn − λnAȳn, (3.3c)

xn+1 = PC(zn). (3.3d)

where F = I −Q is given by (C1).
To that end we follow a similar methodology as in [18].

Lemma 3.1. Let (zn, ȳn) ⊂ H2 and (qn, xn) ⊂ C2 verify (3.3). Then, for any u ∈ C,
we have the following inequality

|xn+1 − u|2 − |qn − u|2 + |xn+1 − qn|2
≤ −〈Aȳn −Au, ȳn − u〉
+2λn〈Aȳn −Aȳn−1, ȳn − xn+1〉
+2λn〈Aȳn−1, ȳn − xn+1〉 − 2λn〈Au, ȳn − u〉.

(3.4)

Proof. From (3.2b) and taking u ∈ C we have

|PC(zn)− u|2 ≤ |zn − u|2 − |zn − PC(zn)|2,
and so, by xn+1 = PC(zn) and zn = qn − λnAȳn, we equivalently obtain

|xn+1 − u|2 ≤ |qn − u− λnAȳn|2 − |xn − xn+1 − λnAȳn|2.
Simplifying the above inequality yields

|xn+1 − u|2 ≤ |qn − u|2 − |xn+1 − qn|2 + 2λn〈Aȳn, u− xn+1〉. (3.5)

Regarding the last term in the right-side of (3.5) we have

〈Aȳn, u− xn+1〉 = 〈Aȳn, u− ȳn〉+ 〈Aȳn, ȳn − xn+1〉
= 〈Aȳn −Au, u− ȳn〉+ 〈Au, u− ȳn〉
+ 〈Aȳn −Aȳn−1, ȳn − xn+1〉+ 〈Aȳn−1, ȳn − xn+1〉.

Combining this last inequality with (3.5) yields the desired result. �
Now we focus on estimating separately each of the last three terms in the right-

hand side of inequality (3.4).

Lemma 3.2. For any sequences (zn, ȳn) ⊂ H2 and (qn, xn) ⊂ C2 verifying (3.3), we
have

2λn−1〈Aȳn−1, yn − xn+1〉
≤ 1

θn

(
|ẋn+1|2 − |xn − yn|2 − |xn+1 − yn|2

)
+2αn−1〈Fxn−1, ẋn+1〉 − 2αn−1θn〈Fxn−1, ẋn〉,

(3.6)

where ẋj = xj − xj−1 (for any integer j).
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Proof. From xn = PC(zn−1) and (xn) ⊂ C, by (3.2a) we have

〈xn − zn−1, xn − xn+1〉 ≤ 0 and 〈xn − zn−1, θn(xn − xn−1)〉 ≤ 0.

So by zn−1 = qn−1 − λn−1Aȳn−1 we deduce that

〈xn − qn−1 + λn−1Aȳn−1, yn − xn+1〉 ≤ 0,

or equivalently, using the notation ẋn = xn − xn−1, we get

λn−1〈Aȳn−1, yn − xn+1〉
≤ 〈xn − qn−1, xn+1 − yn〉,
= 〈ẋn, xn+1 − yn〉+ 〈xn−1 − qn−1, xn+1 − yn〉.

(3.7)

Let us consider separately the two terms in the right side of the previous inequality.
Regarding the first term, by ȳn − xn = θnẋn (from (3.3d)) and by (3.1a) we have

2〈ẋn, xn+1 − yn〉 ≤ −(2/θn)〈xn − yn, xn+1 − yn〉
= (1/θn)

(
|ẋn+1|2 − |xn − yn|2 − |xn+1 − yn|2

)
.

Regarding the second term, by xn−1 − qn−1 = αn−1Fxn−1 (from (3.3a)) and using
the definition of yn we have

〈xn−1 − qn−1, xn+1 − yn〉 = αn−1〈Fxn−1, ẋn+1 − θnẋn〉.

Combining the last three results entails (3.6). �
The following result is independent of the considered method.

Lemma 3.3. For any sequences (ȳn, xn) ⊂ H2 and (λn) ⊂ [0,∞) we have

2λn〈Aȳn −Aȳn−1, ȳn − xn+1〉
≤ (knλn)

(
(1 +

√
2)|ȳn − xn|2 + |xn − ȳn−1|2 +

√
2|xn+1 − ȳn|2

)
,

where (kn) is defined in (2.4).

Proof. From the definition of kn we obviously have

2λn〈Aȳn −Aȳn−1, ȳn − xn+1〉 ≤ 2(knλn)|ȳn − ȳn−1| × |xn+1 − ȳn|.

