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Abstract. In this paper, we establish new fixed point results for the sum of two operators A
and B, where the operator A is assumed to be weakly compact and (ws)-compact, while B is a

weakly condensing and expansive operator defined on unbounded domains under different boundary

conditions as well as other additional assumptions. In addition, we get new generalized forms of
the Krasnosel’skii fixed point theorem in a Banach space by using the concept of measure of weak

noncompactness of De Blasi. Later on, we give an application to solve a nonlinear Hammerstein

integral equation in L1-space.
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1. Introduction

The existence of fixed points for the sum of two operators has been followed with
interest for a long time. In 1958, to study the existence of solutions of nonlinear
equations of the form

Ax+Bx = x, x ∈M.

Krasnosels’skii [9] first proved that operator A+ B has a fixed point whenever M is
a nonempty closed convex subset of a Banach space X and the operators A and B
satisfy:

(i) A is continuous on M , and A(M) is relatively compact,
(ii) B is a k-contraction with k ∈ [0, 1),
(iii) A(M) +B(M) ⊂M .
It is well known that this theorem combines the Schauder’s fixed point theorem

and Banach contraction mapping. In 1955, Darbo [6] extended the Schauder’s fixed
point theorem to the setting of noncompact operators introducing the notion of k-set
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contraction. Since then many interesting works has appeared. For example, in 1967,
Sadovskii [13] gave a fixed point result more general than the Darbo theorem using the
concept of condensing operator on a closed, bounded and convex subset of a Banach
space.

In 1977, De Blasi [5] introduced the concept of measure of weak noncompactness.
Emmanuele [7] established a Sadovskii type fixed point result using the concept of
weakly condensing with respect to the measure of weak noncompactness, in which
the weak continuity of the operator is required. In [4] Burton improved this result
requiring instead of AM + BM ⊂ M , the more general condition (x = Bx + Ay,
y ∈ M), then x ∈ M . Xiang and Yuan [14] considered that the operator B as an
expansive rather than a contraction.

Recently, A. Ben Amar and J. Garciat-Falset [2] established a new version of
Sadovskii type fixed point theorem for the classes of (ws)-compact operators.

In this paper, on the basis of a fixed point theorem proved by A. Ben Amar
and J. Garcia-Falset in [2], we establish new fixed point results for the sum of two
operators A and B, where the operator A is assumed to be weakly compact and
(ws)-compact, while B is a weakly condensing and expansive operator defined on
unbounded domains under different boundary conditions as well as other additional
assumptions. In addition, we get new generalized forms of the Krasnosels’skii fixed
point in Banach spaces by using the concept of measure of weak noncompactness of
De Blasi. In the last section of the paper, we give an application to solve a nonlinear
Hammerstein integral equation in L1-space.

2. Preliminaries

We first gather together some notations and preliminary facts of some weak topol-
ogy feature which will be need in our further considerations. Let B(X) be the col-
lection of all nonempty bounded subsets of a Banach space X, and let W(X) be the
subset of B(X) consisting of all weakly compact subsets of X. Also, let Bε denote
the closed ball in X centered in 0 and with radius ε.

De Blasi [5] introduced the map w : B(X)→ R+ defined by

w(M) = inf{ε > 0, M ⊂ Y + Bε, Y ∈ W(X)}, for M ∈ B(X).

For completeness, we recall some useful properties of the function w(.)
Proposition 2.1. Let M1, M2 be in B(X), then we have:

(1) w(M1) ≤ w(M2) whenever M1 ⊂M2.
(2) w(M1) = 0 if and only if M1 is relatively weakly compact.
(3) w(M1) = w(M1).
(4) w(conv(M1)) = w(M1), where conv(M1) refers to the convex hull of M1.
(5) w(λM1) = |λ|w(M1), for all λ ∈ R.
(6) w(M1 +M2) ≤ w(M1) + w(M2).
(7) w(M1 ∪M2) = max(w(M1), w(M2)).

Next, we introduce the notion of (ws)-compact operators.
Definition 2.1. Let X be a Banach space and let M be a subset of X. A map T :
M → X is said to be (ws)-compact if it is continuous and for any weakly convergent
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sequence (xn)n∈N in M the sequence (Txn)n∈N has a strongly convergent subsequence
in X.
Remark 2.1. A map T is (ws)-compact if and only if it maps relatively weakly
compact sets into relatively compact ones. T is (ws)-compact does not imply that
T is weakly sequentially continuous, i.e., xn ⇀ x implies Txn ⇀ Tx; here ⇀ denote
weak convergence in X.
Remark 2.2. Clearly, a strongly continuous operator is (ws)-compact. The converse
is not true in general(even if X is reflexive), as the following example illustrates. Let
X = L2(0, 1) and let T : X → X be defined by

(Tx)(t) =

∫ 1

0

x2(s)ds = ‖x‖22.

