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1. Introduction and preliminaries

Let X be a nonempty set and F : X × X → X be a given operator. A coupled
fixed point of F is an element (x, y) ∈ X ×X satisfying the system of equations{

F (x, y) = x,
F (y, x) = y.

Observe that (x, y) ∈ X×X is a coupled fixed point of F if and only if (y, x) ∈ X×X
is a coupled fixed point of F .

The coupled fixed point’s concept was introduced by Opoitsev [14, 15] and then, by
Guo and Lakshmikantham [4] in connection with coupled quasi-solutions of an initial
value problem for ordinary differential equations. Various existence results of coupled
fixed points for different classes of operators were obtained by many authors. The
motivation of such contributions is the usefulness of the coupled fixed point approach
in studying the existence of solutions to nonlinear functional equations. For more
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details on coupled fixed point theory, we refer the reader to [2, 3, 5, 6, 7, 8, 9, 10, 11,
12, 13, 16, 17, 18, 20, 19, 21] and the references therein.

Let (E, ‖ · ‖) be a Banach space with zero vector 0E . Let F,ϕi : E × E → E
(i = 1, 2, . . . , r) be a finite number of given mappings. In this paper, we are interested
to study the existence and uniqueness of solutions to the following problem: Find
(x, y) ∈ E × E such that F (x, y) = x,

F (y, x) = y,
ϕi(x, y) = 0E , i = 1, 2, . . . , r.

(1.1)

We obtain sufficient conditions for the existence and uniqueness of solutions to Pb.
(1.1). Some interesting consequences are deduced from our main results.

At first, let us recall some basic definitions and some preliminary results that will
be used later. In this paper, the considered Banach space (E, ‖ · ‖) is supposed to be
partially ordered by a cone P . Recall that a nonempty closed convex set P ⊂ E is
said to be a cone (see [7]) if it satisfies the following conditions:
(P1) λ ≥ 0, x ∈ P =⇒ λx ∈ P .
(P2) −x, x ∈ P =⇒ x = 0E .
We define the partial order ≤P in E induced by the cone P by

(x, y) ∈ E × E, x ≤P y ⇐⇒ y − x ∈ P.

Definition 1.1 ([1]). Let ϕ : E×E → E be a given mapping. We say that ϕ is level
closed from the right if for every e ∈ E, the set

levϕ≤P
(e) := {(x, y) ∈ E × E : ϕ(x, y) ≤P e}

is closed.

Definition 1.2. Let ϕ : E × E → E be a given mapping. We say that ϕ is level
closed from the left if for every e ∈ E, the set

levϕ≥P
(e) := {(x, y) ∈ E × E : e ≤P ϕ(x, y)}

is closed.

We denote by Ψ the set of functions ψ : [0,∞)→ [0,∞) satisfying the conditions:
(Ψ1) ψ is non-decreasing.
(Ψ2) For all t > 0, we have

∞∑
k=0

ψk(t) <∞.

Here, ψk is the k-th iterate of ψ.
The following properties are not difficult to prove.

Lemma 1.3. Let ψ ∈ Ψ. Then

(i) ψ(t) < t, for all t > 0;
(ii) ψ(0) = 0;

(iii) ψ is continuous at t = 0.

Example 1.4. As examples, the following functions belong to the set Ψ:
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ψ(t) = k t, k ∈ (0, 1).

ψ(t) =

{
t/2 if 0 ≤ t ≤ 1,
1/2 if t > 1.

ψ(t) =

{
t/2 if 0 ≤ t < 1,
t− 1/3 if t ≥ 1.

Now, we are ready to state and prove our main results. This is the aim of the next
section.

2. Main results

Through this paper, (E, ‖ · ‖) is a Banach space partially ordered by a cone P and
0E denotes the zero vector of E.

Let us start with the case of one equality constraint.

2.1. A coupled fixed point problem under one equality constraint. We are
interested with the existence and uniqueness of solutions to the problem: Find (x, y) ∈
E × E such that  F (x, y) = x,

F (y, x) = y,
ϕ(x, y) = 0E ,

(2.1)

where F,ϕ : E × E → E are two given mappings.
The following theorem provides sufficient conditions for the existence and unique-

ness of solutions to Pb. (2.1).