Thus the desired result follows immediately from (3.1d). �

Lemma 3.4. For any sequences (zn, ȳn) ⊂ H2 and (qn, xn) ⊂ C2 verifying (3.3) with
(1.2a) (monotonicity of A) and for any u ∈ C, we have

|xn+1 − u|2 − |qn − u|2

≤
(
−1 + λn

λn−1θn

)
|ẋn+1|2

−2λn(1 + θn)Gn + 2λnθnGn−1

−an|ȳn − xn|2
−bn|xn+1 − ȳn|2 + (knλn)|xn − ȳn−1|2

+2αn−1

(
λn

λn−1

)
〈Fxn−1, ẋn+1〉 − 2αn−1θn

(
λn

λn−1

)
〈Fxn−1, ẋn〉,

(3.8)

where an = λn

λn−1θn
−(knλn)(1+

√
2), bn = λn

λn−1θn
−(knλn)

√
2 and Gn = 〈Au, xn−u〉,

(kn) being defined in (2.4), while ẋj = xj − xj−1 (for any integer j).
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Proof. From Lemma 3.1 and invoking the monotonicity of A, we clearly have

|xn+1 − u|2 − |qn − u|2 + |xn+1 − qn|2
≤ 2λn〈Aȳn −Aȳn−1, ȳn − xn+1〉

+2λn〈Aȳn−1, ȳn − xn+1〉 − 2λn〈Au, ȳn − u〉.
(3.9)

Moreover, by Lemma 3.3 we have

2λn〈Aȳn −Aȳn−1, ȳn − xn+1〉
≤ (knλn)

(
(1 +

√
2)|ȳn − xn|2 + |xn − ȳn−1|2 +

√
2|xn+1 − ȳn|2

)
,

while Lemma 3.2 gives us

2〈Aȳn−1, yn − xn+1〉
≤ 1

λn−1θn

(
|ẋn+1|2 − |xn − yn|2 − |xn+1 − yn|2

)
+2αn−1

λn−1
〈Fxn−1, ẋn+1〉 − 2αn−1

λn−1
θn〈Fxn−1, ẋn〉.

Combining the previous two inequalities with (3.9) amounts to

|xn+1 − u|2 − |qn − u|2 + |ẋn+1|2
≤ (knλn)

(
(1 +

√
2)|ȳn − xn|2 + |xn − ȳn−1|2 +

√
2|xn+1 − ȳn|2

)
+
(

λn

θnλn−1

) (
|ẋn+1|2 − |xn − ȳn|2 − |xn+1 − ȳn|2

)
+2αn−1

(
λn

λn−1

)
〈Fxn−1, ẋn+1〉 − 2αn−1θn

(
λn

λn−1

)
〈Fxn−1, ẋn〉

−2λn〈Au, ȳn − u〉,

(3.10)

namely

|xn+1 − u|2 − |qn − u|2 + |ẋn+1|2
≤ λn

λn−1θn
|ẋn+1|2 − an|ȳn − xn|2 − bn|xn+1 − ȳn|2 + (knλn)|xn − ȳn−1|2

+2αn−1

(
λn

λn−1

)
〈Fxn−1, ẋn+1〉 − 2αn−1θn

(
λn

λn−1

)
〈Fxn−1, ẋn〉

−2λn〈Au, ȳn − u〉,

where an = λn

λn−1θn
− (knλn)(1 +

√
2) and bn = λn

λn−1θn
− (knλn)

√
2. The desired

inequality follows by noticing that

〈Au, ȳn − u〉 = (1 + θn)〈Au, xn − u〉 − θn〈Au, xn−1 − u〉,

which completes the proof. �

4. Convergence analysis

4.1. Projection part of the method. The main estimate of this section is stated
under the following conditions on the parameters (for any n ≥ 0):

θn =
λn

λn−1δ
, (4.1a)

εδ(
√

2− 1)− (knλn) ≥ 0, (4.1b)

λnθn ≤ λn−1(1 + θn−1), (4.1c)

where δ and ε are positive values.
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Remark 4.1. Let us observe for θn = λn

λn−1δ
(namely (4.1a)) that condition (4.1c) is

equivalent to
(

λn

λn−1

)2

≤ δ +
(
λn−1

λn−2

)
, which corresponds to (2.5b).

Lemma 4.1. Let (xn), (ȳn) and (qn) be generated by Algorithm 2.1 under conditions
(1.2a) and (2.5) with δ ∈ (0, 1) and ε ∈ (0, 1). Then, for any u ∈ S, there exist two
positive values σ and ν such that

|xn+1 − u|2 − |qn − u|2
≤ −σ|ẋn+1|2 − Γn + Γn−1 − ν|ȳn − xn|2

+(2δ)αn−1θn〈Fxn−1, ẋn+1〉 − (2δ)αn−1θ
2
n〈Fxn−1, ẋn〉,

(4.2)

where (Γn) is defined by

Γn = (kn+1λn+1) |xn+1 − ȳn|2 + 2λn+1θn+1〈Au, xn − u〉, (4.3)

together with (kn) given in (2.4), while ẋj = xj − xj−1 (for any integer j).