Clearly T is ‖ · ‖-continuous and in fact compact since the range of T is R; here, T
is (ws)-compact. On the other hand, if xn(s) = sinnπs then xn ⇀ θ in L2(0, 1), but
Txn 9 θ in L2(0, 1) because ‖Txn‖2 = 1

2 for all n ≥ 1.
Let T be a nonlinear operator from X into itself, we introduce the following con-

dition transform weakly compact sets into weakly compact ones.
(P) If (xn)n∈N ⊆ D(T ) is a weakly convergent sequence in X, then (Txn)n∈N has

a weakly convergent subsequence in X.
Definition 2.2. Let X be a Banach space and K be a subset of X. A continuous
and bounded map T : K → X is w-k-set contractive if for any bounded set A ⊂ K,
we have w(T (A)) ≤ kw(A), k ∈ [0, 1]. T is strictly w-k-set contractive if T is w-k-set
contractive and w(T (A)) < kw(A) for all bounded sets A ⊂ K with w(A) 6= 0. T is
a w-condensing map if T is strictly w-1-set contractive.

The following theorem was proved by A. Ben Amar and J. Garcia-Falset [2].
Theorem 2.1. Let M be a nonempty unbounded closed convex set in a Banach space
X. Assume that T : M → M is (ws)-compact. In addition, suppose that T (M) is
bounded. If T is w-condensing map, then T has a fixed point.
Lemma 2.1. Let T : D(T ) ⊂ X → X be a (ws)-compact operator and let Q : R(T ) ⊂
X → X be continuous. Then the compound operator Q ◦ T : D(T ) ⊂ X → X is
(ws)-compact.
Proof. Let (xn)n∈N be a weakly convergent sequence in D(T ). By the hypothesis of
T is (ws)-compact, (Txn)n∈N has a strongly convergent subsequence, say (Txnk

)k∈N.
The continuity of Q implies that (QTxnk

)k∈N is also strongly convergent and therefore
Q ◦ T is (ws)-compact operator.
Definition 2.3. Let X be a Banach space. An operator T : D(T ) → X is said to
be weakly compact if T (Ω) is relatively weakly compact for every bounded subset
Ω ⊆ X.
Definition 2.4. Let (X, d) be a metric space and M be a subset of X. The mapping
T : M → X is said to be expansive, if there exists a constant h > 1 such that

d(Tx, Ty) ≥ hd(x, y), ∀x, y ∈M.

Lemma 2.2. Let (X, ‖ · ‖) be a linear normed space and M ⊂ X. Assume that the
mapping T : M → X is expansive with constant h > 1.
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Then the inverse of F := I − T : M → (I − T )(M) exists and

‖F−1x− F−1y‖ ≤ 1

h− 1
‖x− y‖, x, y ∈ F (M). (2.1)

Proof. For each x, y ∈M , we have

‖Fx− Fy‖ = ‖(Tx− Ty)− (x− y)‖ ≥ (h− 1)‖x− y‖, (2.2)

which shows that F is one-to-one, hence the inverse of F : M → F (M) exists. Now
taking x, y ∈ F (M), then F−1x, F−1y ∈ M, thus using F−1x, F−1y substitute for
x, y in (2.2), respectively, we obtain

‖F−1x− F−1y‖ ≤ 1

h− 1
‖x− y‖.

Theorem 2.2. Let M be a closed subset of X. Assume that the mapping T : M → X
is expansive and T (M) ⊇ M , then there exists a unique point x∗ ∈ M such that
Tx∗ = x∗.
Theorem 2.3. [2] Let X be a Banach space, Ω ⊂ X a closed convex subset and
U ⊂ Ω an open set (with respect to the topology of Ω) such that θ ∈ U . Assume that
T : U → Ω is w-condensing (ws)-compact mapping with T (U) bounded. Then, either

(A1) T has a fixed point, or
(A2) there is a point u ∈ ∂ΩU and λ ∈ (0, 1) with u = λT (u).
The following fixed point result stated in [10], will be used in the next section. The

proof follows from Schauder’s fixed point theorem.
Theorem 2.4. Let M be a nonempty closed convex set in a Banach space X. Assume
that T : M → M is (ws)-compact. If T (M) is relatively weakly compact, then there
exists x ∈M such that T (x) = x.