Theorem 2.1. Let F,ϕ : E × E → E be two given mappings. Suppose that the
following conditions are satisfied:
(i) ϕ is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕ(x0, y0) ≤P 0E.
(iii) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≤P 0E =⇒ ϕ(F (x, y), F (y, x)) ≥P 0E .

(iv) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≥P 0E =⇒ ϕ(F (x, y), F (y, x)) ≤P 0E .

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕ(x, y) ≤P 0E, ϕ(u, v) ≥P 0E.
Then Pb. (2.1) has a unique solution.
Proof. Let (x0, y0) ∈ E × E be such that

ϕ(x0, y0) ≤p 0E .

Such a point exists from (ii). From (iii), we have

ϕ(x0, y0) ≤P 0E =⇒ ϕ(F (x0, y0), F (y0, x0)) ≥P 0E .
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Define the sequences {xn} and {yn} in E by

xn+1 = F (xn, yn), yn+1 = F (yn, xn), n = 0, 1, 2, . . .

Then we have

ϕ(x1, y1) ≥P 0E .

From (iv), we have

ϕ(x1, y1) ≥P 0E =⇒ ϕ(F (x1, y1), F (y1, x1)) ≤P 0E ,

that is,

ϕ(x2, y2) ≤P 0E .

Again, using (iii), we get from the above inequality that

ϕ(x3, y3) ≥P 0E .

Then, by induction, we obtain

ϕ(x2n, y2n) ≤P 0E , ϕ(x2n+1, y2n+1) ≥P 0E , n = 0, 1, 2, . . . (2.2)

Using (v) and (2.2), by symmetry, we obtain

‖xn+1−xn‖+‖yn+1−yn‖ ≤ ψ (‖xn − xn−1‖+ ‖yn − yn−1‖) , n = 1, 2, 3, . . . (2.3)

From (2.3), since ψ is a non-decreasing function, for every n = 1, 2, 3, . . ., we have

‖xn+1 − xn‖+ ‖yn+1 − yn‖ ≤ ψ (‖xn − xn−1‖+ ‖yn − yn−1‖)
≤ ψ2 (‖xn−1 − xn−2‖+ ‖yn−1 − yn−2‖)
≤ . . .

≤ ψn (‖x1 − x0‖+ ‖y1 − y0‖) . (2.4)

Suppose that

‖x1 − x0‖+ ‖y1 − y0‖ = 0.

In this case, we have

x0 = x1 = F (x0, y0) and y0 = y1 = F (y0, x0).

Moreover, from (iii), since ϕ(x0, y0) ≤P 0E , we obtain ϕ(x1, y1) = ϕ(x0, y0) ≥ 0E .
Since P is a cone, the two inequalities ϕ(x0, y0) ≤P 0E and ϕ(x0, y0) ≥P 0E yield

ϕ(x0, y0) = 0E .

Thus we proved that in this case, (x0, y0) ∈ E × E is a solution to Pb. (2.1).
Now, we may suppose that ‖x1 − x0‖+ ‖y1 − y0‖ 6= 0. Set

δ = ‖x1 − x0‖+ ‖y1 − y0‖ > 0.

From (2.4), we have

‖xn+1 − xn‖ ≤ ψn(δ), n = 0, 1, 2, . . . (2.5)
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Using the triangular inequality and (2.5), for all m = 1, 2, 3, . . ., we have

‖xn − xn+m‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ . . .+ ‖xn+m−1 − xn+m‖
≤ ψn(δ) + ψn+1(δ) + . . .+ ψn+m−1(δ)

=

n+m−1∑
i=n

ψi(δ)

≤
∞∑
i=n

ψi(δ).

