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1. Introduction and preliminaries

Modifications of contractive condition for a mapping on a complete metric space
lead to a various fixed point results and different generalizations of famous fixed point
theorems. Recently were published many papers in the field of fixed point theory and
applications that include simulation functions (see [2, 7, 12, 14]).

Definition 1.1. (See [7]) A simulation function is a mapping ζ : [0,∞)× [0,∞)→ R
satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (1.1)

Let Z denote the family of all simulation functions ζ : [0,∞) × [0,∞) → R. Due to
the axiom (ζ2), we have

ζ(t, t) < 0 for all t > 0, ζ ∈ Z. (1.2)

Example 1.2. (See e.g. [1, 7, 12]) Let ζi : [0,∞) × [0,∞) → R, i ∈ {1, 2, 3}, be
mappings defined by

(i) ζ1(t, s) = ψ(s) − φ(t) for all t, s ∈ [0,∞), where φ, ψ : [0,∞) → [0,∞) are
two continuous functions such that ψ(t) = φ(t) = 0 if, and only if, t = 0, and
ψ(t) < t ≤ φ(t) for all t > 0.
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(ii) ζ2(t, s) = s − f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞) → (0,∞) are

two continuous functions with respect to each variable such that f(t, s) >
g(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s − ϕ(s) − t for all t, s ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0 if, and only if, t = 0.

(iv) If ϕ : [0,∞)→ [0, 1) is a function such that lim sup
t→r+

ϕ(t) < 1 for all r > 0, and

we define

ζT (t, s) = sϕ(s)− t for all s, t ∈ [0,∞),

then ζT is a simulation function.
(v) If η : [0,∞)→ [0,∞) is an upper semi-continuous mapping such that η(t) < t

for all t > 0 and η(0) = 0, and we define

ζBW (t, s) = η(s)− t for all s, t ∈ [0,∞),

then ζBW is a simulation function.
(vi) If φ : [0,∞)→ [0,∞) is a function such that

∫ ε

0
φ(u)du exists and

∫ ε

0
φ(u)du >

ε, for each ε > 0, and we define

ζK(t, s) = s−
∫ t

0

φ(u)du for all s, t ∈ [0,∞),

then ζK is a simulation function.

One can find more interesting examples of simulation functions in [1, 7, 12].

Definition 1.3. ([7]) Suppose (X, d) is a metric space, T is a self-mapping on X and
ζ ∈ Z. A mapping T is a Z-contraction with respect to ζ, if

ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X.

Since (ζ2) holds, we have the following inequality

x 6= y =⇒ d(Tx, Ty) 6= d(x, y).

Thus, we conclude that that T cannot be an isometry whenever T is a Z-contraction.
In other words, if a Z-contraction T in a metric space has a fixed point, then it is
necessarily unique.

Theorem 1.4. ([7]) Every Z-contraction on a complete metric space has a unique
fixed point. In fact, every Picard sequence converges to its unique fixed point.

Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(i) ψ is nondecreasing;
(ii) there exist k0 ∈ N and a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑
k=1

vk such that

ψk+1 (t) ≤ aψk (t) + vk,

for k ≥ k0 and any t ∈ R+.
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Such functions are discussed in the literature densely, see e.g. [3, 9, 10, 13] and they
are called as (c)-comparison functions.

Lemma 1.5. (See e.g. [13]) If ψ ∈ Ψ, then the following hold:

(i) ψn(t)→ 0, as n→∞, for all t ∈ R+;
(ii) ψ (t) < t, for any t ∈ R+;

(iii) ψ is continuous at 0;

(iv) the series

∞∑
k=1

ψk (t) converges for any t ∈ R+.

Recently, Samet et al. [15] suggested a new contraction type self-mapping to unify
several existing results in the literature by auxiliary functions.

Definition 1.6. Let α : X × X → [0,∞). A self-mapping T : X → X is called
α−admissible if the condition

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1,

is satisfied for all x, y ∈ X.

Definition 1.7. Let T be a self-mapping defined on a metric space (X, d). Then,
T is called an α − ψ contractive mapping if there exist two auxiliary mappings α :
X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), for all x, y ∈ X.

