
Fixed Point Theory, 19(2018), No. 2, 643-658

DOI: 10.24193/fpt-ro.2018.2.51

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON GENERALIZED METRIC SPACES

AND GENERALIZED CONVEX CONTRACTIONS

CECE LI∗ AND DONG ZHANG∗∗

∗School of Mathematics and Statistics

Henan University of Science and Technology
Luoyang 471023, People’s Republic of China

E-mail: ceceli@haust.edu.cn

College of Mathemat- ics and System Science,
Shandong University of Science and Technology,

Qingdao 266590, People’s Republic of China

∗∗Department of Mathematics, Peking University
Beijing 100871, People’s Republic of China

E-mail: dongzhang@pku.edu.cn

Abstract. In this paper, we study the generalized metric introduced by Branciari. We find an
induced metric of the generalized metric, by which some new properties of the generalized metric

are presented. As a main result, we generalize several generalized, unified and extended fixed point

theorems on generalized convex contractions.
Key Words and Phrases: Generalized metric, approximate fixed point, generalized convex con-

traction, α-admissible mapping.
2010 Mathematics Subject Classification: 47H10.

1. Introduction

Fixed point theorems on metric space have been successfully applied and have be-
come a major theoretical tool in many topics such as differential equations, convex
minimization, and operator theory. However, there are two problems in some practical
cases: (1) the conditions in the fixed point theorems are too strong to be guaranteed;
(2) the backgrounds of some questions are not on metric spaces. As an attempt to
overcome these issues, we consider approximate fixed points of an α-admissible map-
ping (cf. [6, 7, 10]) on a generalized metric space. There have been some approximate
fixed point theorems (cf. [4, 11, 12, 13]) and many variant generalizations and ex-
tensions of metric space. One of these generalizations is discussed by Branciari [3]
who introduced the concept of a generalized metric space by replacing the triangle
inequality by a rectangular one. Recently, some authors are keen on working on the
fixed point theory on such generalized metric space (cf. [1, 2, 3, 5, 8]). We first recall
the notion of a generalized metric space.
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Definition 1.1. [3] For a nonempty set X, let d : X × X −→ [0,∞] be a map
satisfying the following conditions: For all x, y ∈ X, two distinct u, v ∈ X which is
different from x and y,

(GMS1) d(x, y) = 0 if and only if x = y,
(GMS2) d(x, y) = d(y, x),
(GMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

(1.1)

The map d is called a generalized metric, and the pair (X, d) is called a generalized
metric space, abbreviated as GMS.

One shall notice that the GMS looks like a metric space, the only difference is
(GMS3), however, which makes the GMS much weaker than a metric space and full
of mysteries. For the sake of completeness, we present the concepts of convergence,
Cauchy sequence, completeness and continuity on a GMS as follows.

(1) A sequence {xn} in a GMS (X, d) is GMS convergent to x if d(xn, x)→ 0 as
n→∞.

(2) A sequence {xn} in a GMS (X, d) is GMS Cauchy sequence if for every ε > 0
there exists positive integer N(ε) such that d(xn, xm) < ε for all n > m >
N(ε).

(3) A GMS (X, d) is called complete if every GMS Cauchy sequence in X is GMS
convergent.

(4) A map T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such
that d(xn, x)→ 0 as n→∞, we have d(Txn, Tx)→ 0 as n→∞.

It is known that the topology of GMS has some disadvantages: a generalized
metric is not necessary to be continuous; a GMS convergent sequence is not necessary
to be GMS Cauchy sequence; a GMS is not necessary to be Hausdorff. Hence the
uniqueness of limits cannot be guaranteed. Since the bad topological properties,
comparing with the usual metric space, the proofs of fixed point theorems on GMS
are difficult, complex and a little tedious. In this paper, to avoid these we give some
new properties of GMS in Section 2, which present a much better understanding
and can also simplify the numerous steps of proofs. As a main result, we generalize
several generalized, unified and extended fixed point theorems on generalized convex
contractions in Section 3.

Now we give some new examples to show that GMS is wider than the usual metric
space. From these examples, we could see that GMS possess some sort of relationships
with bigraph.

One class of examples can be stated as follows.

Example 1.1. Let X1, X2 be two nonempty disjoint sets, X = X1 ∪ X2, and d :
X ×X → [0,+∞) be such that d(xi, yi) = 1 for all distinct xi, yi ∈ Xi, i = 1, 2, and
d(x, x) = 0 for all x ∈ X. In order to make (X, d) a GMS, we shall add the definitions
of d(x1, x2) for xi ∈ Xi, i = 1, 2. There are some specific examples:

(1) Let C ∈ (0, 1] be a constant, and d(x1, x2) = C for all xi ∈ Xi, i = 1, 2. One
can easily check that if C ∈ (0, 12 ), then (X, d) is a GMS but not a metric space.