On the other hand, since
∑∞

k=0 ψ
k(δ) <∞, we have

∞∑
i=n

ψi(δ)→ 0 as n→∞,

which implies that {xn} is a Cauchy sequence in (E, ‖ · ‖). The same argument gives
us that {yn} is a Cauchy sequence in (E, ‖ · ‖). As consequence, there exists a pair of
points (x∗, y∗) ∈ E × E such that

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − y∗‖ = 0. (2.6)

From (2.2), we have

ϕ(x2n, y2n) ≤P 0E , n = 0, 1, 2, . . . ,

that is,
(x2n, y2n) ∈ levϕ≤P

(0E), n = 0, 1, 2, . . . ,

Since ϕ is level closed from the right, passing to the limit as n→∞ and using (2.6),
we obtain

(x∗, y∗) ∈ levϕ≤P
(0E),

that is,
ϕ(x∗, y∗) ≤P 0E . (2.7)

Now, using (2.2), (2.7) and (v), we obtain

‖F (x2n+1, y2n+1)− F (x∗, y∗)‖+ ‖F (y∗, x∗)− F (y2n+1, x2n+1)‖
≤ ψ (‖x2n+1 − x∗‖+ ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+2 − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y2n+2‖ ≤ ψ (‖x2n+1 − x∗‖+ ‖y2n+1 − y∗‖) ,
for all n = 0, 1, 2, . . . Passing to the limit as n → ∞, using (2.6), the continuity of ψ
at 0, and the fact that ψ(0) = 0 (see Lemma 1.3), we get

‖x∗ − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y∗‖ = 0,

that is,
x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗).

This proves that (x∗, y∗) ∈ E × E is a coupled fixed point of F . Finally, using (2.7)
and the fact that (x∗, y∗) is a coupled fixed point of F , it follows from (iii) that

ϕ(x∗, y∗) ≥P 0E . (2.8)
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Then (2.7) and (2.8) yield

ϕ(x∗, y∗) = 0E .

Thus we proved that (x∗, y∗) ∈ E × E is a solution to Pb. (2.1). Suppose now that
(u∗, v∗) ∈ E × E is a solution to Pb. (2.1) with (x∗, y∗) 6= (u∗, v∗). Using (v), we
obtain

‖u∗ − x∗‖+ ‖y∗ − v∗‖ ≤ ψ(‖u∗ − x∗‖+ ‖y∗ − v∗‖).

Since ‖u∗ − x∗‖+ ‖y∗ − v∗‖ > 0, from (i) of Lemma 1.3, we have

ψ(‖u∗ − x∗‖+ ‖y∗ − v∗‖) < ‖u∗ − x∗‖+ ‖y∗ − v∗‖.

Then

‖u∗ − x∗‖+ ‖y∗ − v∗‖ < ‖u∗ − x∗‖+ ‖y∗ − v∗‖,

which is a contradiction. As consequence, (x∗, y∗) is the unique solution to Pb. (2.1).

Remark 2.2. Observe that the conclusion of Theorem 2.1 is still valid if we replace
condition (i) by the following condition:
(i’) ϕ is level closed from the left.
In fact, from (2.2), we have

ϕ(x2n+1, y2n+1) ≥P 0E , n = 0, 1, 2, . . . ,

that is,

(x2n+1, y2n+1) ∈ levϕ≥P
, n = 0, 1, 2, . . .

Passing to the limit as n→∞ and using (2.6), we obtain

ϕ(x∗, y∗) ≥P 0E . (2.9)

Using (2.2), (2.9) and (v), we obtain

‖F (x2n, y2n)−F (x∗, y∗)‖+‖F (y∗, x∗)−F (y2n, x2n)‖ ≤ ψ (‖x2n − x∗‖+ ‖y2n − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+1 − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y2n+1‖ ≤ ψ (‖x2n − x∗‖+ ‖y2n − y∗‖) ,

for all n = 0, 1, 2, . . . Passing to the limit as n→∞, we get

‖x∗ − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y∗‖ = 0,

which proves that (x∗, y∗) ∈ E×E is a coupled fixed point of F . Using (2.9) and the
fact that (x∗, y∗) is a coupled fixed point of F , it follows from (iv) that

ϕ(x∗, y∗) ≤P 0E . (2.10)

Then (2.9) and (2.10) yield

ϕ(x∗, y∗) = 0E .