Clearly, any contractive mapping, that is, a mapping satisfying Banach contraction,
is an α − ψ contractive mapping with α(x, y) = 1 for all x, y ∈ X and ψ(t) = kt,
k ∈ (0, 1). A number of examples of such type mappings are considered in [15].
Modifications of a contractive condition for α−ψ contractive mapping lead to a wider
class of contractive mappings defined in [6].

Definition 1.8. Let (X, d) be a metric space and T : X → X be a given mapping.
We say that T is a generalized α−ψ contractive mapping if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that for all x, y ∈ X,

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y)), (1.3)

where M(x, y) = max

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
.

In [15], and respectively [6], are presented sufficient conditions for existence of a
fixed point for α − ψ contractive and generalized α − ψ contractive self-mapping T
on a complete metric space (X, d)

Theorem 1.9. ([15]) Let T : X → X be an α− ψ contractive mapping where (X, d)
is a complete metric space. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either, T is continuous, or
(iii)′ if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X

as n→∞, then α(xn, x) ≥ 1 for all n.
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Then, there exists z ∈ X such that Tz = z.

Theorem 1.10. ([6]) Let T : X → X be a generalized α − ψ contractive mapping
where (X, d) is a complete metric space. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either, T is continuous, or
(iii)′ if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X

as n→∞, then α(xn, x) ≥ 1 for all n.

Then, there exists z ∈ X such that Tz = z.

By adding the condition:

(U) For all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1,

to the statement of Theorem 1.9, we obtain a unique fixed point of an α−ψ contrac-
tion, as proved in [15].

2. Main results

The main goal will be to show existence of a fixed point for a class of α-admissible
mapping when contractive condition includes a simulation function. We start with
the following definition.

Definition 2.1. Let T be a self-mapping defined on a metric space (X, d). If there
exist functions ζ ∈ Z and α : X ×X → [0,∞) such that

ζ(α(x, y)d(Tx, Ty),M(x, y)) ≥ 0 for all x, y ∈ X, (2.1)

where M(x, y) = max

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
, then we

say that T is a generalized α-admissible Z-contraction of type (A) with respect to ζ.

Popescu [8] proposed the concept of triangular α-orbital admissible as a refinement
of the triangular alpha-admissible notion, defined in [5].

Definition 2.2. [8] Let T : X → X be a mapping and α : X × X → [0,∞) be a
function. We say that T is an α-orbital admissible if

α(x, Tx) ≥ 1⇒ α(Tx, T 2x) ≥ 1.

Furthermore, T is called a triangular α-orbital admissible if T is α-orbital admissible
and

α(x, y) ≥ 1 and α(y, Ty) ≥ 1⇒ α(x, Ty) ≥ 1.

It is clear that each α-admissible (respectively, triangular α-admissible) mapping is
an α-orbital admissible (respectively, triangular α-orbital admissible ) mapping. For
more details and distinctive examples, see e.g. [4, 8].

In what follows we recollect the following lemma for determining whether the given
sequence is Cauchy.
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Lemma 2.3. (See e.g. [11]) Let (X, d) be a metric space and let {xn} be a sequence
in X such that d(xn+1, xn) is nonincreasing and that limn→∞ d(xn+1, xn) = 0. If
{xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk}
and {nk} of positive integers such that the following four sequences tend to ε when
k →∞:

d(xmk
, xnk

), d(xmk+1, xnk+1), d(xmk−1, xnk
), d(xmk

, xnk−1)

Now, we shall state the main results of this paper.

Theorem 2.4. Let (X, d) be a complete metric space and let T : X → X be general-
ized α-admissible Z-contraction of type (A) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists z ∈ X such that Tz = z.

Proof. Choose x0 ∈ X such that α(x0, Tx0) ≥ 1 since the condition (ii) guarantees
the existence of such x0, and define an iterative sequence {xn} in X where xn = Txn−1

for all n ∈ N.
If xn0

= xn0+1 for some n0 ∈ N0, then u = xn0
is a fixed point of T . Consequently,

we shall assume that xn 6= xn+1 for all n ∈ N0, thus

d(xn, xn+1) > 0, for all n ∈ N0.