(2) Let C ∈ (0, 1] be a constant, and d(x1, x2) ∈ [C, 3C] for all xi ∈ Xi, i = 1, 2.
This is clearly a generalization of Example 1.1 (1).
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(3) Set Xi = {xi,1, xi,2, . . . , xi,n, . . .} for i = 1, 2, and d(x1,n, x2,m) = 1
min{n,m}

for n,m ∈ N+. In addition, 1
min{n,m} can be replaced by amin{n,m}, where {ak} is a

decreasing sequence which converges to zero.

The other class of examples has the following form.

Example 1.2. Assume that (X1, d1) and (X2, d2) are two GMS satisfying di(xi, yi) <
1 for any xi, yi ∈ Xi, i = 1, 2. Then we can define a generalized metric d on X =
X1 tX2 as d|Xi = di, and d(z1, z2) = 1 for any zi ∈ Xi.

This paper is organized as follows: Section 2 is devoted to some new properties of
GMS, which will be used in the sequel. In Section 3 we concentrate on fixed point
theory of α-admissible operator on GMS, including four nontrivial examples. Section
4 collects the proofs of Theorems 3.1, 3.2 and 3.3 in Section 3.

2. The pseudo metric induced by generalized metric

A pseudo metric is the generalization of usual metric in which the distance between
two distinct points can be zero. For reader’s convenience, we present the definition
here.

Definition 2.1. For a nonempty set X, a non-negative real-valued function ρ : X ×
X −→ [0,∞] is called pseudo metric if there hold for every x, y, z ∈ X,

(PMS1) ρ(x, x) = 0,
(PMS2) ρ(x, y) = ρ(y, x),
(PMS3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

(2.1)

Unlike a metric space, points in a pseudo metric space need not be distinguishable,
i.e., one may have ρ(x, y) = 0 for distinct points x and y. We first show an interesting
and useful result that a generalized metric can induce a pseudo metric.

Proposition 2.1. For a generalized metric d on X, the function ρ : X×X → [0,+∞)
given by ρ(x, y) = inf

z∈X
(d(x, z) + d(z, y)) is a pseudo metric on X.

Proof. We see that (PMS1) and (PMS2) are obvious. It is sufficient to show ρ(a, c) ≤
ρ(a, b) + ρ(b, c) for any a, b, c ∈ X. Without loss of generality, we may assume a 6= b
and b 6= c. Then the proof can be divided into some cases as follows.
Case I: ρ(a, b) = d(a, b), ρ(b, c) = d(b, c).

Then ρ(a, b) + ρ(b, c) = d(a, b) + d(b, c) ≥ ρ(a, c) holds trivially.
Case II: ρ(a, b) < d(a, b), ρ(b, c) = d(b, c).

By the definition of ρ(·, ·), for any ε > 0, there exists z1 ∈ X such that z1 6= a,
z1 6= b and ρ(a, b) > d(a, z1) + d(z1, b)− ε. Thus,

ρ(a, b)+ρ(b, c)=ρ(a, b)+d(b, c)>d(a, z1)+d(z1, b)+d(b, c)−ε ≥ d(a, c)−ε ≥ ρ(a, c)−ε.

By the arbitrariness of ε > 0, we have ρ(a, b) + ρ(b, c) ≥ ρ(a, c).
Case III: ρ(a, b) = d(a, b), ρ(b, c) < d(b, c). This case is similar to Case II.
Case IV: ρ(a, b) < d(a, b), ρ(b, c) < d(b, c).
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For any ε > 0, there exists z1, z2 ∈ X such that z1 6= a, z1 6= b, z2 6= b, z2 6= c,
ρ(a, b) > d(a, z1) + d(z1, b) − ε

2 and ρ(b, c) > d(b, z2) + d(z2, c) − ε
2 . Thus, it follows

from the arbitrariness of ε > 0 and the inequality

ρ(a, b) + ρ(b, c) > d(a, z1) + d(z1, b) + d(b, z2) + d(z2, c)− ε
≥ d(a, z2) + d(z2, c)− ε ≥ ρ(a, c)− ε

that ρ(a, c) ≤ ρ(a, b) + ρ(b, c). �

Moreover, if we assume Wilson condition for (X, d), then the induced pseudo metric
ρ(·, ·) becomes a metric. Here the Wilson condition was proposed by Wilson [15] to
weaken the triangle inequality of metric space.
(W) For each pair of distinct points a, b ∈ X, there is a number ra,b > 0 such that for
every c ∈ X, ra,b ≤ d(a, c) + d(c, b).

Proposition 2.2. Let (X, d) be a GMS satisfying (W). Then the mapping ρ : X ×
X → [0,+∞) given by ρ(x, y) = inf

z∈X
(d(x, z) + d(z, y)) is a metric on X.