Thus (x∗, y∗) ∈ E × E is a solution to Pb. (2.1).
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2.2. A coupled fixed point problem under two equality constraints. Here, we
are interested with the existence and uniqueness of solutions to the following problem:
Find (x, y) ∈ E × E such that

F (x, y) = x,
F (y, x) = y,
ϕ1(x, y) = 0E ,
ϕ2(x, y) = 0E ,

(2.11)

where F,ϕ1, ϕ2 : E × E → E are three given mappings.
We have the following result.

Theorem 2.3. Let F,ϕ1, ϕ2 : E ×E → E be three given mappings. Suppose that the
following conditions are satisfied:
(i) ϕi (i = 1, 2) is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕi(x0, y0) ≤P 0E (i = 1, 2).
(iii) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≤P 0E , i = 1, 2 =⇒ ϕi(F (x, y), F (y, x)) ≥P 0E , i = 1, 2.

(iv) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≥P 0E , i = 1, 2 =⇒ ϕi(F (x, y), F (y, x)) ≤P 0E , i = 1, 2.

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,
for all (x, y), (u, v) ∈ E × E with ϕi(x, y) ≤P 0E , ϕi(u, v) ≥P 0E, i = 1, 2.
Then Pb. (2.11) has a unique solution.
Proof. Let (x0, y0) ∈ E × E be such that

ϕi(x0, y0) ≤p 0E , i = 1, 2.

Then from (iii), we have

ϕi(F (x0, y0), F (y0, x0)) ≥P 0E , i = 1, 2.

Define the sequences {xn} and {yn} in E by

xn+1 = F (xn, yn), yn+1 = F (yn, xn), n = 0, 1, 2, . . .

We have
ϕi(x1, y1) ≥P 0E , i = 1, 2.

Then from (iv), we obtain

ϕi(x2, y2) ≤P 0E , i = 1, 2.

Again, using (iii), we get from the above inequality that

ϕi(x3, y3) ≥P 0E , i = 1, 2.

Then, by induction, we obtain

ϕi(x2n, y2n) ≤P 0E , ϕi(x2n+1, y2n+1) ≥P 0E , i = 1, 2, n = 0, 1, 2, . . .

Then, using (v), we obtain

‖xn+1 − xn‖+ ‖yn+1 − yn‖ ≤ ψ (‖xn − xn−1‖+ ‖yn − yn−1‖) , n = 1, 2, 3, . . .
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Now, we argue exactly as in the proof of Theorem 2.1 to show that {xn} and {yn}
are Cauchy sequences in (E, ‖ · ‖). As consequence, there exists a pair of points
(x∗, y∗) ∈ E × E such that

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − y∗‖ = 0.

On the other hand, we have

(x2n, y2n) ∈ levϕi≤P
(0E), i = 1, 2, n = 0, 1, 2, . . . ,

Since ϕi (i = 1, 2) is level closed from the right, passing to the limit as n → ∞, we
obtain

(x∗, y∗) ∈ levϕi≤P
(0E), i = 1, 2,

that is,

ϕi(x
∗, y∗) ≤P 0E , i = 1, 2.

Then we have

‖F (x2n+1, y2n+1)− F (x∗, y∗)‖+ ‖F (y∗, x∗)− F (y2n+1, x2n+1)‖
≤ ψ (‖x2n+1 − x∗‖+ ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+2 − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y2n+2‖ ≤ ψ (‖x2n+1 − x∗‖+ ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . . Passing to the limit as n→∞, we get

‖x∗ − F (x∗, y∗)‖+ ‖F (y∗, x∗)− y∗‖ = 0,

that is,

x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗).

This proves that (x∗, y∗) ∈ E×E is a coupled fixed point of F . Since ϕi(x
∗, y∗) ≤P 0E

for i = 1, 2, from (iii) we have

ϕi(F (x∗, y∗), F (y∗, x∗)) ≥P 0E , i = 1, 2,

that is,

ϕi(x
∗, y∗) ≥P 0E , i = 1, 2.

Finally, the two inequalities ϕi(x
∗, y∗) ≤P 0E and ϕi(x

∗, y∗) ≥P 0E , i = 1, 2 yield
ϕi(x

∗, y∗) = 0E , i = 1, 2. Then we proved that (x∗, y∗) ∈ E × E is a solution to Pb.
(2.11). The uniqueness can be obtained using a similar argument as in the proof of
Theorem 2.1.