Proof. Inequality (4.2) is a straightforward consequence of Lemma 3.4. Indeed, given
u ∈ S, we readily have Gn := 〈Au, xn − u〉 ≥ 0 (since (xn) ⊂ C and A is assumed
to be monotone). Moreover, by (4.1a), the quantities an and bn in (3.8) reduce to

an =
(
δ − (knλn)(1 +

√
2)
)
, bn =

(
δ − (knλn)

√
2
)
, and so, by (4.1b), it is easily

checked that an ≥ ν (where ν = ε(1− δ)) and bn ≥ λn+1kn+1. Consequently, in light
of (3.8) and (4.1), we obtain

|xn+1 − u|2 − |qn − u|2
≤ (−1 + δ) |ẋn+1|2
−2λn+1θn+1Gn + 2λnθnGn−1 − ν|ȳn − xn|2
−(kn+1λn+1)|xn+1 − ȳn|2 + (knλn)|xn − ȳn−1|2
+(2δ)αn−1θn〈Fxn−1, ẋn+1〉 − (2δ)αn−1θ

2
n〈Fxn−1, ẋn〉,

(4.4)

which leads to the desired result with σ = 1− δ. �

4.2. Viscosity part of the method. The following estimates are related to the
regularized part of the method.

Lemma 4.2. Let (xn) and (qn) be generated by Algorithm 2.1 under condition (C1).
Then the following statements are reached:

|qn − q|2 ≤ (1− 2(1− ρ)αn)|xn − q|2 + αn
(
αn|Fxn|2 − 2〈Fq, xn − q〉

)
, (4.5a)

|Fxn| ≤ ((ρ+ 1)|xn − q|+ |Fq|) , (4.5b)

|Fxn|2 ≤ 2
(
(ρ+ 1)2|xn − q|2 + |Fq|2

)
, (4.5c)

where ρ is given by (C1), q is any element of H and F = I −Q.

Proof. Take q ∈ H and let us prove each item separately:
1) From (2.1a), we have qn − xn = −αnFxn, and so we obtain

|qn − xn|2 = (αn)2|Fxn|2

as well as

2〈qn − xn, xn − q〉 = 2αn〈Fxn, xn − q〉.
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Moreover, using (3.1a), we have

2〈qn − xn, xn − q〉 = −|qn − q|2 + |xn − q|2 + |xn − qn|2.
Then it follows that

−|qn − q|2 + |xn − q|2 + α2
n|Fxn|2 = 2αn〈Fxn, xn − q〉. .

In addition, by condition (C1) on the operator Q, we have

〈Fxn, xn − q〉 = 〈Fxn − Fq, xn − q〉+ 〈Fq, xn − q〉
≥ (1− ρ)|xn − q|2 + 〈Fq, xn − q〉.

So we are led to

−|qn − q|2 + (1− 2αn(1− ρ))|xn − q|2 + |xn − qn|2 ≥ 2αn〈Fq, xn − q〉,
that is the desired inequality (4.5a).

2) Let us recall that qn − xn = −αnFxn and observe that F = I − Q is (1 + ρ)-
Lipschitz continuous, since Q is assumed to be ρ-Lipschitz continuous (by (C1)).
Hence, writing |Fxn| = |(Fxn − Fq) + Fq|, we immediately deduce (4.5b).

3) The latter inequality (4.5c) is obvious from (4.5b). �

4.3. Boundedness of the iterates. A preliminary estimate is needed for studying
the asymptotic behavior of the sequences generated by the considered method.

Lemma 4.3. Let (xn) be generated by Algorithm 2.1 under conditions (1.2a), (C1)
and (2.5) with δ ∈ (0, 1) and ε ∈ (0, 1). Then for any u ∈ S and for some positive
values ν1, σ and η, we have

Sn+1 − Sn ≤ −σ|ẋn+1|2 − ν1|ẋn|2
+(2δ)αn−1θn|Fxn−1||ẋn+1|+ (2δ)αn−1θ

2
n|Fxn−1||ẋn|

−ηαn|xn − u|2 + αn
(
αn|Fxn|2 − 2〈Fu, xn − u〉

)
,

(4.6)

where F = I −Q and Sn is defined by

Sn = |xn − u|2 + (knλn) |xn − ȳn−1|2 + 2λnθn〈Au, xn−1 − u〉, (4.7)

(kn) being defined in (2.4), while ẋj = xj − xj−1 (for any integer j).

Proof. This result is immediate from (4.2) and (4.5a) together with η := 2(1 − ρ)
and also noticing that (θn) is bounded from below under condition (2.5) (hence, by
ȳn − xn = θnẋn, we clearly have ν|ȳn − xn|2 ≥ ν1|ẋn|2 for some positive ν1). �

The next lemma can be found in [14] (Lemma 3.1) and its proof is given for the
sake of completeness.