Proof. In fact, if a 6= b, then by (W), for any distinct points a, b ∈ X, there exists
ra,b > 0 such that for any z ∈ X, d(a, z) + d(z, b) ≥ ra,b. Thus, we have ρ(a, b) =
inf
z∈X

(d(a, z) + d(z, b)) ≥ ra,b > 0. Together with Proposition 2.1, ρ(·, ·) must be a

metric on X. �

By Proposition 2.2, in a GMS satisfying condition (W), we have 0 < ra,b ≤ ρ(a, b)
for any distinct pair a, b. We usually put ra,b = ρ(a, b). Furthermore, we can also
prove

inf
m∈N+

inf
z1,...,zm∈X

(d(x, z1) + d(z1, z2) + . . .+ d(zm−1, zm) + d(zm, y)) = ρ(x, y).

Lemma 2.1. Let (X, d) be a GMS and x1, x2, . . . , x2n ∈ X satisfy x1 6= x2, x2 6= x3,
. . ., x2n−1 6= x2n, where n is a given positive integer. Then we have

d(x1, x2n) ≤ d(x1, x2) + d(x2, x3) + . . .+ d(x2n−1, x2n). (2.2)

Proof. Obviously, (2.2) holds for n = 1. We then show (2.2) for n = 2, i.e.,

d(x1, x4) ≤ d(x1, x2) + d(x2, x3) + d(x3, x4) (2.3)

whenever x1 6= x2, x2 6= x3, x3 6= x4. In fact, if we further assume that x1 6= x3
and x2 6= x4, (2.3) holds from the definition of generalized metric. If x1 = x3, then
d(x1, x4) = d(x3, x4) ≤ d(x1, x2) + d(x2, x3) + d(x3, x4). Similarly, (2.3) also holds if
x2 = x4.

Now, we assume that (2.2) holds for n (n ≥ 2). Then for n + 1, we have the
following cases.
Case I: x1 6= x2n.

d(x1, x2n+2) ≤ d(x1, x2n) + d(x2n, x2n+1) + d(x2n+1, x2n+2)

≤
2n−1∑
k=1

d(xk, xk+1) + d(x2n, x2n+1) + d(x2n+1, x2n+2)

= d(x1, x2) + d(x2, x3) + . . .+ d(x2n+1, x2n+2).
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Case II: x3 6= x2n+2.

d(x1, x2n+2) ≤ d(x1, x2) + d(x2, x3) + d(x3, x2n+2)

≤ d(x1, x2) + d(x2, x3) +

2n+1∑
k=3

d(xk, xk+1)

= d(x1, x2) + d(x2, x3) + . . .+ d(x2n+1, x2n+2).

Case III: x1 = x2n and x3 = x2n+2.

d(x1, x2n+2) = d(x3, x2n) ≤
2n−1∑
i=3

d(xi, xi+1)

≤ d(x1, x2) + d(x2, x3) + . . .+ d(x2n+1, x2n+2).

Therefore, by mathematical induction, we have completed the proof. �

Remark 2.1. On many proofs of fixed point theorems in GMS, for proving the
Cauchy property of a sequence {xn}, the authors often first suppose xn 6= xn+1 for
every n and then prove ‘xn 6= xm for all n 6= m’. Now, according to Lemma 2.1, this
step can be simplified.

Let {xi}mi=1 be a finite length sequence in X. For i = 1, 2, . . . ,m− 1, we set

χi =

{
1, if xi 6= xi+1

0, if xi = xi+1

and

χ(x1, x2, . . . , xm) =

m−1∑
i=1

χi.

Assume ρ(x, y) = inf
z∈X

(d(z, x) + d(z, y)) and ρ◦(x, y) = inf
z∈X\{x,y}

(d(x, z) + d(z, y))

for x, y ∈ X, then we have

Theorem 2.1. Let (X, d) be a GMS and x1, x2, . . . , xm be given points in X. If

d(x1, xm) > d(x1, x2) + d(x2, x3) + . . .+ d(xm−1, xm), (2.4)

then we have

(1) d(x1, xm) > ρ(x1, xm);
(2) χ(x1, . . . , xm) is even;
(3) ρ(xi, xi+1) = d(xi, xi+1), i = 1, . . . ,m− 1;
(4) For a given i, if xi 6= xi+1, then

ρ◦(xi, xi+1) ≥ d(xi, xi+1) + d(x1, xm)−
m−1∑
j=1

d(xj , xj+1).

Proof. (1) Since ρ is a pseudo metric, and ρ(·, ·) ≤ d(·, ·), we have

ρ(x1, xm) ≤ ρ(x1, x2) + ρ(x2, x3) + . . .+ ρ(xm−1, xm)

≤ d(x1, x2) + d(x2, x3) + . . .+ d(xm−1, xm) < d(x1, xm).
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(2) Without loss of generality, we may assume xi 6= xi+1, i = 1, 2, . . . ,m−1. Hence,
combining with Lemma 2.1, it can be easily shown that χ(x1, x2, . . . , xm) = m − 1
must be even.