Now, replace ϕ2 in Theorem 2.3 by −ϕ2, we obtain the following result.

Theorem 2.4. Let F,ϕ1, ϕ2 : E ×E → E be three given mappings. Suppose that the
following conditions are satisfied:
(i) ϕ1 is level closed from the right and ϕ2 is level closed from the left.
(ii) There exists (x0, y0) ∈ E × E such that ϕ1(x0, y0) ≤P 0E and ϕ2(x0, y0) ≥p 0E.
(iii) For every (x, y) ∈ E × E with ϕ1(x, y) ≤P 0E and ϕ2(x, y) ≥P 0E, we have

ϕ1(F (x, y), F (y, x)) ≥P 0E , ϕ2(F (x, y), F (y, x)) ≤P 0E .
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(iv) For every (x, y) ∈ E × E with ϕ1(x, y) ≥P 0E and ϕ2(x, y) ≤P 0E, we have

ϕ1(F (x, y), F (y, x)) ≤P 0E , ϕ2(F (x, y), F (y, x)) ≥P 0E .

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕ1(x, y) ≤P 0E , ϕ2(x, y) ≥P 0E , ϕ1(u, v) ≥P

0E , ϕ2(u, v) ≤P 0E. Then Pb. (2.11) has a unique solution.

Replace ϕ1 in Theorem 2.4 by −ϕ1, we obtain the following result.

Theorem 2.5. Let F,ϕ1, ϕ2 : E ×E → E be three given mappings. Suppose that the
following conditions are satisfied:
(i) ϕi (i = 1, 2) is level closed from the left.
(ii) There exists (x0, y0) ∈ E × E such that ϕi(x0, y0) ≥P 0E (i = 1, 2).
(iii) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≤P 0E , i = 1, 2 =⇒ ϕi(F (x, y), F (y, x)) ≥P 0E , i = 1, 2.

(iv) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≥P 0E , i = 1, 2 =⇒ ϕi(F (x, y), F (y, x)) ≤P 0E , i = 1, 2.

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi(x, y) ≤P 0E , ϕi(u, v) ≥P 0E, i = 1, 2.
Then Pb. (2.11) has a unique solution.

2.3. A coupled fixed point problem under r equality constraints. Now, we
argue exactly as in the proof of Theorem 2.3 to obtain the following existence result
for Pb. (1.1).

Theorem 2.6. Let F,ϕi : E × E → E (i = 1, 2, . . . , r) be r + 1 given mappings.
Suppose that the following conditions are satisfied:
(i) ϕi (i = 1, 2, . . . , r) is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕi(x0, y0) ≤P 0E (i = 1, 2, . . . , r).
(iii) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≤P 0E , i = 1, 2, . . . , r =⇒ ϕi(F (x, y), F (y, x)) ≥P 0E , i = 1, 2, . . . , r.

(iv) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≥P 0E , i = 1, 2, . . . , r =⇒ ϕi(F (x, y), F (y, x)) ≤P 0E , i = 1, 2, . . . , r.

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi(x, y) ≤P 0E , ϕi(u, v) ≥P 0E, i = 1, 2, . . . , r.
Then Pb. (1.1) has a unique solution.
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3. Some consequences

In this section, we present some consequences following from Theorem 2.6.

3.1. A fixed point problem under symmetric equality constraints. We need
the following definition.

Definition 3.1. Let X be a nonempty set and let F : X × X → X be a given
mapping. We say that x ∈ X is a fixed point of F if F (x, x) = x.

Let F,ϕ : E × E → E be given mappings. We consider the problem: Find x ∈ E
such that {

F (x, x) = x,
ϕ(x, x) = 0E .

(3.1)

We have the following result.

Corollary 3.2. Let F,ϕ : E × E → E be two given mappings. Suppose that the
following conditions are satisfied:
(i) ϕ is level closed from the right.
(ii) ϕ is symmetric, that is,

ϕ(x, y) = ϕ(y, x), (x, y) ∈ E × E.
(iii) There exists (x0, y0) ∈ E × E such that ϕ(x0, y0) ≤P 0E.
(iv) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≤P 0E =⇒ ϕ(F (x, y), F (y, x)) ≥P 0E .