3. Fixed point theorems for the sum of two operators

Our purpose here is to establish a fixed point theorem for the sum of two operators
defined on unbounded domains under different boundary conditions as well as other
additional assumptions.
Theorem 3.1. Let K ⊂ X be a nonempty closed unbounded convex subset. Suppose
that T and S map K into X such that

(i) S is (ws)-compact and weakly compact.
(ii) T is expansive and w-condensing.
(iii) z ∈ S(K) implies T (K) + z ⊃ K, where T (K) + z = {y + z/y ∈ T (K)}
(iv) (I − T )−1S(K) is bounded.

Then there exists a point x∗ ∈ K such that Sx∗ + Tx∗ = x∗.
Proof. From (ii) and (iii), for any z ∈ S(K), we see that the mapping T + z : K → X
satisfies the assumptions of Theorem 2.2.
Thus, the equation

Tx+ z = x

has a unique solution in K. Therefore by Lemma 2.2, we have x = (I − T )−1z ∈ K,
which implies that

(I − T )−1S(K) ⊆ K.
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Then we have S is (ws)-compact and (I − T )−1 continuous. Lemma 2.1 implies that
(I − T )−1S is (ws)-compact. Moreover (I − T )−1S is w-condensing. Indeed, let M
be a bounded subset of K, then we have

(I − T )−1S(M) ⊆ S(M) + T (I − T )−1S(M) ⊆ S(M) + T (M).

This implies that w((I−T )−1S(M)) ≤ w(S(M)+T (M)). Since S is weakly compact,
we deduce that w(S(M)) = 0, which means that

w((I − T )−1S(M)) ≤ w(T (M)) < w(M).

By Theorem 2.1 , we conclude that there exists x ∈ K such that (I − T )−1S(x) = x,
that is S(x) = (I − T )(x), and hence S(x) + T (x) = x. This completes the proof.
Corollary 3.1. Let K ⊂ X be a nonempty closed unbounded convex subset. Suppose
that T and S map K into X such that

(i) S is (ws)-compact and weakly compact.
(ii) T is expansive and T (M) is relatively weakly compact whenever M is a bounded

set of K.
(iii) z ∈ S(K) implies T (K) + z ⊃ K, where T (K) + z = {y + z/y ∈ T (K)}.
(iv) (I − T )−1S(K) is bounded.

Then there exists a point x∗ ∈ K such that Sx∗ + Tx∗ = x∗.
Proof. This is an immediate consequence of Theorem 3.1, since T is a w-condensing
map.
Theorem 3.2. Let K ⊂ X be a nonempty closed unbounded convex subset. Suppose
that T and S map K into X such that

(i) S is (ws)-compact and S(K) is relatively weakly compact.
(ii) T is expansive and w-condensing.
(iii) z ∈ S(K) implies T (K) + z ⊃ K, where T (K) + z = {y + z/y ∈ T (K)}.

Then there exists a point x∗ ∈ K such that Sx∗ + Tx∗ = x∗.
Proof. From (ii) and (iii), for any z ∈ S(K), we see that the mapping T + z : K → X
satisfies the assumptions of Theorem 2.2.
Thus, the equation

Tx+ z = x

has a unique solution in K. Therefore by Lemma 2.2, we have x = (I − T )−1z ∈ K,
which implies that

(I − T )−1S(K) ⊆ K.
Then we have S is (ws)-compact and (I − T )−1 continuous. Lemma 2.1 implies that
(I − T )−1S is (ws)-compact. Moreover (I − T )−1S(K) is relatively weakly compact.
Indeed, we have

(I − T )−1S(K) ⊆ S(K) + T (I − T )−1S(K).

If w((I − T )−1S(K)) 6= 0, we obtain

w((I−T )−1S(K)) ≤ w(S(K)+T (I−T )−1S(K)) ≤ w(S(K))+w(T ((I−T )−1S(K))).

Since S(K) is relatively weakly compact, we deduce that w(S(K)) = 0, which means
that

w((I − T )−1S(K)) ≤ w(T ((I − T )−1S(K))) < w((I − T )−1S(K)),
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which is a contradiction. So, w((I − T )−1S(K)) = 0 and (I − T )−1S(K) is relatively
weakly compact.
By Theorem 2.4, we conclude that there exists x ∈ K such that (I − T )−1S(x) = x.
This completes the proof.
Theorem 3.3. Let K ⊂ X be a nonempty closed unbounded convex subset. Suppose
that T : K → X and S : K → X such that:

(i) S is (ws)-compact and weakly compact.
(ii) T is expansive and w-condensing.
(iii) I − T is surjective.
(iv) (I − T )−1S(K) is bounded.