Lemma 4.4. [14] Let (Γn) be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence (Γnj

)j≥0 of (Γn) such that
(h1) Γnj

< Γnj+1 for all j ≥ 0.
Also consider the sequence of integers (τ(n))n≥n0 defined by

(h2) τ(n) = max{k ≤ n | Γk < Γk+1}.
Then (τ(n))n≥n0

is a nondecreasing sequence verifying limn→∞ τ(n) = ∞, and, for
all n ≥ n0, the following two estimates hold:

(r1) Γτ(n) ≤ Γτ(n)+1,
(r2) Γn ≤ Γτ(n)+1.
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Proof. Clearly, by (h1), we can see that (τ(n)) is a well-defined sequence, and the
fact that it is nondecreasing is obvious as well as limn→∞ τ(n) = ∞ and (r1). Let
us prove (r2). It is easily observed that τ(n) ≤ n. Consequently, we prove (r2) by
distinguishing the three cases: (c1) τ(n) = n; (c2) τ(n) = n − 1; (c3) τ(n) < n − 1.
In the first case (i.e., τ(n) = n), (r2) is immediately given by (r1). In the second case
(i.e., τ(n) = n−1), (r2) becomes obvious. In the third case (i.e., τ(n) ≤ n−2), by (h2)
and for any integer n ≥ n0, we easily observe that Γj ≥ Γj+1 for τ(n)+1 ≤ j ≤ n−1,
namely Γτ(n)+1 ≥ Γτ(n)+2 ≥ ... ≥ Γn−1 ≥ Γn, which entails the desired result. �

At once we establish the boundedness of the iterates given by (2.1).

Lemma 4.5. Suppose that (αn) ⊂ (0, 1], αn → 0 (as n → ∞) and that conditions
(1.2), (C1), (C3) and (2.5) with δ ∈ (0, 1) and ε ∈ (0, 1) are satisfied. Then the
sequences (xn) and (ȳn) generated by Algorithm 2.1 are bounded.

Proof. Given u ∈ S, by (4.6), (C3) and since (θn) is bounded (according to (2.5)), we
readily have

Sn+1 − Sn ≤ −σ|ẋn+1|2 − ν1|ẋn|2 + c1δn
−ηαn|xn − u|2 + αn

(
αn|Fxn|2 + 2|Fu||xn − u|

)
,

(4.8)

where σ, ν1, η and c1 are positive values and δn is defined by

δn = αn−1|Fxn−1||ẋn+1|+ αn−1|Fxn−1||ẋn|.
From the L-Lipschitz continuity of A and using Young’s inequality, we also have

|Fxn−1|2 ≤ 2|Fxn|2 + 2L2|ẋn|2;

hence by the Peter-Paul inequality it is not difficult to see that there exists some
positive value κ such that

c1αn−1|Fxn−1||ẋn+1| ≤
σ

2
|ẋn+1|2 +

κ

2
α2
n−1(|Fxn|2 + |ẋn|2)

and
c1αn−1|Fxn−1||ẋn| ≤

ν1

4
|ẋn|2 +

κ

2
α2
n−1(|Fxn|2 + |ẋn|2).

It follows that

δn ≤
1

c1

(σ
2
|ẋn+1|2 + κα2

n−1|Fxn|2 +
(ν1

4
+ κα2

n−1

)
|ẋn|2

)
. (4.9)

So by this last result and (4.8) we obtain

Sn+1 − Sn ≤ −σ2 |ẋn+1|2 −
(

3ν1
4 − κα

2
n−1

)
|ẋn|2 + κα2

n−1|Fxn|2
−ηαn|xn − u|2 + αn

(
αn|Fxn|2 + 2|Fu||xn − u|

)
.

(4.10)

Clearly, by αn → 0 as n→∞ and for n ≥ n0 (where n0 is some large enough integer),
we have 3ν1

4 − κα
2
n−1 ≥ ν1

2 , while in light of (4.5c) we additionally have

|Fxn|2 ≤ 2
(
(ρ+ 1)2|xn − u|2 + |Fu|2

)
.

Consequently, for n ≥ n0 and by (4.10), we observe that there exists some positive
values κ1 such that

Sn+1 − Sn ≤ −σ2 |ẋn+1|2 − ν1
2 |ẋn|

2 + κ1α
2
n−1(|xn − u|2 + 1)

−ηαn|xn − u|2 + κ1αn
(
αn|xn − u|2 + αn + |xn − u|

)
.

(4.11)
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Therefore, assuming that αn−1/αn ≤ γ for some positive constant γ (by condition
(C3)) we deduce that

Sn+1 − Sn ≤ −σ2 |ẋn+1|2 − ν1
2 |ẋn|

2

+αn
(
−
(
η − (γ2 + 1)κ1αn

)
|xn − u|2 + κ1|xn − u|+ κ1αn(γ2 + 1)

)
.

(4.12)
Then it is a simple matter to see that, for n ≥ n1 (where n1 is some large enough
integer), we have η − (γ2 + 1)κ1αn ≥ η

2 as well as the following estimate

Sn+1 − Sn ≤ −σ2 |ẋn+1|2 − ν1
2 |ẋn|

2

+αn
(
−η2 |xn − u|

2 + κ1|xn − u|+ κ1αn(γ2 + 1)
)
.

(4.13)

Now we apply Lemma 4.4 (in light of (4.13)) so as to prove the boundedness of (xn).
The following two possibilities can be considered regarding the sequence (Sn):

- Either Sn is non-increasing, and so it is obvious that (xn) is bounded.
- Or, by Lemma 4.4, there exists a subsequence (Snk

) such that

Sn ≤ Snk+1, (4.14)

together with

0 < Snk+1 − Snk

≤ −σ2 |ẋnk+1|2 − ν1
2 |ẋnk

|2
+αnk

(
−η2 |xnk

− u|2 + κ1|xnk
− u|+ κ1αnk

(γ2 + 1)
)
.

