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Abstract. In this paper we discuss some topological properties of the set
F(So,T,z) :={x € X :Sox € T + z},

where T is a nonlinear multi-valued mappings and Sy is a single-valued mappings acting on a Banach
space X. This study is based on a new concept, the so called weakly relative demicompactness for
nonlinear operators.
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1. INTRODUCTION

In 1966, W. V. Petryshyn [12] used demicompactness of nonlinear operators acting
on Hilbert spaces to study an iterative method for the construction of fixed points.
This notion was also used in [14] to investigate the structure of fixed point sets for
nonlinear operators defined on a closed subset of a Banach space. A nonlinear oper-
ator T: D C X — X (here X is a Banach space) is demicompact if every bounded
sequence {z,} in X such that z, — Tz, converges strongly has a convergent subse-
quence. For example each of the following conditions imply that 7" is demicompact, (4)
T is compact. (ii) The range of I —T is closed, the inverse (I —T)~! exists and is con-
tinuous. We refer the reader to [3, 11, 12, 13] for more information. W. V. Petryshyn
[13] and Y. Akashi [1] used the class of demicompact, 1-set contraction linear oper-
ators to obtain some results on Fredholm perturbations. Recently, W. Chaker, A.
Jeribi and B. Krichen [5] continued this study to investigate the essential spectra of
densely defined linear operator. In 2014, B. Krichen [9], gave a generalization of this
notion by introducing the class of relative demicompact linear operator with respect
to a given linear operator. If X is a Banach space and T : D(T) C X — X and
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So : D(Sp) € X — X are two densely defined linear operators with D(T') C D(Sp),
then T is said to be Sp-demicompact (or relative demicompact with respect to Sp), if
every bounded sequence {x,} in D(T') such that Spa,, — Tx,, converges, has a conver-
gent subsequence. In [9] the author showed that if D(T') lies in a finite dimensional
subspace of X, the condition of relative demicompactness is automatically satisfied.
For examples of Sp-demicompact operators, we cite operators T such that (Sq—7)~!
exists and is continuous on its range R(Sy — T'). In this paper we discuss relative
demicompactness for nonlinear operators. We now recall some definitions from non-
linear analysis. Let X be a Banach space and let us denote by P(X), the class of all
nonempty subsets of X. A correspondence T : X — P(X) is called a multi-valued
operator or multi-valued mapping of X into itself. For any subset A of X, we let
T(A) = UgeaTz. A multi-valued operator T : D(T) C X — P(X) is said to be
closed if its graph Gr(T') = {(z,y) € D(T) x X such that y € T'(z)} is a closed subset
of X x X. We denote by C the collection of all closed multi-valued operators from X
to itself. We recall that T is upper-semi continuous if, and only if, for every closed
subset V' in X, the set

T~ (V) = {z € X such that T(z) NV # 0}

is a closed set in X. Now T is called weakly upper semicontinuous if T is upper
semicontinuous with respect to the weak topology on X. The operator T is said to
be weakly compact if the set T'(X) is relatively weakly compact in X. Now T is said
to have weakly sequentially closed graph if for every sequence (z,), with z,, = z in
X and for every sequence y,, with y,, € T'(x,,), y, — y implies y € T'(z). An operator
S:D(S) C X — X is said to be weakly closed if for every sequence (z,), C D(S)
such that x,, = z and Sz, — y implies z € D(S) and y = Sxz.

The following Lemma provides a sequential characterization of an upper semi-
continuous multi-valued mapping.

Lemma 1.1. A multi-valued map T is upper semi-continuous at a point x € X if,
and only if, for every sequence {x,}2 in X which converges to x, and for any open
set V.C X such that T(x) C V, there exists ng € N with T(x,,) CV, for all n > ng.

The following Lemma [7] will be used later.

Lemma 1.2. Assume that T : X — P(X) is an upper semi-continuous multi-valued
operator. Then the graph Gr(T) is a closed subset of X x X.

The measure of weak noncompactness was defined by De Blasi [6]. Let X be a Banach
space, {1x the collection of all nonempty bounded subsets of X, and K% the subsets
of Qx consisting of all weakly compact subsets of X. The De Blasi [6] measure of
weak noncompactness is the map w: Qx — [0, +00) defined in the following way:

w(M) =inf{r > 0: there exists K € K" such that M C K + B, },

for all M € Qx. Let us recall some properties of w(.) needed below (see, for example,
[2, 6]) (see also [4], where an axiomatic approach to the notion of a measure of weak
noncompactness is presented).
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Lemma 1.3. Let My and Ms be two elements of Q0x . Then, the following conditions
are satisfied:

(1) My C My implies w(My) < w(Mas).

