Fized Point Theory, 19(2018), No. 2, 659-680
DOI: 10.24193/fpt-r0.2018.2.52
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

STRONG CONVERGENCE OF PROJECTED REFLECTED
GRADIENT METHODS FOR VARIATIONAL INEQUALITIES

PAUL-EMILE MAINGE

University of Antilles, Martinique, French West Indies
E-mail: Paul-Emile.Mainge@martinique.univ-ag.fr

Abstract. The purpose of this work is to revisit the numerical approach to classical variational
inequality problems, with monotone and Lipschitz continuous mapping, by means of a regularized
dynamical method. A main feature of the method is that it formally requires only one projection step
onto the feasible set and only one evaluation of the involved mapping (at each iteration), combined
with some viscosity-like regularization process. A strong convergence theorem is established in
a general setting that allows the use of varying step-sizes without any requirement of additional
projections. We also point out that the considered method in absence of regularization does not
generate a Fejer-monotone monotone sequence. So a new analysis is developed for this purpose.
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strong convergence, regularization process, viscosity method.
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