Then there exists a point x∗ ∈ K such that S(x∗) + T (x∗) = x∗.
Proof. Lemma 2.2 shows that the inverse of I − T exists. Since I − T is surjective,
then (I − T )−1S map K into K. Once we prove that (I − T )−1S has a fixed point in
K, the proof is achieved.
Obviously, by Lemma 2.1 the compound operator (I − T )−1S is (ws)-compact since
S is (ws)-compact and (I −T )−1 is continuous. Now we will show that (I −T )−1S is
w-condensing. Indeed, let M be a bounded subset of K, then we have

(I − T )−1S(M) ⊆ S(M) + T (I − T )−1S(M) ⊆ S(M) + T (M).

Since S(M)
w

is relatively weakly compact and T is w-condensing, it follows that

w((I − T )−1S(M)) ≤ w(S(M) + T (M)) < w(M),

By Theorem 2.1, (I − T )−1S has a fixed point x∗ ∈ K. This finishes the proof.
Remark 3.1. U and ∂ΩU denote the closure and boundary of U in Ω, respectively.
Theorem 3.4. Let X be a Banach space, Ω ⊂ X a closed convex subset, U ⊂ Ω an
open(with respect to topology of Ω) and such that θ ∈ U . Assume that T : U → Ω is
(ws)-compact, w-condensing, T (U) is bounded and

‖Tx‖ ≤ ‖Tx− x‖ (3.1)

for each x ∈ ∂ΩU . Then T has at least one fixed point in U .
Proof. We suppose that the operators T has no fixed point in U . By Theorem 2.3,
there exist x0 ∈ ∂ΩU et λ0 ∈ (0, 1) with x0 = λ0T (x0). That is T (x0) = 1

λ0
x0.

Inserting T (x0) = 1
λ0
x0 into (3.1), we obtain∥∥∥∥ 1

λ0
x0

∥∥∥∥ ≤ ∥∥∥∥ 1

λ0
x0 − x0

∥∥∥∥ .
This implies

1

λ0
‖x0‖ ≤

(
1

λ0
− 1

)
‖x0‖. (3.2)

Since x0 ∈ ∂ΩU , we see x0 6= 0. Therefore, ‖x0‖ 6= 0, by (3.2), we obtain

1

λ0
− 1 ≥ 1

λ0
,

and this is a contradiction since λ0 ∈ (0, 1). Accordingly, by Theorem 2.3 T has a
fixed point in U .
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Theorem 3.5. Let Ω be a convex open subset of X such that θ ∈ Ω. Suppose that
T : Ω→ X and S : Ω→ X such that:

(i) S is (ws)-compact and weakly compact operator.
(ii) T is an expansive map with constant h > 1 and w-condensing.
(iii) I − T is surjective.

(iv) ‖Sx+ Tθ‖ ≤ (h−1)
2 ‖x‖ for each x ∈ Ω.

(v) (I − T )−1S(Ω) is bounded.
Then there exists a point x∗ ∈ Ω such that Sx∗ + Tx∗ = x∗.
Proof. From the proof of Theorem 3.1, we obtain (I − T )−1S := GS : Ω → Ω is a
(ws)-compact and w-condensing map.
Now for each x ∈ Ω, we see that there exists y ∈ Ω such that

y − T (y) = S(x). (3.3)

It is remained to check that(3.1) holds. Indeed, for each x ∈ Ω, from (3.3), we obtain

T (GSx) + Sx = GSx

which implies that

‖T (GSx)− Tθ‖ ≤ ‖GSx‖+ ‖Sx+ Tθ‖. (3.4)

On the other hand, we have

‖T (GSx)− Tθ‖ ≥ h‖GSx‖. (3.5)

From (3.4) and (3.5), we deduce that

‖GSx‖ ≤ 1

h− 1
‖Sx+ Tθ‖. (3.6)

For any x ∈ Ω, from (3.6) and (iv), we derive that

‖GSx‖2−(‖GSx‖−‖x‖)2 = ‖x‖(2‖GSx‖−‖x‖) ≤ ‖x‖
(

2

h− 1
‖Sx+ Tθ‖ − ‖x‖

)
≤ 0,

which implies (3.1). This completes the proof.
Lemma 3.1. [1] Let X be a Banach space. Assume that a mapping B : X → X is a
k-Lipshitzian mapping, that is

∀x, y ∈ X, ‖Bx−By‖ ≤ k‖x− y‖.