(4.15)

Let us prove that (xnk
) is a bounded sequence. Clearly, from this last inequality we

have (
η − (γ2 + 1)κ1αnk

)
|xnk

− u|2 ≤ κ1|xnk
− u|+ κ1αnk

(γ2 + 1);

hence recalling that αnk
→ 0 as k →∞ (by (C2)), we immediately deduce that (xnk

)
is bounded.
Now we prove that (Snk+1) is a bounded sequence. Towards that end, by taking into
account the definition of Sn+1, namely

Sn+1 = |xn+1 − u|2 + (kn+1λn+1) |xn+1 − ȳn|2 + 2λn+1θn+1〈Au, xn − u〉, (4.16)

we realize that we just need to establish the boundedness of the sequences (ȳnk
) and

(xnk+1). Let us observe that (4.15) yields

0 < Snk+1 − Snk

≤ αnk

(
−η2 |xnk

− u|2 + κ1|xnk
− u|+ κ1αnk

(γ2 + 1)
)
,

(4.17)

which amounts to limk→∞(Snk+1 − Snk
) = 0 and so, again using (4.15) we deduced

that

lim
k→∞

|ẋnk+1| = lim
k→∞

|ẋnk
| = 0.

Hence, it follows that (xnk+1) and (ȳnk
) are bounded sequences. As a consequence,

by (4.14) we conclude that (Sn) is bounded and so are (xn) and (ȳn). �
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4.4. Optimality of weak cluster points. The next lemma gives us a sufficient
condition for the optimality of the weak cluster points of sequences generated by
Algorithm 2.1.

Lemma 4.6. Let ((xn, qn, ȳn)) ⊂ C2 × H satisfy xn+1 = PC(qn − λnAȳn), where
(λn) ⊂ [ν̄,∞) (for some positive value ν̄) and A : H → H is monotone and Lipschitz
continuous over H. Assume in addition that there exists an increasing sequence of
indexes (nk) such that:

(xnk
) converges weakly to some u of C, (4.18a)

lim
k→∞

|xnk+1 − qnk
| = lim

k→∞
|ȳnk
− xnk+1| = 0, (4.18b)

lim
k→∞

|xnk+1 − xnk
| = 0. (4.18c)

Then u belongs to S (the solution set of (1.1)).

Proof. Let q ∈ C. Clearly, from (3.2a) and xn+1 = PC(zn) with zn = qn − λnAȳn we
have 〈xn+1 − zn, q − xn+1〉 ≥ 0, namely

0 ≤ 〈xn+1 − qn + λnAȳn, q − xn+1〉,

or equivalently,

0 ≤ 〈xn+1 − qn, q − xn+1〉+ λn〈Aȳn, q − ȳn〉+ λn〈Aȳn, ȳn − xn+1〉.

Hence, by monotonicity of A we obtain

0 ≤ 〈xn+1 − qn, q − xn+1〉+ λn〈Aq, q − ȳn〉+ λn〈Aȳn, ȳn − xn+1〉

that is

0 ≤ 〈 1

λn
(xn+1 − qn), q − xn+1〉+ 〈Aq, q − ȳn〉+ 〈Aȳn, ȳn − xn+1〉.

Moreover, by (4.18c) and (xnk
) ⇀ u weakly, we also have (xnk+1) ⇀ u weakly. So it

is obvious that (xnk+1) is bounded since it is assumed to be weakly convergent. Then
it is immediate from (4.18b) that (ȳnk

) is also bounded and that it converges weakly
to u as k → +∞. Hence (Aȳnk

) is bounded (by Lipschitz continuity of A) while
(λn) is assumed to be bounded away from zero. Consequently, passing to the limit
in the last inequality (with indexes nk) entails that u solves the Minty’s variational
inequality:

find u ∈ C such that 〈Aq, q − u〉 ≥ 0 (for any q ∈ C).
This latter problem is well-known to be equivalent to (1.1) under the considered
assumptions. This ensures that u ∈ S. �

4.5. Some key results for viscosity methods. In this section we provide a result
(Lemma 4.8) that will be useful for proving the convergence of the viscosity method
under consideration. The following preliminary lemma is needed for this purpose.
This lemma can be found in [17] and its proof is given for the sake of completeness.
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Lemma 4.7. Let {an} be a sequence of nonnegative number such that
(h) an+1 ≤ (1− γn)an + γnrn,

where {rn} ⊂ (−∞,∞) is bounded above and {γn} ⊂ [0, 1] satisfies
∑
n γn = ∞.

Then it holds that
(r) lim sup

n→∞
an ≤ lim sup

n→∞
rn.