(3) It is sufficient to prove d(xi, xi+1) = ρ(xi, xi+1) for i = 1, . . . , 2n, if there holds

d(x1, x2n+1) > d(x1, x2) + d(x2, x3) + . . .+ d(x2n, x2n+1)

for x1 6= x2, x2 6= x3, . . ., x2n 6= x2n+1. Suppose the contrary that there exists
i ∈ {1, . . . , 2n} satisfying d(xi, xi+1) > ρ(xi, xi+1), then by the definition of ρ(xi, xi+1)
there exists z ∈ X\{xi, xi+1} such that d(xi, z)+d(z, xi+1) < d(xi, xi+1). By Lemma
2.1, we have

d(x1, x2n+1) ≤ d(x1, x2) + . . .+ d(xi−1, xi) + d(xi, z) + d(z, xi+1)

+ d(xi+1, xi+2) + . . .+ d(x2n, x2n+1)

< d(x1, x2) + . . .+ d(xi−1, xi) + d(xi, xi+1)

+ d(xi+1, xi+2) + . . .+ d(x2n, x2n+1),

which is a contradiction.
(4) In fact, for z different from xi and xi+1, we know from (2) that

χ(x1, . . . , xi, z, xi+1, . . . , xm) is odd.

Hence, we have

d(x1, x2) + . . .+ d(xi−1, xi) + d(xi, z) + d(z, xi+1)

+ d(xi+1, xi+2) + . . .+ d(xm−1, xm) ≥ d(x1, xm)

and then

d(xi, z) + d(z, xi+1) ≥ d(xi, xi+1) + d(x1, xm)−
m−1∑
j=1

d(xj , xj+1).

Finally, by the arbitrariness of z, we have

ρ◦(xi, xi+1) ≥ d(xi, xi+1) + d(x1, xm)−
m−1∑
j=1

d(xj , xj+1). �

3. generalized convex contractions on GMS and metric space

For completeness, we first present some definitions appeared in literatures.

Definition 3.1 ([14]). Let T be a self-mapping on X and α : X ×X → [0,+∞) be
a function. We say that T is an α-admissible mapping if

x, y ∈ X,α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Definition 3.2 ([13, 9]). Let (X, d) be a GMS, T : X → X be a mapping and ε > 0 be
a given real number. A point x0 ∈ X is said to be an ε-fixed point(approximate fixed
point) of T if d(x0, Tx0) < ε. We say that T has the approximated fixed point property
if for any ε > 0, there exists an ε-fixed point of T , equivalently, inf

x∈X
d(x, Tx) = 0.

It is easy to verify the following proposition.
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Proposition 3.1 ([11]). Let (X, d) be a GMS and T : X → X be a mapping such
that there exists x ∈ X satisfying d(Tnx, Tn+1x) → 0 as n → ∞, then T has the
approximate fixed point property.

Definition 3.3 ([6]). Let (X, d) be a GMS and α : X ×X → [0,+∞) be a mapping.
The metric space X is said to be α-complete if and only if every Cauchy sequence
{xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N, converges in X.

We say that T is an α-continuous mapping on (X, d) if for each sequence {xn} in
X with xn → x as n → ∞ for some x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N there
holds Txn → Tx as n→∞.

Definition 3.4 ([11]). Let X be a nonempty set and α : X × X → [0,+∞) be a
mapping. We say that X has the property (H) whenever for each x, y ∈ X, there
exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Now we start our notions and results.

Definition 3.5. Let (X, d) be a GMS and α : X × X → [0,+∞) be a mapping.
The mapping T : X → X is called a generalized convex contraction with the based
mapping α if there exists λ ∈ [0, 1) such that: α(x, y) ≥ 1 implies

d(T 2x, T 2y) ≤ λmax{d(x, Tx), d(y, Ty), d(Tx, T 2x), d(Ty, T 2y), d(x, y), d(Tx, Ty)}.

Theorem 3.1. Let (X, d) be a GMS and T be a generalized convex contraction with
the based mapping α.

(1) Assume there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
2x0) ≥ 1,

then T has the approximate fixed point property.
(2) In addition, if T is α-continuous and (X, d) is an α-complete metric space,

then T has a fixed point.
(3) Furthermore, if we add the condition (H+) below, then T must has a unique

fixed point.
(H+) For any x, y, there exists z such that α(x, z) ≥ 1, α(y, z) ≥ 1, α(Tz, z) ≥ 1,

α(T 2z, z) ≥ 1.

Note that if we remove ‘α(x0, T
2x0) ≥ 1’, then we see from the example below that

Theorem 3.1 (2) will be false.

Example 3.1. Let X = {0, 1, 2, . . . , n, . . .}. Take d : X ×X → [0,+∞) such that:

d(q, p) = d(p, q) =


0 if p = q,
1 if |p− q| is an even positive number,

2−min{p,q} if |p− q| is an odd positive number.

