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1. Introduction

The celebrated Banach contraction principle asserts that a contraction on a com-
plete metric space has a unique fixed point. A contraction (nonexpansive mapping)
is continuous and hence this principle has a drawback that it is not applicable to
discontinuous functions. Fixed point theorems for discontinuous mappings in Banach
space setting have been established in [4, 21].

Recently in [4], the authors established some fixed point theorems for single-valued
non-self almost contractions in Banach spaces. Since almost contractions form a
large class of contractive type mappings that includes, amongst others, the Banach
contraction mappings, therefore the results in [4] are significant generalization of some
important metric fixed point theorems for single-valued self and non-self mappings;
see for example [1, 10, 27].

For other very recent related results; see [28, 30, 29].
We state the main result in [4]:
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Theorem 1.1. Let E be a Banach space, K a nonempty closed subset of E and
T : K → E a non-self almost contraction, that is, a mapping for which there exist
two constants δ ∈ [0, 1) and L ≥ 0 such that

||Tx− Ty|| ≤ δ · ||x− y||+ L||y − Tx|| , for all x, y ∈ K.

If T has property (M) (see Definition 3.1) and satisfies Rothe’s boundary condition

T (∂K) ⊂ K, where ∂K stands for the boundary of K,

then T has a fixed point in K.

Note that here T may be discontinuous but T is continuous at the fixed point.
On the other hand, Goebel and Kirk [14] proved that if E is uniformly convex

Banach space, K is a bounded, closed and convex subset of E and T : K → K is
asymptotically nonexpansive on K, that is, if there exists a sequence {kn} of numbers
such that kn → 1 as n→∞ and

||Tnx− Tny|| ≤ kn||x− y||, x, y ∈ K, n > N0.

Then T has a fixed point. This generalizes fixed point theorem of Browder [6], Göhde
[17] and Kirk [20] for nonexpansive mapping.

Later on, Kirk [21] substantially weakened the assumption of asymptotic nonex-
pansiveness of T as:

lim sup{sup
y∈k

[||Tnx− Tny|| − ||x− y||]} ≤ 0, for each x ∈ K,

which may hold even if none of the iterates of T is Lipschitzian. Although, it is
assumed that at least one of its iterates is continuous, the mapping itself need not
be so. If, in addition, T is uniformly continuous, then it is said to be asymptotically
nonexpansive in the intermediate sense [7].

Note that the Banach space is far away from being the most general setting in which
Theorem 1.1 can be established. Moreover, property (M), a fundamental concept used
in the proof, could also be naturally adapted in uniformly convex metric spaces (see
Example 3.3). Reflexivity of uniformly convex Banach spaces used in the proof of the
main results in [21], has its analogue in uniformly convex metric spaces (see Theorem
2.6).

With the help of these facts, in this paper, we obtain fixed point theorems for
discontinuous mappings; non-self almost contractions and non-Lipschitzian mappings
of asymptotically nonexpansive type in uniformly convex metric spaces.

2. Uniform convexity in metric spaces

Throughout this paper, (X, d) will stand for a metric space. Suppose that there
exists a family F of metric segments such that any two points x, y in X are endpoints
of a unique metric segment [x, y] ∈ F ([x, y] is an isometric image of the real line
interval [0, d(x, y)]). We shall denote by (1 − β)x ⊕ βy the unique point z of [x, y]
which satisfies

d(x, z) = βd(x, y), and d(z, y) = (1− β)d(x, y).
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Such metric spaces are usually called convex metric spaces [25]. Moreover, if we have

d

(
1

2
p⊕ 1

2
x,

1

2
p⊕ 1

2
y

)
≤ 1

2
d(x, y),

for all p, x, y in X, then X is said to be a hyperbolic space (see [26]).
Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one

can consider the Hadamard manifolds [9], the Hilbert open unit ball equipped with
the hyperbolic metric [15], and the CAT (0) spaces [22]. We will say that a subset C
of a hyperbolic metric space X is convex if [x, y] ⊂ C whenever x, y are in C.