Regarding that T is α−admissible, we derive

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively,

α(xn, xn+1) ≥ 1, n ∈ N0, (2.2)

and, since T is triangular α-orbital admissible mapping,

α(xn, xm) ≥ 1, n,m ∈ N0, n 6= m. (2.3)

From (2.1) and (2.2), it follows that for all n ≥ 1, we have

0 ≤ ζ(α(xn, xn−1)d(Txn, Txn−1),M(xn, xn−1))

= ζ(α(xn, xn−1)d(xn+1, xn),M(xn, xn−1))

< M(xn, xn−1)− α(xn, xn−1)d(xn+1, xn). (2.4)

Therefore,

d(xn, xn+1) ≤ α(xn−1, xn)d(xn, xn+1) < M(xn−1, xn), n ∈ N. (2.5)
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Observe that

M(xn−1, xn)

= max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2
,
d(xn−1, xn+1) + d(xn, xn)

2

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2
,
d(xn−1, xn+1)

2

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2

}
, (2.6)

and combining this inequality with (2.5), it follows that M(xn−1, xn) = d(xn−1, xn).
The sequence {d(xn, xn+1)} is monotonically decreasing and bounded below with
zero. Thus, it is convergent, that is, there is a L ≥ 0 such that lim

n→∞
d(xn, xn+1) = L.

Remark that, from (2.5), lim
n→∞

α(xn−1, xn)d(xn, xn+1) = L. We assert that L = 0.

Suppose, on the contrary, that L > 0. Then, by (ζ3),

lim sup ζ(α(xn−1, xn)d(xn, xn+1), d(xn, xn+1)) < 0,

which contradicts the condition (2.1). Hence, we conclude that

lim
n→∞

d(xn, xn+1) = 0.

We shall prove that {xn} is a Cauchy sequence. Suppose, on the contrary, that
{xn} is not a Cauchy sequence. Thus, there exist ε > 0 such that, for any k ∈ N,
there exist mk > nk > k and d(xnk

, xmk
) ≥ ε with an additional condition that mk

is the smallest possible.
By Lemma 2.3, we have:

lim
n→∞

d(xnk
, xmk+1) = lim

n→∞
d(xnk+1, xmk

) = ε

and

lim
n→∞

d(xnk+1, xmk+1) = lim
n→∞

α(xnk
, xmk

)d(xnk+1, xmk+1) = ε.

From (1.1), from previous observations, it follows

lim sup
n→∞

ζ(α(xnk
, xmk

)d(xnk+1, xmk+1), d(xnk
, xmk

)) < 0,

which contradicts the condition (2.1). By reductio ad absurdum, we conclude that
{xn} is a Cauchy sequence.

Since (X, d) is a complete metric space, denote with z the limit of a sequence {xn}.
The continuity of T implies Tz = z. �

Remark 2.5. If u is another fixed point of T , then α(z, u) < 1 and α(u, z) < 1.

Theorem 2.6. Let (X, d) be a complete metric space and let T : X → X be a
generalized α-admissible Z-contraction of type (A) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
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(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k.

Then there exists z ∈ X such that Tz = z.

Proof. Choose x0 ∈ X such that α(x0, Tx0) ≥ 1 and define a sequence {xn} where
xn = Txn−1, n ∈ N. Assume also that xn 6= xn+1, n ∈ N0. Since the only difference
between this theorem and Theorem 2.4 is a condition (iii), from the proof of Theorem
2.4 we get that the sequence {xn} converges to some z ∈ X. From (2.2) and condition
(iii), there exists a subsequence {xnk

} of {xn} such that α(xnk
, z) ≥ 1, k ∈ N.

Applying (2.1), for all k ∈ N, we get that

0 ≤ ζ(α(xnk
, z)d(Txnk

, T z),M(xnk
, z))

= ζ(α(xnk
, z)d(xnk+1, T z),M(xnk

, z))

< M(xnk
, z)− α(xnk

, z)d(xnk+1, T z),

for

M(xnk
, z) = max

{
d(xnk

, z),
d(xnk

, xnk+1) + d(z, Tz)

2
,
d(xnk

, T z) + d(xnk+1, z)

2

}
,

and

0 ≤ d(xnk+1, T z) ≤ α(xnk
, z)d(xnk+1, T z) < M(xnk

, z).

Letting k →∞, we have d(z, Tz) = 0, i.e., Tz = z. �

Due to previously made remark, for the uniqueness of a fixed point of a α-admissible
Z-contraction with respect to ζ, we shall suggest the following hypothesis.

(U) For all x, y ∈ X, if α(x, y) < 1, then α(x, x0) ≥ 1 and α(y, x0) ≥ 1.