(v) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≥P 0E =⇒ ϕ(F (x, y), F (y, x)) ≤P 0E .

(vi) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,
for all (x, y), (u, v) ∈ E × E with ϕ(x, y) ≤P 0E and ϕ(u, v) ≥P 0E.
Then Pb. (3.1) has a unique solution.
Proof. From Theorem 2.1, we know that Pb. (2.1) has a unique solution (x∗, y∗) ∈
E × E. Since ϕ is symmetric, (y∗, x∗) is also a solution to (2.1). By uniqueness, we
get x∗ = y∗. Then x∗ ∈ E is the unique solution to Pb. (3.1).

Let F,ϕi : E × E → E (i = 1, 2, . . . , r) be r + 1 given mappings. We consider the
problem: Find x ∈ X such that{

F (x, x) = x,
ϕi(x, x) = 0E , i = 1, 2, . . . , r.

(3.2)

Similarly, from Theorem 2.6, we have the following result.

Corollary 3.3. Let F,ϕi : E × E → E (i = 1, 2, . . . , r) be r + 1 given mappings.
Suppose that the following conditions are satisfied:
(i) ϕi (i = 1, 2, . . . , r) is level closed from the right.
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(ii) ϕi (i = 1, 2, . . . , r) is symmetric.
(iii) There exists (x0, y0) ∈ E × E such that ϕi(x0, y0) ≤P 0E (i = 1, 2, . . . , r).
(iv) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≤P 0E , i = 1, 2, . . . , r =⇒ ϕi(F (x, y), F (y, x)) ≥P 0E , i = 1, 2, . . . , r.

(v) For every (x, y) ∈ E × E, we have

ϕi(x, y) ≥P 0E , i = 1, 2, . . . , r =⇒ ϕi(F (x, y), F (y, x)) ≤P 0E , i = 1, 2, . . . , r.

(vi) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,
for all (x, y), (u, v) ∈ E × E with ϕi(x, y) ≤P 0E , ϕi(u, v) ≥P 0E, i = 1, 2, . . . , r.
Then Pb. (3.2) has a unique solution.

3.2. A common coupled fixed point result. We need the following definition.

Definition 3.4. Let X be a nonempty set, F : X × X → X and g : X → X be
two given mappings. We say that the pair of elements (x, y) ∈ X ×X is a common
coupled fixed point of F and g if

x = gx = F (x, y) and y = gy = F (y, x).

We have the following common coupled fixed point result.

Corollary 3.5. Let F : E ×E → E and g : E → E be two given mappings. Suppose
that the following conditions hold:
(i) g is a continuous mapping.
(ii) There exists (x0, y0) ∈ E × E such that

gx0 ≤p x0 and gy0 ≤p y0.

(iii) For every (x, y) ∈ E × E, we have

gx ≤P x, gy ≤p y =⇒ gF (x, y) ≥P F (x, y), gF (y, x) ≥P F (y, x).

(iv) For every (x, y) ∈ E × E, we have

gx ≥P x, gy ≥P y =⇒ gF (x, y) ≤P F (x, y), gF (y, x) ≤P F (y, x).

(v) There exists some ψ ∈ Ψ such that

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,
for all (x, y), (u, v) ∈ E × E with gx ≤P x, gy ≤P y and gu ≥P u, gv ≥P v.
Then F and g have a unique common coupled fixed point.
Proof. Let us consider the mappings ϕ1, ϕ2 : E × E → E defined by

ϕ1(x, y) = gx− x, (x, y) ∈ E × E
and

ϕ2(x, y) = gy − y, (x, y) ∈ E × E.
Observe that (x, y) ∈ E ×E is a common coupled fixed point of F and g if and only
if (x, y) ∈ E × E is a solution to Pb. (2.11). Note that since g is continuous, then
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ϕi is level closed from the right (also from the left) for all i = 1, 2. Now, applying
Theorem 2.3, we obtain the desired result.