Definition 2.1. [19] Let (X, d) be a hyperbolic space. We say that X is uniformly
convex if for any a ∈ X, for every r > 0, and for each ε > 0

δ(r, ε) = inf
{

1− 1

r
d
(1

2
x⊕ 1

2
y, a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}
> 0.

From now onwards we assume that X is a hyperbolic space.

Remark 2.2. (i) δ(r, 0) = 0, and δ(r, ε) is an increasing function of ε for every fixed
r (see [19], Remark 2.1).
(ii) δ(r, 2) = 1 for every fixed r. To show this, choose a = 1

2x⊕
1
2y in Definition 2.1.

Remark 2.3. [19] If (X, d) is uniformly convex, then it is strictly convex. i.e.,
whenever

d
(
αx⊕ (1− α)y, a

)
= d(x, a) = d(y, a)

for α ∈ (0, 1) and any x, y, a ∈ X, then we must have x = y.

A subset C of a metric space X is Chebyshev if for every x ∈ X, there exists c0 ∈ C
such that d (c0, x) < d (c, x) for all c ∈ C, c 6= c0. In other words, for each point of
the space, there is a well-defined nearest point of C . We can then define the nearest
point projection P : X → C by sending x to c0. We have the following result.

Lemma 2.4. [19] Let (X, d) be a complete uniformly convex. Let C be nonempty,
convex and closed subset of X. Let x ∈ X be such that d(x,C) < ∞. Then there
exists a unique best approximant of x in C, i.e., there exists a unique c0 ∈ C such
that

d(x, c0) = d(x,C) = inf{d(x, c); c ∈ C},
i.e., C is Chebyshev.

Lemma 2.5. [19] Assume that (X, d) is uniformly convex. Let {Cn} ⊂ X be a
sequence of nonempty, nonincreasing, convex, bounded and closed sets. Let x ∈ X be
such that

0 < d = lim
n→∞

d(x,Cn) <∞.

Let xn ∈ Cn be such that d(x, xn)→ d. Then {xn} is a Cauchy sequence.

Recall that a hyperbolic metric space (X, d) is said to have the property (R) if
any non-increasing sequence of nonempty, convex, bounded and closed sets, has a
nonempty intersection.

The following result is an analogue of the well known fact that a uniformly convex
Banach space is reflexive. For a reference the reader may consult Theorem 2.1 in [15].
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Theorem 2.6. [19] If (X, d) is complete and uniformly convex, then (X, d) has the
property (R).

3. Fixed point results

3.1. Non-self almost contraction. Let X be a uniformly convex metric space, C
a nonempty closed subset of X and T : C → X a non-self mapping. If x ∈ C is such
that Tx /∈ C, then we suppose throughout this paper that there exists y ∈ ∂C with
y = (1− λ)x⊕ λTx (0 < λ < 1), such that

d(x, Tx) = d(x, y) + d(y, Tx), y ∈ ∂C. (3.1)

Definition 3.1. Let X be a uniformly convex metric space, C a nonempty closed
subset of X and T : C → X a non-self mapping. Let x ∈ C with Tx /∈ C and let
y ∈ ∂C be the element given by (3.1). If, for any such element x, we have

d(y, Ty) ≤ d(x, Tx), (3.2)

then we say that T has property (M).

Remark 3.2. Note that a condition similar to (3.2) has been used in [13].

The non-self mapping T in the following example has property (M).

Example 3.3. Let C be a nonempty convex and closed subset of a complete and
uniformly convex metric space X. For a fixed x ∈ X \ C, set co = P (x) where P is

the nearest point projection from X onto C. Let B = B(co,
d(c0,x)

2 ) be the closed ball

centered at co with radius d(c0,x)
2 .