Proof. Let p ∈ N∗ and set σp = supj≥p rj . Then by (h) and for n ≥ p we immediately
have an+1−an+γn(an−σp) ≤ 0, hence denoting bn = an−σp we equivalently obtain
bn+1 ≤ (1− γn)bn, which by induction yields

bn+1 ≤
(
Πn
k=p(1− γk)

)
bp. (4.19)

Clearly, we deduce that bn+1 ≤ |bp|, so that (bn) is bounded above and so is (an).
Moreover, assuming that

∑
n≥0 γn = ∞ (hence limn→∞Πn

k=p(1 − γk) = 0), and

passing to the limit as n→∞ in (4.19), we get lim supn→∞ bn = lim supn→∞ bn+1 ≤
0, which is equivalent to lim supn→∞ an ≤ σp, so that p→∞ yields (r). �

The next result can be regarded as a new tool for proving the convergence of
many viscosity-type methods.

Lemma 4.8. Let (Sn) be a sequence of nonnegative real numbers such that
(h) Sn+1 ≤ (1− γn)Sn − Pn − γnRn,

where (Pn) ⊂ [0,+∞), {Rn} ⊂ (−∞,∞) is a bounded sequence and {γn} ⊂ [0, 1]
satisfies

∑
n γn =∞. Then there exist β ≥ 0 and some increasing sequence of indexes

(nk) verifying the following statements:
(a) lim sup

n→+∞
Sn ≤ − lim

k→+∞
Rnk

,

(b) Pnk
≤ βγnk

,
(c) lim

k→∞
(Snk+1 − Snk

) = 0 (if γn → 0 as n→∞).

Proof. The proof can be divided into the following two cases (A) and (B):
(A) First of all, we prove that (a) and (b) hold (in general) for some increasing

sequence of indexes (nk). Observe that (h) can be rewritten as

Sn+1 ≤ (1− γn)Sn − γnHn,

where Hn = (1/γn)Pn + Rn. In addition, Hn is bounded from below (since Rn is
assumed to be bounded and (Pn) is assumed to be nonnegative). Consequently, from
Lemma 4.7 we deduce that

(f1) lim sup
n→+∞

Sn ≤ lim sup
n→∞

(−Hn) = − lim inf
n→∞

Hn.

So lim infn→∞Hn is a finite real number. Consequently, there exists some subsequence
(Hnk

) of (Hn) such that
(f2) lim inf

n→∞
Hn = lim

k→∞
Hnk

.

It follows that (Hnk
) is bounded (as it is convergent). So, from the definition of Hn

and recalling that (Rn) is assumed to be bounded, we deduce that ((1/γnk
)Pnk

) is
bounded. Consequently, there exists a convergent subsequence (again denoted (Hnk

))
of (Hnk

) such that ((1/γnk
)Pnk

) remains bounded and (Rnk
) converges as k → ∞.

Hence we immediately have Pnk
≤ βγnk

(for some positive constant β), while (f1)
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and (f2) entail that

lim sup
n→+∞

Sn ≤ − lim
k→∞

Hnk
≤ − lim

k→∞
Rnk

.

(B) Now, assuming that γn → 0 (as n → ∞), we prove that (a), (b) and (c) are
satisfied relative to a same increasing sequence of indexes (mk). Note that the result
of Lemma 4.8 is obvious from (A) in the special case when (Sn) is non-increasing
(because such a nonnegative sequence is convergent). So we assume that (Sn) does
not decrease at infinity. Then by Lemma 4.4 we know that there exists an increasing
sequence of indexes (mk) verifying the following items (j1) and (j2):

(j1) Smk+1 − Smk
≥ 0,

(j2) Sn ≤ Smk+1.
Then from (h) and (j1) we have

0 ≤ Smk+1 − Smk
≤ −γmk

Rmk
,

hence, recalling that (Rn) is bounded and that γn → 0 (as n→∞), we obtain
(j3) Smk+1 − Smk

→ 0 as k →∞.
Let us notice from the boundedness of (Rn) that there exists a subsequence (nk) of
(mk) verifying

(j4) lim inf
k→∞

Rmk
= lim
k→∞

Rnk
.

Item (c) is then obvious from (j3). Again using (h) and (j1) we readily have
(j5) (1/γmk

)Pmk
+ Smk

≤ −Rmk
.

It follows immediately that (1/γnk
)Pnk

≤ −Rnk
, which entails (b). Now, using (j2)

and (j3) gives us

lim sup
n→∞

Sn ≤ lim sup
k→∞

(Smk+1 − Smk
) + lim sup

k→∞
Smk

= lim sup
k→∞

Smk
.

Consequently, observing that Smk
≤ −Rmk

(according to (j5)) and using (j4), we
obtain

lim sup
n→∞

Sn ≤ lim sup
k→∞

(−Rmk
) = − lim

k→∞
Rnk

,

that is (a). This completes the proof. �

5. Proofs of Theorem 2.1 and Lemma 2.2

5.1. Proof of Theorem 2.1. Let x∗ be the solution of (2.3). From Lemma 4.3, we
know that there are positive values σ, ν1 and η such that

Sn+1 − Sn ≤ −σ|ẋn+1|2 − ν1|ẋn|2

+ (2δ)αn−1θn|Fxn−1||ẋn+1|+ (2δ)αn−1θ
2
n|Fxn−1||ẋn|

− αn
(
η|xn − u|2 − αn|Fxn|2 + 2〈Fu, xn − u〉

)
,

hence using condition (C3) yields

Sn+1 − Sn ≤ −Pn − αn
(
Kn + η|xn − x∗|2 + 2〈Fx∗, xn − x∗〉

)
,
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where σ, ν1 and η are positive values and Pn, Kn and Sn are given by

Pn := σ|ẋn+1|2 + ν1|ẋn|2,
Kn := −(2δ)τθn (|Fxn−1||ẋn+1|+ θn|Fxn−1||ẋn|)− αn|Fxn|2,
Sn = |xn − x∗|2 + (knλn) |xn − ȳn−1|2 + 2λnθn〈Ax∗, xn−1 − x∗.