By Example 1.1 we can check that (X, d) is a complete generalized metric space.
Let α : X × X → [0,+∞) be a map satisfying α(n, n + 1) = α(n + 1, n) = 1,

α(n, n + k) = α(n + k, n) = 0 for any n ∈ X, k = 2, . . ., and T : X → X be a map
satisfying T (n) = n+ 1 for each n ∈ X. Then T has no fixed points, but T satisfy all
the conditions except that α(x0, T

2x0) ≥ 1 and α(z, T 2z) ≥ 1 for any x0, z ∈ X.

However, in a metric space, the conditions ‘α(x0, T
2x0) ≥ 1’ and ‘α(T 2z, z) ≥ 1’,

can be removed. Similar to Theorem 3.1, on metric space we have
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Theorem 3.2. Let (X, d) be a metric space and T be a generalized convex contraction
with the based mapping α. Assume there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
then T has the approximate fixed point property.

In addition, if T is α-continuous and (X, d) is an α-complete metric space, then
T has a fixed point. Furthermore, if we add the below hypotheses, then T must has a
unique fixed point.

(1) For any fixed points u and v, there exists z such that α(u, z) ≥ 1, α(v, z) ≥ 1
and α(Tz, z) ≥ 1.

(2) For any fixed points u and v, there exists z such that α(u, z) ≥ 1, α(v, z) ≥ 1,
and λ < 1

2 associated with T .

The example below shows that if we replace the conditions (1) or (2) by Hypothesis
(H) then the uniqueness of fixed point may not hold.

Example 3.2. Consider a subset of l1(R), X = {0, v, z1, z2, . . .}, with the induced
metric d(x, y) = ‖x− y‖1, where

v = (
1

6
, 0, 0, . . .), z1 = (1, 0, 0, . . .), z2 = (0, 1, 0, . . .), . . . .

Let T be a mapping such that Tv = v, T0 = 0 and Tzi = zi+1, and α : X×X → R
be a symmetric mapping such that α(0, zi) = α(v, zi) = 1, α(x, y) = 0 for other pair
(x, y) ∈ X ×X, where i ∈ N+. Then it can be easily shown that

d(0, Tn+2z) = 1 ≤ 4

3

=
2

3
max{d(Tnz, Tn+1z), d(Tn+1z, Tn+2z), d(0, Tnz), d(0, Tn+1z)},

d(v, Tn+2z) ≤ 7

6
≤ 4

3

=
2

3
max{d(Tnz, Tn+1z), d(Tn+1z, Tn+2z), d(v, Tnz), d(v, Tn+1z)}.

Now, we can see that T has two distinct fixed points.

Theorem 3.3. Given a metric space (X, d), let two mappings α : X ×X → R and
T : X → X satisfy the property: α(x, y) ≥ 1 implies

d(T 2x, T 2y) ≤ a1d(x, Tx) + a2d(Tx, T 2x) + b1d(y, Ty)

+ b2d(Ty, T 2y) + ad(Tx, Ty) + bd(x, y),

where a, b, a1, a2, b1, b2 are nonnegative real numbers satisfying

a+ b+ a1 + a2 + b1 + b2 < 1.

Assume that T is α-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.
Then T has the approximate fixed point property. In addition, if T is α-continuous
and (X, d) is an α-complete metric space, then T has a fixed point. Furthermore, T
has a unique fixed point provide that X has the property (H).

The following example indicates that if we replace ‘metric’ by ‘generalized metric’
in Theorem 3.3 then the uniqueness of fixed point will not hold.
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Example 3.3. Assume that d : X × X → [0,+∞) satisfies d(u, v) = 1, d(zi, zj) =
1, i 6= j, d(u, zi) = d(v, zi) = 1

7 , i = 1, 2, . . ., d(x, x) = 0, for all x ∈ X. Here
X = X1 ∪ X2, X1 ∩ X2 6= ∅, X1 = {u, v} and X2 = {z1, . . . , zn, . . .}. The mapping
T : X → X is defined as Tu = u, Tv = v, Tzi = zi+1, i = 1, 2, . . ..

If we take a = b = a1 = a2 = b1 = b2 = 1
7 , α(u, zi) = α(v, zi) = α(zi, u) =

α(zi, v) = 1, otherwise α(x, y) = 0. Then by Example 1.1, (X, d) is a GMS, and

d(u, zn+2)=
1

7
<

1 + 1 + 1
7 + 1

7

7
=
d(zn, zn+1) + d(zn+1, zn+2) + d(zn, u) + d(zn+1, u)

7

holds for any n ∈ N+. However, T has two fixed points: u and v.

As corollaries of Theorem 3.3, we can obtain the main results of [11] as follows.

Corollary 3.1 (Theorems 3.2 and 3.4 in [11]). Let (X, d) be a metric space and
α : X ×X → R be a mapping and T : X → X satisfy α(x, y) ≥ 1⇒

d(T 2x, T 2y) ≤ ad(Tx, Ty) + bd(x, y).