Define T : B → X by Tb = 1
2b⊕

1
2c0, the midpoint of [b, c0], if b 6= x and Tb = x,

if b = c0. Then T has property (M).
Indeed, the only b ∈ B with Tb /∈ B is b = c0; let y ∈ ∂B be the element as in

(3.1). The equation

d(y, Ty) = d(y,
1

2
y ⊕ 1

2
c0) =

1

2
d(y, c0) =

1

4
d(c0, T c0)

shows that (3.2) holds.

Theorem 3.4. Let X be a complete and uniformly convex metric space, C a
nonempty closed subset of X and T : C → X a non-self almost contraction, that
is, a mapping for which there exist two constants δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ C. (3.3)

If T has property (M) and satisfies Rothe’s boundary condition

T (∂C) ⊂ C, (3.4)

then T has a fixed point in C.

Proof. Let x0 ∈ ∂C. By (3.4), we know that Tx0 ∈ C. Denote x1 = Tx0. Now, if
Tx1 ∈ C, set x2 = Tx1. If Tx1 /∈ C, then there exists unique x2 on the segment
[x1, Tx1] which also belongs to ∂C, that is,

x2 = (1− λ)x1 ⊕ λTx1 (0 < λ < 1).
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Continuing in this way, we obtain a sequence {xn} whose terms satisfy one of the
following properties:

i) xn = Txn−1, if Txn−1 ∈ C;
ii) xn = (1− λ)xn−1 ⊕ λTxn−1 ∈ ∂C (0 < λ < 1), if Txn−1 /∈ C.
To simplify the argument in the proof, let us denote

P = {xk ∈ {xn} : xk = Txk−1}
and

Q = {xk ∈ {xn} : xk 6= Txk−1}.
Note that {xn} ⊂ C and that, if xk ∈ Q, then both xk−1 and xk+1 belong to the set
P . Moreover, by virtue of (3.4), we cannot have two consecutive terms of {xn} in the
set Q (but we can have two consecutive terms of {xn} in the set P ) .

We claim that {xn} is a Cauchy sequence. To prove this, we must discuss following
three different cases:
Case I. xn, xn+1 ∈ P .

In this case, we have xn = Txn−1, xn+1 = Txn and so by (3.3), we get

d(xn+1, xn) = d(Txn, Txn−1) ≤ δd(xn, xn−1) + Ld(xn, Txn−1).

As xn = Txn−1, so we have

d(xn+1, xn) ≤ δd(xn, xn−1). (3.5)

Case II. xn ∈ P , xn+1 ∈ Q.
In this case, we have xn = Txn−1, xn+1 6= Txn and

d(xn, xn+1) + d(xn+1, Txn) = d(xn, Txn).

Hence
d(xn, xn+1) ≤ d(xn, Txn) = d(Txn−1, Txn)

and so by (3.3), we get

d(xn, xn+1) ≤ δd(xn, xn−1) + Ld(xn, Txn−1) = δd(xn, xn−1),

which again yields inequality (3.5).
Case III. xn ∈ Q, xn+1 ∈ P .

In this situation, we have xn−1 ∈ P . By property (M), we have

d(xn, xn+1) = d(xn, Txn) ≤ d(xn−1, Txn−1)).

From xn−1 ∈ P , we have xn−1 = Txn−2 and so by (3.3), we get

d(Txn−2, Txn−1) ≤ δd(xn−2, xn−1) + Ld(xn−1, Txn−2) = δd(xn−2, xn−1).

which shows that
d(xn, xn+1) ≤ δd(xn−2, xn−1). (3.6)

Therefore, summarizing all the three cases and using (3.5) and (3.6), it follows that
the sequence {xn} satisfies the inequality

d(xn, xn+1) ≤ δmax{d(xn−2, xn−1), d(xn−1, xn)}, (3.7)

for all n ≥ 2. Now, by induction for n ≥ 2, from (3.7) one obtains

d(xn, xn+1) ≤ δ[n/2] max{d(x0, x1), d(x1, x2)},
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where [n/2] denotes the greatest integer not exceeding n/2.
Further, for m > n > N ,

d(xn, xm) ≤
∞∑
i=N

d(xi, xi−1) ≤ 2
δ[N/2]