In addition, suppose that B verifies (P ). Then for each bounded subset S of X, we
have w(B(S)) ≤ k w(S).

Next, we extend the above results to a large class of mappings in some sense.
Theorem 3.6. Let K ⊂ X be a nonempty closed unbounded convex subset. Suppose
that T : K → X and S : K → X such that:

(i) S is a w-k-set contractive and (ws)-compact map.
(ii) T is an expansive map with constant h > k+1, I−T is surjective and (I−T )−1

satisfies (P).
(iii) z ∈ S(K) implies K ⊂ z + T (K), where T (K) + z = {y + z|y ∈ T (K)}.
(iv) (I − T )−1S(K) is bounded.

Then there exists a point x∗ ∈ K with Sx∗ + Tx∗ = x∗.
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Proof. The result follows immediately from Theorem 2.1 and Theorem 3.1, once we
show that (I − T )−1S : K → K is a w-condensing map. To see this, let M be a
bounded subset in K. From Lemma 2.2, we have,

‖(I − T )−1(x)− (I − T )−1(y)‖ ≤ 1

h− 1
‖x− y‖.

Since (I − T )−1 satisfies (P), then from Lemma 2.2, we have

w((I − T )−1(S(M)) ≤ 1

h− 1
w(S(M)).

Notice that S is w-k-set contractive, consequently if w(M) 6= 0,

w((I − T )−1S(M)) ≤ k

h− 1
w(M) < w(M),

which illustrates that (I − T )−1S : K → K is a w-condensing map. This finishes the
proof.

The next lemma holds easily.
Lemma 3.2. [3] When y > 1 and β > 0, the following inequality holds:

(y − 1)β+1 < yβ+1 − 1.

According to the above lemma, we can prove the following result.
Theorem 3.7. Let Ω be a closed convex set in a Banach space X, 0 ∈ int(Ω).
Assume that T : Ω → X is (ws)-compact and w-condensing mapping which satisfies
that T (Ω) is bounded. In addition, assume that there exists γ > 0 such that

‖T (x)− x‖γ+1 ≥ ‖T (x)‖γ+1 − ‖x‖γ+1, (3.7)

for all x ∈ ∂Ω. Then T has at least one fixed point in Ω.
Proof. We suppose that T has no fixed point in Ω. Then there exist x0 ∈ ∂Ω and
λ0 ∈ (0, 1) with λ0T (x0) = x0. That is T (x0) = 1

λ0
x0. Inserting T (x0) = 1

λ0
x0 into

(3.7), we obtain ∥∥∥∥ 1

λ0
x0 − x0

∥∥∥∥γ+1

≥
∥∥∥∥ 1

λ0
x0

∥∥∥∥γ+1

− ‖x0‖γ+1.

This implies (
1

λ0
− 1

)γ+1

‖x0‖γ+1 ≥

(
1

λγ+1
0

− 1

)
‖x0‖γ+1. (3.8)

Since x0 ∈ ∂Ω, we see x0 6= 0. Therefore, ‖x0‖ 6= 0 and by (3.8), we obtain(
1

λ0
− 1

)γ+1

≥ 1

λγ+1
0

− 1,

and this contradicts Lemma 3.2, since 1
λ0
∈ (1,∞) . Accordingly, by Theorem 2.3 T

has a fixed point in Ω.
Remark 3.2. Theorem 3.7 is a generalization of Altman’s fixed point theorem in the
case of (ws)-compact and w-condensing mapping.
Corollary 3.2. Let Ω be a closed convex set in a Banach space X, 0 ∈ int(Ω).
Assume that T : Ω → X is (ws)-compact and w-condensing mapping wich satisfies
that T (Ω) is bounded. If one of the following condition is satisfied:
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(i) ‖T (x)‖ ≤ ‖x‖, for all x ∈ ∂Ω (the condition of Rothe type).
(ii) ‖x− T (x)‖ ≥ ‖T (x)‖, for all x ∈ ∂Ω (the condition of Petryshyn type).
(iii) ‖T (x)−x‖2 ≥ ‖T (x)‖2−‖x‖2, for all x ∈ ∂Ω (the condition of Altman type).