(i1) w(My) = 0 if, and only if, My™ € K, where My™ is the weak closure of Mj.
(iid) w(Mi™) = w(My).

(iv) (/\/11 U Mj) = max{w(Mi),w(Mas)}.

(v) WMy + Ma) < w(M1) +w(My).

Definition 1.1. [8] Let X be a topological vector space. An operator T : D(T') C

X — X is said to be w-condensing map if w(T(V)) < w(V) for all bounded subsets
V of D(T) with w(V) > 0.

2. RELATIVE WEAK DEMICOMPACT NONLINEAR OPERATORS

In this section we first introduce a new concept. In our results in this section X is a
Banach space and Sy a single-valued operator from D(Sp) C X into X.

Definition 2.1. Let X be a topological vector space. Let T : D(T) C X — X be a
single-valued operator with D(T") C D(Sy). Now T is called weakly Sp-demicompact
if whenever Syx,, — T'x,, converges weakly and (), is contained in a bounded set of
X, then the sequence (), has a weakly convergent subsequence in D(T). If Sy = I,
T is simply said to be weakly demicompact.

Definition 2.2. A single-valued operator T': D(T') C X — X with D(T') C D(So)
is said to be weakly Sp-semiclosed if for any weakly closed subset V' C of X, the set
(So — T)V is weakly closed.

Remark 2.1. We note that there is no relationship between the concepts of weak
So-semiclosedness and weak Sp-demicompactness. Consider the map
T:R —R
z|z|
1+ |z
Obviously, (Idg—T)(R) =]—1, 1], so it follows that T is not Idg-semiclosed. However,

we know that in finite dimensional spaces, every bounded sequence has a weakly
convergent subsequence. Therefore, T is weakly Idgr-demicompact.

For T € C, Sy a single-valued operator from D(Sy) C X into X such that D(T) C
D(Sp) and an element z € X we denote by F(Sp, T, z) the set of solutions of
Sox € Tx + 2. (2.1)

Here, Te + 2z ={y + 2z : y € Tz}, and x is a solution if the relation (2.1) holds. Note
we do not assume existence or uniqueness so the set F(Sp, 7, z) might be empty or
contain many elements.

T

Remark 2.2. Let X be a Banach space. Assume that T' € C and Sy is a continuous
single-valued operator. Then, for every z € X the subset F(Sg, T, 2) is closed.

If X is endowed with its weak topology, then we have the following.
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Theorem 2.1. Let X be a Banach space. Assume that T is a multi-valued opera-
tor with weakly sequentially closed graph and Sy is a weakly sequentially continuous
operator. Then, for every z € X the subset F(So, T, z) is weakly closed.

Proof. Let (x,), be a sequence of F(Sp, T, z) such that x,, — 2. Then, there exists
a sequence (Y, )n of (Txy), such that Soz,, = y, + z for every n € N. From the weak
sequential continuity of Sy it follows that Syx,, — Spx and then

(Zny Yn) — (2, Sox — 2).
Since T has a weakly sequentially closed graph, it follows that € F(Sp, T, z) and

so, F(So, T, z) is weakly closed. O
Notice that if Sy is only weakly closed, then we have the following:

Theorem 2.2. Let X be a Banach space. Assume that T is a weakly compact multi-
valued operator and Sy is a weakly closed operator. Then, for every z € X the subset
F(So,T, z) is weakly closed.

Proof. Let (xy,), C D(T) be a sequence of F(Sy, T, z) such that a,, — x. Then, there
exists a sequence (y)n of (Txy), such that Spx,, = y, + z for every n € N. Since
{yn :n € N} C Ugep(yT', it follows that w({y, : n € N}) = 0. Hence, there exists a
subsequence (Y, (n))n, such that Soz,,,) — y + 2. The weak closedness of Sy shows
that € D(T) and Spx € Tx+ z. Then, x € F(Sy, T, z) and consequently, F(Sy, T, 2)
is weakly closed. O

Theorem 2.3. Let X be a Banach space and let the multi T be a weakly compact range
operator with weakly sequentially closed graph. Assume that Sy is weakly closed and
I — Sy is a weakly demicompact mapping. Then for every z € X, the set F(So, T, z)
is relatively weakly compact.