1− δ
max{d(x0, x1), d(x1, x2)},

which shows that {xn} is a Cauchy sequence.
Since {xn} ⊂ C and C is closed, {xn} converges to some point of C.
Denote

x∗ = lim
n→∞

xn , (3.8)

and let {xnk
} ⊂ P be an infinite subsequence of {xn} (such a subsequence always

exists) that we denote for simplicity by {xn} too.
Then

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx
∗) = d(xn+1, x

∗) + d(Txn, Tx
∗) .

By (3.3), we have

d(Txn, Tx
∗) ≤ δ d(xn, x

∗) + Ld(x∗, Txn)

and hence

d(x∗, Tx∗) ≤ (1 + L)d(x∗, xn+1) + δ · d(xn, x
∗), for all n ≥ 0. (3.9)

Letting n→∞ in (3.9), we obtain

d(x∗, Tx∗) = 0,

which shows that x∗ is a fixed point of T . �

Berinde [2] has shown that it is possible to obtain uniqueness of the fixed point of
an almost contraction, by imposing an additional contractive condition, quite similar
to (3.3).

The uniqueness of fixed point of an almost contraction on a nonlinear domain is
given below; its proof is simple and so omitted.

Theorem 3.5. Let X be a complete and uniformly convex metric space, C a
nonempty closed subset of X and T : C → X a non-self almost contraction for
which there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ C .

If T has property (M) and satisfies Rothe’s boundary condition

T (∂C) ⊂ C,

then T has a unique fixed point in C.
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3.2. Non-Lipschitzian mappings. In this section, we prove fixed points results for
the class of non-Lipschitzian mappings of asymptotically nonexpansive type which
contains the class of asymptotically nonexpansive mappings [14].

Theorem 3.6. Let (X, d) be a complete and uniformly convex metric space, let C ⊂ X
be nonempty, bounded, and closed convex. Suppose that T : C → C has the property
”TN is continuous for some positive integer N”, and T satisfies:

lim sup{sup
y∈k

[d(Tnx, Tny)− d(x, y)]} ≤ 0, for each x ∈ C. (3.10)

Then T has a fixed point in C.

Proof. For each y ∈ C and r > 0, let S(y, r) denote the ball centered at y with radius
r. Let x ∈ C be fixed, and let the set Rx consists of those numbers ρ for which there
exists an integer k such that

C ∩
( ∞⋂
n=k

S(Tnx, ρ)
)
6= φ.

If D is the diameter of C, then D ∈ Rx, so Rx 6= φ. Let ρ0 =g.l.b. Rx, and for
each ε > 0, define Kε =

⋃∞
k=1

(⋂∞
n=k S(Tnx, ρ0 + ε)

))
. Thus for each ε > 0, the sets

Kε ∩ C are nonempty and convex and so the property (R) of (X, d) implies that

K =
⋂
ε>0

(
Kε ∩ C

)
6= φ.

Now let z ∈ K, and let

τ(z) = lim sup
n→∞

d(z, Tnz).

Suppose ρ0 = 0, which implies that {T ix} is a Cauchy sequence. Hence T ix → z as
i→∞. Let η > 0. By (3.10), n > M

sup
y∈C

[d(Tnz, Tny)− d(z, y)] ≤ 1

3
η, where n > M .

As T ix→ z so there exists m > n such that d(Tmx, z) ≤ 1
3η and d(Tm−nx, z) ≤ 1

3η.
Thus if n ≥M , then we get

d(z, Tnz) ≤ d(z, Tmx) + d(Tmx, Tnz)

≤ d(z, Tmx) + d(Tnz, Tn(Tm−nx))− d(z, Tm−nx) + d(z, Tm−nx)

≤ 1

3
η + sup

y∈C
[d(Tnz, Tny)− d(z, y)] +

1

3
η

= η.