Then T has at least one fixed point in Ω.
Theorem 3.8. Let K ⊂ X be a convex open subset. Suppose that T and S map K
into X such that:

(i) S is a w-k-set contractive and (ws)-compact map.
(ii) T is an expansive map with constant h > k + 1.
(iii) I − T is surjective and (I − T )−1 satisfy (P).
(iv) ‖Sx+ Tθ‖ ≤ h−1

2 ‖x‖, ∀x ∈ ∂K.

(v) (I − T )−1S(K) is bounded.
Then there exist x∗ ∈ K such that Sx∗ + Tx∗ = x∗.
Proof. From the proof of Theorem 3.3, we obtain GS : (I − T )−1S : K → K is a
(ws)-compact mapping. Moreover (I − T )−1S is w-condensing. Indeed, let A be a
bounded subset in K. By Lemma 3.1 and (2.1), we obtain

w((I − T )−1(S(A))) ≤ 1

h− 1
w(S(A)).

Notice that S is w-k-set contractive, consequently if w(A) 6= 0, we have

w((I − T )−1(S(A))) ≤ k

h− 1
w(A) < w(A),

which implies that (I − T )−1S := GS : K → K is w-condensing.
Now for each x ∈ K, we see that there exist y ∈ K such that

S(x) = y − T (y).

In what follows, we check that the conditions of Corollary 3.2 are satisfied. In fact,
by (3.6), we have

‖GSx‖ ≤ 1

h− 1
‖Sx+ Tθ‖.

Since ‖Sx+ Tθ‖ ≤ h−1
2 ‖x‖, then we have

‖GSx‖ ≤ ‖x‖.
Thus from (3.6) and (iv), we derive that

‖x−GSx‖2 − ‖GSx‖2 ≥ ‖x‖
(
‖x‖ − 2

h− 1
‖Sx+ Tθ‖

)
≥ 0.

Now, we have

‖GSx− x‖2−‖GSx‖2 + ‖x‖2 ≥ ‖x‖2 + ‖GSx‖2− 2‖x‖‖GSx‖− ‖GSx‖2 + ‖x‖2 ≥ 0.

Thus, the result follows from (i) or (ii) or (iii) of Corollary 3.2.
Theorem 3.9. [2] Let X be a Banach space, Ω a nonempty unbounded closed convex
subset of X and U ⊆ Ω an open set and let z be an element of U . Assume that
T : U → Ω is w-condensing and (ws)-compact mapping which satisfies that T (U) is
bounded.

(L-S) λT (u) 6= u− (1− λ)z for any u ∈ ∂ΩU , 0 < λ < 1.
Then T has at least one fixed point in U .
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Theorem 3.10. Let θ ∈ K ⊂ X be a nonempty unbounded closed convex subset of
X, U ⊂ K an open set and z ∈ U . Suppose that T : K → X and S : U → X such
that:

(i) S is w-k-set contractive and (ws)-compact map.
(ii) T is an expansive map with constant h > k + 1.
(iii) (I − T ) is surjective and (I − T )−1 satisfy (P).
(iv) (I − T )−1S(U) is bounded.

Additionally, if Sx 6= (I−T )
(

1
λx−

(1−λ)
λ z

)
for all x ∈ ∂KU , λ > 1, then there exists

x∗ ∈ U with Sx∗ + Tx∗ = x∗.
Proof. From the proof of Theorem 3.3, we obtain (I − T )−1S : U → K is a (ws)-
compact mapping. Now, let M be a bounded subset in U , then from Lemma 3.1 we
have

w((I − T )−1S(M)) ≤ 1

h− 1
w(S(M)).

Since S is w-k-set contractive map, then

w((I − T )−1S(M)) ≤ k

h− 1
w(M) < w(M) (if w(M) 6= 0),

which implies that (I −T )−1S : U → K is a w-condensing map. It is easy to see that
the condition(L-S) holds. The result follows from Theorem 3.9.
Lemma 3.3. Let (X, ‖.‖) be a linear normed space, M ⊂ X. Assume that the
mapping T : M → X is contractive with constant α < 1, then the inverse of F :=
I − T : M → (I − T )(M) exists and

‖F−1x− F−1y‖ ≤ 1

1− α
‖x− y‖, x, y ∈ F (M). (3.9)

Proof. For each x, y ∈M , we have

‖Fx− Fy‖ ≥ (1− α)‖x− y‖,

which shows that F is one-to-one, thus the inverse of F : M → F (M) exists. Now we
set

G := F−1 − I : F (M)→ X.

From the identity

I = F ◦ F−1 = (I − T ) ◦ (I +G) = I +G− T ◦ (I +G),

We obtain that

G = T ◦ (I +G).