Proof. Let (x,,)n, C D(T) be a sequence of F(Sp,T,z). Then, Soz, € Tz, + 2z C
TX + z. Since T'X + z is weakly compact, there exists a subsequence x,(,,y C D(T)
such that Soz,, — y, y € X. Using the weak demicompactness of I —Sj, we deduce the
existence of a subsequence (Zyoy(n))n Of (Zy(n))n such that x40y (,) converges weakly
to some z € X. From the weak closedness of Sy, we obtain z € D(T) and y = Spz.
Now, since Gr(T) is weakly sequentially closed, we deduce that x € F(Sp, T, z) and
so the result follows from the Eberlein-Smulian theorem [10, Theorem 2.8.6]. O

The next result shows that in the case of condensing operators, F(So, T, z) may be
relatively weakly compact.

Theorem 2.4. Let X be a Banach space and let T be a single-valued w-condensing
operator. Then, for every bounded subset D of X, the set DN F(I,T, z) is relatively
weakly compact.

Proof. Since x € F(I,T, z) means that x = Tx + z, it follows that
T(F(I,T,2)ND) = FU,T,2) N D — z,

so w(T'(F(I,T,z)N D)) =w(FI,T,z)N D). If w(F(,T,z) N D) > 0 then since T'
is w-condensing we have w(T(F(I,T,z) N D)) < w(F(I,T,z) N D), a contradiction.
Thus w(F(I,T,z)N D) =0so F(I,T,z) N D is relatively weakly compact. O
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Theorem 2.5. LetT : D(T) C X — X, Sy : D(Sp) C X — X be two single-valued
closed operators with D(T) C D(Sy) such that Sy — T is weakly closed. If T is weakly
So-demicompact, then for every closed, convex bounded set D, the multi-valued map

Fp:X — P(X),
y— DN (So—T) 'y,

is weakly compact-valued and weakly upper-semicontinuous.

Proof. Suppose T is weakly Sp-demicompact. First we show Fp is weakly upper-
semicontinuous. Let (y, ), be a sequence with y, — y and @ a weakly open set such
that Fp(y) € Q. From Lemma 1.1 it suffices to show the existence of ng € N such
that Fp(yn) C Q, Vn > ng. If not, then there exists a subsequence (2, (,))n Of (Zn)n
(here @, € DN (So — T)'yy) such that 2,y € DN (So —T) 'y, and 2y ¢ Q.
Note SoZy(n) — Ty (n) converges weakly to y. Since T' is weakly Sp-demicompact we
infer that there exists a subsequence (Zyoy(n))n Of (Zy(n))n such that (Tyopm))n — 2,
x € X. Since D is a closed and convex subset of X we deduce that z € D. Moreover,
taking into account that (So —T)Zgoyn) — ¥ and Sp— T is a weakly closed mappings,
we deduce that y = (Sop—T)x. Consequently, = € DN(So—T) 'y = Fp(y). Therefore
Tyoyp(n) € Q for n large enough, a contradiction to the construction of (2, ,))n. Thus
Fp is weakly upper-semicontinuous. Next fix y € X. Now since T is weakly Sp-
demicompact then if (z,), is a sequence in D N (Sy — T) 'y, then it has a weakly
converging subsequence, and so the weak closedness of Sy — 7" implies that the limit
is also in D N (Sy — T)~'y. Thus, DN (Sy — T) "'y is weakly compact. O
The following theorem provides a sufficient condition to an nonlinear operator to be
weakly relative demicompact with respect to a given nonlinear operator.

Theorem 2.6. LetT : D(T) C X — X, Sy : D(Sp) C X — X be two single-valued
closed operators with D(T') C D(So) such that So—T have a weakly sequentially closed
graph. Assume that for every weakly closed convex, bounded set D, the multi-valued
map
Fp: X — P(X),
y— DN (So—T)""y,

is compact-valued and weakly upper-semicontinuous. Then, T is weakly So-demi-
compact.

Proof. Let y,, := (So—T)z,, be a weakly converging sequence and assume that (), is
included in the weakly closed, and bounded set D. The weak upper-semicontinuity of
y — DN (Sy—T) "'y implies that (x,), converges weakly to the set DN (Sq—T) yo
where yo = limy,, with respect to the weak topology. The weak compactness of
D N (Sy — T) Llyo implies that there exists a subsequence of (), that converges
weakly to an element & € DN(So—T)"1yo. Therefore, T is weakly Sp-demicompact. (]
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