Assume that T is α-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.
Then T has the approximate fixed point property. In addition, if T is α-continuous
and (X, d) is an α-complete metric space, then T has a fixed point. Moreover, adding
property (H) to the hypotheses of X and α, we obtain uniqueness of the fixed point of
T .

Corollary 3.2 (Theorem 3.10 in [11]). Let (X, d) be a metric space and α : X×X →
R be a mapping and T : X → X satisfy α(x, y) ≥ 1⇒

d(T 2x, T 2y) ≤ a1d(x, Tx) + a2d(Tx, T 2x) + b1d(y, Ty) + b2d(Ty, T 2y).

Assume that T is α-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.
Then T has the approximate fixed point property. In addition, if T is α-continuous
and (X, d) is an α-complete metric space, then T has a fixed point. Moreover, T has
a unique fixed point provide that X has the property (H).

The following example shows that in some practical cases Theorem 3.2 cannot be
replaced by Theorem 3.3.

Example 3.4. Set X = {x1, x2, x3, x4, x5}, and the symmetric mapping α : X×X →
R is defined as α(x1, x2) = α(x2, x3) = 1, otherwise α(x, y) = 0. We define the metric
d on X as follows: d(x1, x2) = 1, d(x2, x3) = 0.1, d(x3, x4) = 0.9, d(x4, x5) = 0.81,
d(x1, x3) = 0.9, d(x2, x4) = 0.9, d(x3, x5) = 0.9, d(x1, x4) = 0.9, d(x2, x5) = 1,
d(x1, x5) = 1. One can check that (X, d) is a complete metric space.
T : X → X be such that Txi = xi+1, i = 1, 2, 3, 4, Tx5 = x5. Choosing λ = 0.9,

we can easily check that

d(x3, x4) = 0.9 = λmax{d(x1, x2), d(x2, x3)}

and

d(x4, x5) = 0.81 = λmax{d(x2, x3), d(x3, x4)}.



652 CECE LI AND DONG ZHANG

So by Theorem 3.2, T has a fixed point. Now we point out that Theorem 3.3 cannot
be applied here. Indeed, for n = 1, 2, we have

d(xn+2, xn+3) ≤ a1d(xn, xn+1) + a2d(xn+1, xn+2) + b1d(xn+1, xn+2)

+ b2d(xn+2, xn+3) + ad(xn+1, xn+2) + bd(xn, xn+1).

So by simplification, we get

d(xn+2, xn+3) ≤ l1d(xn, xn+1) + l2d(xn+1, xn+2)

for n = 1, 2, where l1 = a1+b
1−b2 , l2 = a2+b1+a

1−b2 be two nonnegative numbers satisfying
l1 + l2 < 1.

Taking n = 1, 2 respectively, we have 0.9 ≤ l11 + l20.1 and 0.81 ≤ l10.1 + l20.9.
Hence 1.71 ≤ 1.1l1 + l2 < 1 + 0.1l1 ⇒ l1 > 7.1, which is a contradiction with l1 < 1.
Hence, there are no a, b, a1, b1, a2, b2 satisfying the condition of Theorem 3.3.

4. Proofs of Theorems 3.1, 3.2 and 3.3

First we prepare a lemma which will be used in the context.

Lemma 4.1. If a positive sequence {an} and a positive number k < 1 satisfy

an+1 ≤ kmax{an, an−1} for n = 2, 3, . . . ,

then an ≤ αnβ, n = 1, 2, . . ., where

α =
√
k, β =

max{a2, ka1}
k

+
max{a1, ka0}√

k
.

Thus lim
n→+∞

an = 0.

Proof. Notice that

an+1 ≤ kmax{an, an−1} ≤ kmax{kmax{an−1, an−2}, an−1} = max{kan−1, k2an−2}
and

kan ≤ k2 max{an−1, an−2} ≤ max{kan−1, k2an−2}
for n = 2, 3, . . .. Let bn = max{an, kan−1}, then by the above inequalities, we have

bn+1 ≤ kbn−1, n = 2, 3, . . . .

Hence, bn ≤ αnβ, where α =
√
k, β = b2

k + b1√
k

. It follows that an ≤ αnβ holds for

n = 1, 2, . . .. So we have completed the proof. �

Proof of Theorem 3.1. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Note that such
point x0 exists due to condition (1). Define the sequence {xn} in X by xn+1 = Txn
for all n ≥ 0. If xn0 = xn0+1 for some n0, then clearly xn0 is a fixed point of T .
Hence, throughout the proof, we suppose that xn 6= xn+1 for all n ∈ N. Since T is
α-admissible, we have

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(x1, x2) = α(Tx0, T
2x0) ≥ 1.

Repeating the process above, we derive,

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . .
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By using the same technique above, we get

α(x0, x2) = α(x0, T
2x0) ≥ 1⇒ α(x1, x3) = α(Tx0, T

3x0) ≥ 1.

The expression above yields

α(xn, xn+2) ≥ 1, for all n = 0, 1, . . . .