The inequality above can be rewritten as

Sn+1 − (1− ηαn)Sn ≤ −Pn − αnηRn, (5.1)

where Rn is given by

Rn := (1/η)
(
−ηSn +Kn + η|xn − x∗|2 + 2〈Fx∗, xn − x∗〉

)
.

It is clear that (xn) is a bounded sequence (according to Lemma 4.5). Thus (Rn) is
also a bounded sequence (by (2.5) together with the definition of (θn) and the Lipschitz
continuity of F ). As a consequence, by the boundedness of (xn) and applying Lemma
4.8, we deduce that there exist a positive constant β and some subsequence (Snk

)
such that

(k1) lim sup
n→+∞

Sn ≤ − lim
k→+∞

Rnk
,

(k2) Pnk
≤ βαnk

,
(k3) lim

k→+∞
(Snk+1 − Snk

) = 0,

(k4) xnk
⇀ u weakly as k →∞ (for some u ∈ C).

Let us prove that u ∈ S. Clearly, by (k2) and αn → 0 (as n→∞) we have

lim
k→∞

|ẋnk+1| = lim
k→∞

|ẋnk
| = 0. (5.2)

It is then easily checked from xn − qn = αnFxn and ȳn = xn + θnẋn (in light of the
definitions of qn and ȳn) that

lim
k→∞

|xnk+1 − qnk
| = lim

k→∞
|ȳnk
− xnk+1| = 0. (5.3)

Hence by (k4) and invoking Lemma 4.6 we deduce that u ∈ S.
Now we focus on proving that Sn → 0 as n→∞. Using (k1) and (k3) yields

lim sup
n→+∞

Sn ≤ − lim
k→+∞

Fnk
, where Fn := Rn + (Sn − Sn+1). (5.4)

From the definitions of Fn and Rn we also have

Fn =
1

η

(
−ηSn +Kn + η|xn − x∗|2 + 2〈Fx∗, xn − x∗〉

)
+ (Sn − Sn+1)

= |xn − x∗|2 − Sn+1 +
1

η
Kn +

2

η
〈Fx∗, xn − x∗〉,

so by the definition of Sn and introducing the following quantity

Gn := (kn+1λn+1) |xn+1 − ȳn|2 + 2λn+1θn+1〈Ax∗, xn − x∗〉,

we obtain

Fn = (|xn − x∗|2 − |xn+1 − x∗|2)−Gn + (1/η)Kn + (2/η)〈Fx∗, xn − x∗〉. (5.5)
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In order to get the desired result we prove that limk→+∞ Fnk
≥ 0. In light of (5.3)

we clearly have

lim
k→∞

(|xnk
− x∗|2 − |xnk+1 − x∗|2). (5.6)

Recall that u and x∗ belong to S, then, using the monotonicity of A gives us

0 ≤ 〈Ax∗, u− x∗〉 ≤ 〈Au, u− x∗〉 ≤ 0,

so that

〈Ax∗, u− x∗〉 = 0.

Therefore, by (k4), it is a classical matter to check that

lim
k→∞

〈Ax∗, xnk
− x∗〉 = 〈Ax∗, u− x∗〉 = 0.

As a result, by (5.3) and by boundedness of the sequence (knλn) and (λnθn) we obtain

lim
k→∞

Gnk
= 0.

It is also a simple matter to see from the definition of Kn that

lim
k→∞

Knk
= 0.

Consequently, by (k4) in light of (5.5) and (2.3), we are led to

lim
k→∞

Fnk
= (2/η)〈Fx∗, u− x∗〉 ≥ 0.

It follows immediately from (5.4) that lim supn→∞ Sn = 0, which by the definition of
Sn amounts to limn→∞ |xn − x∗| = 0. �

5.2. Analysis of the line search procedure PRGS. In this section we focus on
proving that the sequence (λn) generated by PRGS satisfies (2.5c).

5.2.1. Preliminaries. In order to describe the behavior of the step-sizes (λn) given by
procedure PRGS, we provide the following two lemmas that was also used in [16].

The first lemma is stated as a classical result.

Lemma 5.1. Let (un) and (bn) be sequences of positive real numbers verifying
un+1 = ν(δ + un)1/2, for some positive values δ and ν.

Then (un) converges as n→∞ to the unique positive value lν verifying l2ν−νlν−νδ =

0, namely lν = (1/2)(ν +
√
ν2 + 4νδ). Moreover (un) is increasing if u0 ∈ [0, lν) and

non-increasing otherwise.