Hence,

‖Gx−Gy‖ ≤ α(‖x− y‖+ ‖Gx−Gy‖).
Therefore

‖Gx−Gy‖ ≤ α

1− α
‖x− y‖, x, y ∈ F (M)

and so

‖F−1x− F−1y‖ ≤ ‖Gx−Gy‖+ ‖x− y‖ ≤ 1

1− α
‖x− y‖.
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The classical Krasnosel’skii fixed-point theorem can be easily extended due to
Sadovskii fixed point theorem. For the purpose of completeness, we include the gen-
eralized Krasnosel’skii fixed point theorem as follows.
Theorem 3.11. Let θ ∈ K ⊂ X be a nonempty closed convex subset and U ⊆ K an
open set and let z be an element of U . Suppose that T : K → X and S : U → X such
that:

(i) T is a contraction with constant α < 1.
(ii) S is a strictly w-(1-α)−set contractive and (ws)-compact map.
(iii) (I − T )−1 satisfy (P) and I − T is surjective.
(iv) (I − T )−1S(U) bounded.

Additionally, if Sx 6= (I − T )
(

1
λx−

1−λ
λ z

)
, for all x ∈ ∂KU , λ > 1. Then there exist

x∗ ∈ U such that Sx∗ + Tx∗ = x∗.
Proof. By Lemma 3.3, we have the inverse of I − T exists. Then, since I − T is
surjective, we have (I − T )−1S map U into K. Again by Lemma 2.1, one can easily
know that the mapping (I−T )−1S is (ws)-compact. Now, let M be a bounded subset
of U , then by Lemma 3.3 and (i), we have

‖(I − T )−1x− (I − T )−1y‖ ≤ 1

1− α
‖x− y‖, x, y ∈ (I − T )−1(K).

Since (I − T )−1 satisfy (P) and S is a strictly w-(1-α)-set contractive map, then
Lemma 3.1 implies that

w((I − T )−1S(M)) ≤ 1

1− α
w(S(M)) < w(M).

Then (I − T )−1S is w-condensing. The condition of (L-S) is holds. Thus Theorem
3.9 implies that (I − T )−1S has a fixed point in U .

4. Application to Hammerstein integral equation in L1 space

Let Ω be a bounded subset of RN . A function f : Ω × R → R is said to be a
Carathéodory function if

(i) for any fixed x ∈ R, the function t→ f(t, x) is measurable from Ω to R;
(ii) for almost any x ∈ Ω, the function f(t, .) : R→ R is continuous;
(iii) for each r > 0, there exists µr ∈ L([0, 1]), R) such that ‖z‖ ≤ r implies

‖f(t, z)‖ ≤ µr(t) for almost all t ∈ [0, 1].
Let m(Ω,R) be the set of all measurable functions ψ : Ω → R. If f is a

Carathéodory function, then f defined a mapping Nf : m(Ω,R) → m(Ω,R) by
Nf (ψ)(t) := f(t, ψ(t)). This mapping is called the Nemytskii operator associated
to f .
The following result due to Lucchetti and Patrone [12] is an extension to separable
Banach spaces of a previous one due to Krasnosel’skii about Nemytskii operators for
scalar valued functions [8].
Lemma 4.1. Let X and Y be two separable Banach spaces. If f is a Carathéodory
function, then the Nemytskii operator Nf maps L1(Ω, X) into L1(Ω, Y ) if and only if
there exist a constant η > 0 and a function ζ(.) ∈ L1

+(Ω) such that

‖f(t, x)‖Y ≤ ζ(t) + η‖x‖X ,



446 AFIF BEN AMAR AND AMEL TOUATI

where L1
+(Ω) denotes the positive cone of the space L1(Ω).

We shall use the following characterization of the relatively weak compactness in
L1(Ω) which is a consequence of Dunford-Pettis theorem plus the de la Vallée-Poussin
theorem and of Lemma 1 of [11].
Lemma 4.2. Let X, Y be two finite dimensional Banach spaces and let Ω be a
bounded domain in RN . If f : Ω×X → Y is a Carathéodory function and Nf maps
L1(Ω, X) into L1(Ω, Y ), then Nf satisfies (A2).
Theorem 4.1. A sequence (gn) of L1(Ω) is relatively weakly compact if and only if
there exists j ∈ J0 := {j : R→ [0,∞], convex, L.S.C, j(0) = 0} such that

lim
r→∞

j(r)

r
= +∞ and

∫
Ω

j(|gn|) ≤ 1.