Theorem 2.7. Adding condition (U) to the hypotheses of Theorem 2.4 (resp. Theo-
rem 2.6), we obtain that z is the unique fixed point of T .

Proof. Let us assume that the sequence {xn}, defined as in proof of Theorem 2.4,
converges to a fixed point z and that Ty = y for some y ∈ X \ {z}.
Previous remark allows us to assume that α(z, y) < 1. Otherwise, since d(z, y) 6= 0,

d(z, y) ≤ α(z, y)d(z, y) < M(z, y) = max {d(z, y), 0} = d(z, y),

leads to a contradiction.
Thus,α(y, x0) ≥ 1 and α(y, xn) ≥ 1, n ∈ N. Therefore,

d(y, xn+1) ≤ α(y, xn)d(y, xn+1) < M(y, xn)

= max

{
d(y, xn),

d(xn, xn+1)

2
,
d(y, xn) + d(y, xn+1)

2

}
.

Observe that y 6= xn since we have assumed that y is a fixed point of T , but xn 6= xn+1,
so strong inequality holds due to contractive condition (2.1). Assuming existence of
a subsequence {xnk

} ⊆ {xn}, such that M(y, xnk
) = d(xnk

, xnk+1), we get that
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d(y, z) = lim
n→∞

d(y, xnk
) = 0, but z 6= y. Thus we may assume that, starting from

some n0 ∈ N,

M(y, xn) = max

{
d(y, xn),

d(y, xn) + d(y, xn+1)

2

}
.

If M(y, xn) =
d(y, xn) + d(y, xn+1)

2
, then

d(y, xn) ≤M(xn, y) = d(y, xn+1 < d(y, xn),

so

M(y, xn) = d(y, xn), n ≥ n0.

Therefore,

d(y, z) = lim
n→∞

α(y, xn)d(y, xn+1) = lim
n→∞

M(y, xn),

and, by (ζ3),

ζ(α(y, xn)d(y, xn+1),M(y, xn)) < 0.

However, this inequality contradicts to (2.1), so our assumption is incorrect, z is a
unique fixed point of T . �

Definition 2.8. Let T be a self-mapping defined on a metric space (X, d). If there
exist ζ ∈ Z and α : X ×X → [0,∞) such that

ζ(α(x, y)d(Tx, Ty), N(x, y)) ≥ 0 for all x, y ∈ X, (2.7)

where N(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)}. Then, we say that T is a general-
ized α-admissible Z-contraction of type (B) with respect to ζ.

Theorem 2.9. Let (X, d) be a complete metric space and let T : X → X be general-
ized α-admissible Z-contraction of type (B) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists z ∈ X such that Tz = z.

Proof. Analogously as in the proof of Theorem 2.4, (2.2) and (2.3) could be obtained,
and similarly as in (2.4), it follows

d(xn, xn+1) ≤ α(xn−1, xn)d(xn, xn+1) < N(xn−1, xn), n ∈ N. (2.8)

Observe that

N(xn−1, xn) = max {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)} (2.9)

= max {d(xn−1, xn), d(xn, xn+1)} , (2.10)

and combining this inequality with (2.8), it follows that

d(xn, xn+1) < d(xn−1, xn).
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The sequence {d(xn, xn+1)} is monotonically decreasing and bounded below with zero,
thus convergent and, similarly as in the proof of Theorem 2.4, lim

n→∞
d(xn, xn+1) = 0.

Let us assume that the sequence {xn} isn’t a Cauchy sequence, i.e.,

lim
n,m→∞

d(xn, xm) 6= 0

and choose ε > 0 such that for any k ∈ N there exist mk ≥ nk ≥ k and d(xnk
, xmk

) ≥ ε
with an additional condition that mk is the smallest possible. Easily follows that

lim
n→∞

d(xnk
, xmk

) = lim
n→∞

d(xnk
, xmk+1) = lim

n→∞
d(xnk+1, xmk

) = ε.

Based on (2.1), we have

d(xnk
, xmk

)− d(xnk
, xnk+1)− d(xmk

, xmk+1) ≤ d(xnk+1, xmk+1)
≤ α(xnk

, xmk
)d(xnk+1, xmk+1)

< N(xnk
, xmk

),

where

N(xnk
, xmk

) = max {d(xnk
, xmk

), d(xnk
, xnk+1), d(xmk

, xmk+1)} .
Choose k0 ∈ N such that d(xnk

, xnk+1), d(xmk
, xmk+1) < ε, for any k ≥ k0, so, for

such k,

N(xnk
, xmk

) = d(xnk
, xmk

),

and lim
n→∞

N(xnk
, xmk

) = ε.