3.3. A fixed point result. We denote by Ψ̃ the set of functions ψ : [0,∞)→ [0,∞)
satisfying the following conditions:

(Ψ̃1) ψ ∈ Ψ.

(Ψ̃2) For all a, b ∈ [0,∞), we have

ψ(a) + ψ(b) ≤ ψ(a+ b).

Example 3.6. As example, let us consider the function

ψ(t) =

{
t/2 if 0 ≤ t < 1,
t− 1/3 if t ≥ 1.

It is not difficult to observe that ψ ∈ Ψ. Now, let us consider an arbitrary pair
(a, b) ∈ [0,∞)× [0,∞). We discuss three possible cases.
Case 1. If (a, b) ∈ [0, 1)× [0, 1).
In this case, we have ψ(a)+ψ(b) = (a+b)/2. O the other hand, we have a+b ∈ [0, 2).
So, if 0 ≤ a+b < 1, then ψ(a)+ψ(b) = (a+b)/2 = ψ(a+b). However, if 1 ≤ a+b < 2,
then ψ(a+ b)− ψ(a)− ψ(b) = (a+ b)/2− 1/3 ≥ 0.
Case 2. If (a, b) ∈ [0, 1)× [1,∞).
In this case, we have ψ(a) + ψ(b) = a/2 + b− 1/3 ≤ a+ b− 1/3 = ψ(a+ b).
Case 3. If (a, b) ∈ [1,∞)× [1,∞).
In this case, we have ψ(a) + ψ(b) = a+ b− 2/3 ≤ a+ b− 1/3 = ψ(a+ b).

Therefore, we have ψ ∈ Ψ̃.

Note that the set Ψ is more large than the set Ψ̃. The following example illustrates
this fact.

Example 3.7. Let us consider the function

ψ(t) =

{
t/2 if 0 ≤ t ≤ 1,
1/2 if t > 1.

Clearly, we have ψ ∈ Ψ. However,

ψ(1 + 1) = 1/2 < 1 = ψ(1) + ψ(1),

which proves that ψ 6∈ Ψ̃.

We have the following fixed point result.

Corollary 3.8. Let T : E → E be a given mapping. Suppose that there exists some

ψ ∈ Ψ̃ such that

‖Tu− Tx‖ ≤ ψ(‖u− x‖), (u, x) ∈ E × E. (3.3)

Then T has a unique fixed point.
Proof. Let us define the mapping F : E × E → E by

F (x, y) = Tx, (x, y) ∈ E × E.
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Let g : E → E be the identity mapping, that is,

gx = x, x ∈ E.
From (3.3), for all (x, y), (u, v) ∈ E × E, we have

‖Tu− Tx‖ ≤ ψ(‖u− x‖)
and

‖Ty − Tv‖ ≤ ψ(‖v − y‖).
Then

‖Tu− Tx‖+ ‖Ty − Tv‖ ≤ ψ(‖u− x‖) + ψ(‖v − y‖).
Using the property (Ψ̃2), we obtain

‖Tu− Tx‖+ ‖Ty − Tv‖ ≤ ψ(‖u− x‖+ ‖v − y‖), (x, y), (u, v) ∈ E × E.
From the definitions of F and g, we obtain

‖F (u, v)− F (x, y)‖+ ‖F (y, x)− F (v, u)‖ ≤ ψ (‖u− x‖+ ‖v − y‖) ,
for all (x, y), (u, v) ∈ E × E with gx ≤P x, gy ≤P y and gu ≥P u, gv ≥P v.
By Corollary 3.5, there exists a unique (x∗, y∗) ∈ E × E such that

x∗ = F (x∗, y∗) = Tx∗ and y∗ = F (y∗, x∗) = Ty∗.

Suppose that x∗ 6= y∗. By (3.3), we have

‖x∗ − y∗‖ = ‖Tx∗ − Ty∗‖ ≤ ψ(‖x∗ − y∗)) < ‖x∗ − y∗‖,
which is a contradiction. As consequence, x∗ ∈ E is the unique fixed point of T .

Remark 3.9. Taking

ψ(t) = kt, t ≥ 0,

where k ∈ (0, 1) is a constant, we obtain from Corollary 3.8 the Banach Contraction
Principle.
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