Next, we are concerned with the solvability of the following variant of Hammerstein’s
integral equation:

u(t) = B(u(t)) + λ

∫
Ω

ξ(t, s)f(s, u(s))ds, in L1(Ω). (4.1)

Notice that eq(4.1) may be written in the form

u(t) = (Au)(t) + (Bu)(t)

where A is given by

A : L1(Ω)→ L1(Ω)

u 7→ Au(t) := λ
∫

Ω
ξ(t, s)f(s, u(s))ds.

Suppose that ξ and f satisfy the following conditions:

(1) f : Ω× R→ R is a Carathéodory function such that

|f(s, x)| ≤ a(s) + b|x|

where a ∈ L1
+(Ω) and b ≥ 0

(2) The function ξ : Ω × Ω → R is strongly measurable and
∫

Ω
ξ(., s)u(s)ds ∈

L1(Ω) whenever u ∈ L1(Ω).
(3) There exists a function τ : Ω→ R, belonging to L∞(Ω,R) such that

|ξ(t, s)| ≤ τ(t)

for all (t, s) ∈ Ω× Ω.
(4) B is w-condensing and (I −B)−1A(L1(Ω)) is bounded.
(5) (I −B) is surjective.

Theorem 4.2. Assume that conditions (1)− (4) are satisfied; then problem (4.1) has
at least one solution in L1(Ω).
Proof. First A is a (ws)-compact map. In fact, A is a continuous operator. Indeed,

‖Au−Av‖1 =

∫
Ω

|Au(t)−Av(t)|dt =

∫
Ω

|λ
∫

Ω

ξ(t, s)[f(s, u(s))− f(s, v(s))]ds|dt.

By Lemma 4.1, we have Nf (u)(s) = f(s, u(s)), acts from L1(Ω) into L1(Ω) and is
continuous.
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Since, by Hypothesis 3, there exists a positive function τ ∈ L1(Ω) such that for every
s ∈ Ω, |ξ(t, s)| ≤ τ(t), then

‖Au−Av‖1 ≤ |λ|
∫

Ω

τ(t)dt

∫
Ω

|f(s, u(s))− f(s, v(s))|ds = |λ|‖τ‖1‖Nf (u)−Nf (v)‖1,

which implies the continuity of A, since the operator Nf is continuous in L1(Ω).
Let (xn)n be a weakly convergent sequence of L1(Ω). According to Lemma 4.2,
(Nf (xn)) has a weakly convergent subsequence, say (Nf (xnk

)). Thus there exists
x ∈ L1(Ω) such that Nf (xnk

) ⇀ x.
Therefore, since for every t ∈ Ω the mapping ξ(t, .) : Ω→ R is bounded, we have

A(xnk
)(t) = λ

∫
Ω

ξ(t, s)f(s, xnk
(s))ds→ λ

∫
Ω

ξ(t, s)x(s)ds.

Now, by the assumption on Nf , since Ω is a bounded domain, we can apply the
dominated convergence theorem to conclude that the sequence

(A(xnk
) = λ

∫
Ω

ξ(., s)f(s, xnk
(s))ds)

is convergent in L1(Ω).
Let C be a bounded sets of L1(Ω; then there exists m > 0 such that ‖g‖1 ≤ m, for
all g ∈ C.
On the other hand, we have

|A(g)(t)| ≤ |λ|
∫

Ω

|ξ(t, s)||f(s, g(s))|ds

≤ |λ|
∫

Ω

τ(t)(a(s) + b|g(s)|)ds

≤ |λ|τ(t)(‖a‖1 + b m).

We consider j : R→ [0,∞] defined by

j(r) =
r2

|λ|2(‖a‖1 + bM)2‖τ2‖1
It is clear that j satisfies:

• j belongs to J0

• It is an increasing function for r ≥ 0

• lim
r→∞

j(r)
r = +∞

These facts imply that j under the condition of Theorem 4.1. Furthermore,

j(|A(g)(t)|) ≤ j(|λ|τ(t)(‖a‖1 + b m)).

Consequently∫
Ω

j(|A(g)(t)|)dt ≤
∫

Ω

j(|λ|τ(t)(‖a‖1 + b m))dt =

∫
Ω

|λ|2τ2(t)(‖a‖1 + b m)2

|λ|2(‖a‖1 + b m)2‖τ2‖1
dt = 1

Now, by using Theorem 4.1, we may conclude that A(C) is a relatively weakly compact
subset of L1(Ω). The above arguments show that A and B satisfy the assumptions
of Theorem 3.3, which allows us to affirm that eq (4.1) has a solution.
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