Moreover, lim
n→∞

α(xnk
, xmk

)d(xnk+1, xmk+1) = ε and, by (1.1),

lim sup
n→∞

ζ(α(xnk
, xmk

)d(xnk+1, xmk+1), d(xnk
, xmk

)) < 0,

that conflicts condition (2.1). Therefore, {xn} is a Cauchy sequence lim
n→∞

xn = z for

some z ∈ X. The continuity of T implies Tz = z. �

Theorem 2.10. Let (X, d) be a complete metric space and let T : X → X be a
generalized α-admissible Z-contraction of type (B) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k.

Then there exists z ∈ X such that Tz = z.

Proof. For x0 ∈ X determined by (ii) define an iterative sequence {xn}, xn = Txn1 ,
n ∈ N. Evidently, the sequence {xn} is a Cauchy sequence and it converges to some
z ∈ X. Then, (2.2) and (iii) guarantee existence of a subsequence {xnk

} of {xn} such
that α(xnk

, z) ≥ 1, k ∈ N. Then, for any k ∈ N,

0 ≤ ζ(α(xnk
, z)d(Txnk

, T z), N(xnk
, z))

= ζ(α(xnk
, z)d(xnk+1, T z), N(xnk

, z))

< N(xnk
, z)− α(xnk

, z)d(xnk+1, T z),
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which is equivalent to

d(xnk+1, T z) = d(Txn(k), T z) ≤ α(xnk
, z)d(Txn(k), T z) < N(xnk

, z),

where
N(xnk

, z) = max {d(xnk
, z), d(xnk

, xnk+1), d(z, Tz)} .
Letting k →∞, we get d(z, Tz) = 0, i.e., Tz = z. �

Theorem 2.11. Adding condition (U) to the hypotheses of Theorem 2.9 (resp. The-
orem 2.10), we obtain that z is the unique fixed point of T .

Proof. Since N(y, xn) = {d(y, xn), d(xn, xn+1)}, the proof goes analogously as for
Theorem 2.7. �

Observe that generalized α-admissible Z-contractions of type (A) and (B) imply
another type of generalized α-admissible Z-contractions with respect to ζ.

Definition 2.12. Let T be a self-mapping defined on a metric space (X, d). If there
exist ζ ∈ Z and α : X ×X → [0,∞) such that

ζ(α(x, y)d(Tx, Ty),K(x, y)) ≥ 0, for all x, y ∈ X, (2.11)

where

K(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
,

then we say that T is a generalized α-admissible Z-contraction of type (C) with respect
to ζ.

Combining Theorems 2.4 and 2.9, respectively Theorems 2.6 and 2.10, we obtain
following results.

Theorem 2.13. Let (X, d) be a complete metric space and let T : X → X be gener-
alized α-admissible Z-contraction of type (C) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists z ∈ X such that Tz = z.

Theorem 2.14. Let (X, d) be a complete metric space and let T : X → X be a
generalized α-admissible Z-contraction of type (C) with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1, k ∈ N.

Then there exists z ∈ X such that Tz = z.

Remark 2.15. Accordingly to the previous observations, by adding a condition (U)
to the hypotheses of Theorem 2.13 and Theorem 2.14, uniqueness of the fixed point
is obtained.
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3. Consequences

In this section, we shall illustrate that several existing fixed point results in the
literature can be derived from our main results by observing Example 1.2.

If ψ ∈ Ψ and we define

ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞),

then ζBW is a simulation function (cf. Example 1.2 (v)).
We conclude that the main result of Karapınar and Samet [6] can be expressed as

a corollary of our main result.

Theorem 3.1. Theorem 1.9 is a consequence of Theorem 2.7.

Proof. Taking ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞) in Theorem 2.7, we get that

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y)), for all x, y ∈ X. �

Theorem 3.2. Theorem 2.8. of [7] is a consequence of Theorem 2.4.

Hence, all consequences, including the famous fixed point theorem of Banach, can
be expressed easily from the above theorem as in [6]. By changing the definition of
M(x, y) in (2.1), we get another class of contractions.
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