This proof can be divided into 4 steps.
Step 1: d(xn, xn+1)→ 0 as n→ +∞.

d(xn, xn+1) ≤ λmax{d(xn−2, xn−1), d(xn−1, xn), d(xn−1, xn),

d(xn, xn+1), d(xn−2, xn−1), d(xn−1, xn)}
= λmax{d(xn−2, xn−1), d(xn−1, xn)}.

Then according to Lemma 4.1, we have

d(xn, xn+1) ≤ αnβ, n = 1, 2, . . . , (4.1)

where

α =
√
λ, β =

max{d(x2, x3), λd(x1, x2)}
λ

+
max{d(x1, x2), λd(x0, x1)}√

λ
.

Thus, d(xn, xn+1) → 0 as n → +∞. Therefore, by Proposition 3.1, T has the
approximate fixed point property.
Step 2: xn 6= xm for any n 6= m.

If not, there exist n and n + q such that xn = xn+q, then we have T qxn = xn,
i.e., T qx = x for x = xn, xn+1, . . .. It follows from xm 6= xm+1 and d(xm, xm+1) =
d(xm+q, xm+q+1) that the sequence {d(xm, xm+1)} is periodic. This is a contradiction
with d(xm, xm+1)→ 0 as m→ +∞.
Step 3: {xn} is a Cauchy sequence.

If not, we will prove that there exist δ > 0 and a subsequence {xnk
} of {xn} such

that d(xnk
, xnk+1

) > δ, k = 1, 2, . . ..
In fact, since d(xn, xm) 6→ 0,m, n→ +∞, we have

lim
N→+∞

sup
n,m≥N

d(xn, xm) > 0.

Now we show lim inf
n→+∞

sup
m>n

d(xn, xm) > 0. If not, there exist n1 < . . . < nk < . . . such

that d(xnk
, xm) < 1

2k
, for any m > nk, k = 1, 2, . . ..

Since d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for distinct x, u, v, y, we can easily get that

d(xn, xm) ≤ d(xn, xnk
) + d(xnk

, xnk+1
) + d(xnk+1

, xm) <
3

2k
for any n,m > nk+1.

So

lim
N→+∞

sup
n,m≥N

d(xn, xm) = lim
k→+∞

sup
n,m>nk+1

d(xn, xm) = 0,

which is a contradiction.
Hence, we may denote a positive number δ0 = lim inf

n→+∞
sup
m>n

d(xn, xm).

Thus, there exists N ∈ N+ such that for any n ≥ N , there exists m > n satisfying



654 CECE LI AND DONG ZHANG

d(xn, xm) > δ0
2 . Now, let δ = δ0

2 , n1 = N , n2 be such that d(xn1 , xn2) > δ, n3 be
such that d(xn2

, xn3
) > δ, . . ..

It is easy to see that

m∑
j=n

d(xj , xj+1) < αnγ via the inequality (4.1), where γ = β
1−α .

Without loss of generality, we may assume that n1 satisfies αnγ < δ
3 for all n ≥ n1.

Notice that d(xni
, xni+1

) > δ,

ni+1−1∑
j=ni

d(xj , xj+1) <
δ

2
hold for i ≥ 1. According to

Theorem 2.1, we have d(xn, xn+1) = ρ(xn, xn+1), and

d(xn, xn+2) + d(xn+1, xn+2) ≥ d(xn, xn+1) + d(xni
, xni+1

)−
ni+1−1∑
j=ni

d(xj , xj+1)

≥ d(xn, xn+1) + δ − δ

3
= d(xn, xn+1) +

2δ

3

for n ≥ n1 + 2. So

d(xn, xn+2) ≥ d(xn, xn+1) +
2δ

3
− d(xn+1, xn+2) ≥ δ

3

holds for large n. However,

d(xn, xn+2) ≤ λmax{d(xn−2, xn−1), d(xn, xn+1), d(xn−1, xn),

d(xn+1, xn+2), d(xn−2, xn), d(xn−1, xn+1)}
= λmax{d(xn−2, xn), d(xn−1, xn+1)}

holds for n ≥ n1 + 2. Then by Lemma 4.1, we can easily get that

d(xn, xn+2)→ 0, n→ +∞. (4.2)

This is a contradiction with d(xn, xn+2) > δ
3 . Hence, we conclude that {xn} is a GMS

Cauchy sequence in the complete GMS (X, d).
Thus, there exists u ∈ X such that

lim
n→+∞

d(xn, u) = 0.

Since T is α-continuous, Txn → Tu, then Tu = lim
n→+∞

Txn = lim
n→+∞

xn+1 = u and

thus T has a fixed point.
Step 4: Uniqueness of fixed point.

Suppose the contrary, that u, v are two distinct fixed points of T .
We can choose z ∈ X such that α(u, z) ≥ 1, α(v, z) ≥ 1, α(Tz, z) ≥ 1 and

α(T 2z, z) ≥ 1. Since T is α-admissible, we derive that α(u, Tnz) ≥ 1, α(v, Tnz) ≥ 1,
α(Tn+1z, Tnz) ≥ 1 and α(Tn+2z, Tnz) ≥ 1 for all n ∈ N+.