Lemma 5.2. Let δ ∈ (0,∞) and hn = λn

λn−1
, where (λn) is a sequence of positive

real numbers. Suppose that (hn) is bounded away from zero and assume for some
integers m and N that the equality hn = (δ + hn−1)1/2 is successively satisfied for
n = m, ..,m + N . Then, for some positive value C1 (independent of m and N), we
have λn ≥ C1λm−1 (for n = m, ..,m+N).
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Proof. Let us suppose without loss of generality that N is some large enough integer.
As (hn) is assumed to be bounded below by some positive value δ0, by Lemma 5.1
(also noticing that l1 > 1) we observe that there exist l ∈ (1, l1) and some integer N0

(that are independent of m and N) and such that hn ≥ l for n = m+N0, ..,m+N ,
which by induction amounts to

(f1) λn ≥ lN−N0λm+N0 for n = m+N0, ..,m+N .
Moreover, recalling that (hn)m≤n≤N+m is increasing (by Lemma 5.1), we have

(f2) hn ≥ hm−1 ≥ δ0 for n = m, ..,N +m,
so that

(f3) λn ≥ (δ0)n−mλm−1 for n = m, ..,N +m.
In particular using (f3), we obtain

(f4) λm+N0 ≥ (δ0)N0λm−1.
Now, combining (f1) and (f4) yields

(f5) λn ≥ lN−N0(δ0)N0λm−1 for n = m+N0, .., N +m.
Furthermore (f3) leads us to

(f6) λn ≥ (min{1, δ0})N0−1λm−1 for n = m, ..,N0 +m− 1.
The desired result follows from (f5) and (f6) and recalling that l > 1. �

5.2.2. Proof of Lemma 2.2. The proof follows that same lines as in [16] and it can be
divided into the following steps:

(A) Let us prove that procedure PRGS generates a bounded sequence of integers
(in). Indeed, by definition of λn and setting hn = λn

λn−1
, we have hn ≤ (δ + hn−1)1/2

for n ≥ 0. Then it is obviously checked by invoking Lemma 5.1 that (hn) is a bounded
sequence. Therefore, the quantity tn,i in procedure PRGS satisfies tn,i ≤ µγi for some
positive value µ. Hence from Lemma 2.1 we observe that (2.7) is satisfied whenever

γi ≤ (c/µ), namely i ≥ ln(c/µ)
| ln γ| . It is immediately deduced that (in) is bounded.

(B) Clearly, by definition of λn and by hn = λn

λn−1
, we have hn = γin(δ+hn−1)1/2.

Hence it is readily checked from Lemma 5.1 that (hn) is bounded below (since (in) is
bounded) by some positive value denoted δ0.

(C) Let us prove that there exists a subsequence (ink
)k such that ink

≥ 1. Let
us proceed by contradiction by assuming that there exits some integer n0 such that
in = 0 for n ≥ n0. Then from hn = λn

λn−1
we obtain hn = (δ + hn−1)1/2 for n ≥ n0,

which entails (by Lemma 5.1) that (hn) converges as n → ∞ to the positive value
l1 = (1/2)(1 +

√
1 + 4δ). Consequently, observing that l1 > 1, we deduce that (λn) is

not bounded, which contradicts the condition (λn) ⊂ (0, ν̄] in procedure PRGS .
(D) Let (ink

) be the sequence introduced in (C). Clearly, by Lemma 2.1 and by
ink
≥ 1, we know for any k ≥ 0 that tnk,ink

−1 > c (thanks to the definition of in), or

equivalently λnk
> (1/γ)c. Now assume for some k ≥ 0 that there exists some positive

integer dk such that in = 0 for n = ink+1, ..., dk and idk+1 = 1. Then by hn = λn

λn−1

we obtain hn = (δ + hn−1)1/2 for n = ink+1, ..., dk. So from (B) and Lemma 5.2, and
for some positive constant C0 (independent of k) we get λn ≥ C0λink

≥ C0(1/γ)c

(for n = ink+1, ..., dk). So we immediately reach the desired conclusion. �
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[24] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C.R.A.S., Paris,

258(1964), 4413-4416.
[25] D. Sun, An iterative method for solving variational inquality problems and complementarity

problems, Numer. Math., J. Chin. Univ., 16(1994), 145-153.
[26] D. Sun, A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory

and Appl., 91(1996), 123-140.



STRONG CONVERGENCE OF PROJECTED REFLECTED GRADIENT METHODS 679

[27] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers,
Yokohama, Japan, 2000.

[28] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.

[29] P. Tseng, On linear convergence of iterative methods for the variational inequality problem, J.
Comp. Appl. Math., 60(1995), 237-252.

[30] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM

J. Control Optim., 38(2000), 431-446.
[31] N. Xiu, J. Zhang, Some recent advances in projection-type mathods for variational inequalities,

J. Comp. Applied Math., 152(2003), 559-585.

Received: March 24, 2016; Accepted: May 27, 2016.



680 PAUL-EMILE MAINGÉ