If z ∈ {u, v}, then α(u, v) ≥ 1. Thus d(u, v) = d(T 2u, T 2v) ≤ λd(u, v), and then
d(u, v) = 0, i.e. u = v, which is a contradiction. So we have z 6= u, v and

d(Tn+2z, u) ≤ λmax{d(Tnz, Tn+1z), d(Tn+1z, Tn+2z), d(Tnz, u), d(Tn+1z, u)}.

Let an = d(Tnz, u) and εn = max{d(Tnz, Tn+1z), d(Tn+1z, Tn+2z)}.
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Then we have 0 < an+2 ≤ λmax{εn, an+1, an}. Similar to Step 1,
d(Tnz, Tn+1z) → 0 as n → +∞, and thus εn → 0 as n → +∞. Now we show
that an → 0 as n→ +∞. Let bn = max{an, λan−1}. We have

bn+2 ≤ λbn + ηn, n = 1, 2, . . . ,

where ηn = max{εn, λεn−1}. Since ηn → 0, we can easily prove that bn → 0, i.e.,
an → 0. Hence, d(Tnz, u) → 0, i.e. Tnz → u. Similarly, we also have Tnz → v as
n → +∞. By the uniqueness of limit, we have u = v and then T has a unique fixed
point. This completes the proof. �

Proof of Theorem 3.2. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define the sequence
{xn} in X by xn+1 = Txn for all n ≥ 0. Similar to the proof of Theorem 3.1, we have
d(xn, xn+1)→ 0 and

d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2)→ 0 as n→ +∞. (4.3)

Thus, repeating Step 3 in the proof of Theorem 3.1, T has a fixed point. Now we
turn to the uniqueness.

(1) If we choose the condition (1), then combining (4.3), the proof of uniqueness can
refer to Step 4 in the proof of Theorem 3.1.

(2) If we choose the condition (2), then the above method becomes invalid. We
present here a new proof. Let u and v be two fixed points of T , and z be the
point such that α(u, z) ≥ 1 and α(v, z) ≥ 1. To utilize the adding assumption
‘λ < 1/2’, we shall note that d(Tnz, Tn+1z) ≤ d(Tnz, u) + d(u, Tn+1z) and

d(Tn+2z, u) ≤ λmax{d(Tnz, Tn+1z), d(Tn+1z, Tn+2z), d(Tnz, u), d(Tn+1z, u)}
≤ λmax{d(Tnz, u) + d(u, Tn+1z), d(Tn+2z, u) + d(u, Tn+1z)}
≤ 2λmax{d(Tnz, u), d(u, Tn+1z), d(Tn+2z, u)}.

Since 2λ < 1 and Tnz 6= u, we have

d(Tn+2z, u) ≤ 2λmax{d(Tnz, u), d(v, Tn+1z)}.

By Lemma 4.1, we immediately deduce that d(Tnz, u) → 0, i.e., Tnz → u.
Similarly, we can prove that Tnz → v as n → +∞. By the uniqueness of limit,
we have u = v and then T has a unique fixed point. This completes the proof. �

Proof of Theorem 3.3. We only need to prove the uniqueness of fixed point of T .
Without loss of generality, we may assume a1 + a2 ≤ b1 + b2, then

a+ b+ 2a1 + 2a2 ≤ a+ b+ a1 + a2 + b1 + b2 < 1.

Suppose the contrary, that u, v are two distinct fixed points of T . We can choose
z ∈ X such that α(u, z) ≥ 1, α(v, z) ≥ 1. Since T is α-admissible, we get

α(u, Tnz) ≥ 1, α(v, Tnz) ≥ 1 for all n ∈ N+.
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Taking x = Tnz, y = u, we have

d(Tn+2z, u) ≤ a1d(Tnz, Tn+1z) + a2d(Tn+1z, Tn+2z) + ad(Tn+1z, u) + bd(Tnz, u)

≤ a1(d(Tnz, u) + d(uTn+1z, )) + a2(d(Tn+1z, u)

+ d(u, Tn+2z)) + ad(Tn+1z, u) + bd(Tnz, u)

= (a1 + a2 + a)d(Tn+1z, u) + (a1 + b)d(Tnz, u) + a2d(u, Tn+2z).

So it implies that

d(Tn+2z, u) ≤ a1 + a2 + a

1− a2
d(Tn+1z, u) +

a1 + b

1− a2
d(Tnz, u)

≤ λmax{d(Tnz, u), d(Tn+1z, u)},

where

λ =
a1 + a2 + a+ a1 + b

1− a2
<

1− a2
1− a2

< 1.

Therefore, according to Lemma 4.1, we have d(Tnz, u)→ 0 as n→ +∞. Others are
similar to the proof of Theorem 3.2. �
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