This proves that T iz → z as i→∞, that is, ρ(z) = 0. But ρ(z) = 0 implies TNnz → z
as n→∞ and the continuity of TN yields TNz = z. Thus

Tz = T (TNn)z = TNn+1z → z as n→∞, (3.11)

and Tz = z. Therefore, we may assume ρ0 > 0 and τ(z) = 0 (In fact, we may assume
this for any x, z ∈ C.)
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Now let ε > 0, ε ≤ τ(z). By the definition of ρ0, there exists an integer N∗ such
that for n ≥ N∗m we have

d(z, Tnx) ≤ ρ0 + ε.

By (3.10), there exists N∗∗ such that for n ≥ N∗∗, we have

sup
y∈C

[d(Tnz, Tny)− d(z, y)] ≤ ε.

Select j so that j ≥ N∗∗ and hence

d(z, T jz) ≥ τ(z)− ε.
Thus if n− j ≥ N∗, then we have

d(T jz, Tnx) = {d(T jz, T j(Tn−jx))− d(z, Tn−jx)}+ d(z, Tn−jx)

= ε+ (ρ0 + ε)

= ρ0 + 2ε.

For m = 1
2z ⊕

1
2T

jz, we have by uniform convexity of (X, d),

d(m,Tnx) ≤
(
1− δ

(
ρ0 + 2ε,

τ(z)− ε
ρ0 + 2ε

))
(ρ0 + 2ε), n ≥ N∗ + j.

By the minimality of ρ0, this implies

ρ0 ≤
(
1− δ

(
ρ0 + 2ε,

τ(z)− ε
ρ0 + 2ε

))
(ρ0 + 2ε);

letting ε→ 0,

ρ0 ≤
(
1− δ

(
ρ0,

τ(z)

ρ0

))
ρ0.

So
(
1− δ

(
ρ0,

τ(z)
ρ0

))
≥ 1 and hence δ

(
ρ0,

τ(z)
ρ0

)
= 0; this implies that τ(z) = 0. Hence

as shown before in (3.11), Tz = z. �

Corollary 3.7. Let (X, d) be a complete and uniformly convex metric space, and let
C ⊂ X be nonempty, bounded, closed and convex. Suppose T : C → C is asymptoti-
cally nonexpansive. Then T has a fixed point in C.

Theorem 3.6 shows that Fix(T ), set of fixed points of T is not empty. The next
theorem illustrates structure of the set Fix(T ).

Theorem 3.8. Under the assumptions of Theorem 3.6, Fix(T ) is closed and convex.

Proof. For the closeness of Fix(T ), let {xn} ⊂ Fix(T ) be such that xn → x. Then
x = lim

n→∞
xn = lim

n→∞
TNxn = TN lim

n→∞
xn = TNx. Hence as shown before in (3.11),

Tx = x.
To show convexity, it is sufficient to prove that z = 1

2x ⊕
1
2y ∈ Fix(T ) for all

x, y ∈ Fix(T ). We have

lim sup
i→∞

d(T iz, x) = lim sup
i→∞

d(T iz, T ix) ≤ d(z, x) =
1

2
d(x, y),

lim sup
i→∞

d(T iz, y) = lim sup
i→∞

d(T iz, T iy) ≤ d(z, y) =
1

2
d(x, y).
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Thus

lim sup
i→∞

d(T iz, z) ≤ 1

2

(
1− δ

(1

2
d(x, y), 2

))
d(x, y)

and hence
z = lim

i→∞
T iz = lim

i→∞
T i+Nz = TN lim

i→∞
T iz = TNz.

Once again, as in (3.11), Tz = z. �

Remark 3.9. (1) Theorems 3.4-3.5 extend ([4], Theorem 3.3 and Theorem 3.6)
on a nonlinear domain and which provides a positive answer to the Open
Problem posed by Berinde [4].

(2) Corollary 3.7 sets analogue of the fixed point property for asymptotically
nonexpansive mappings due to Kirk [23] and Khamsi [18] in CAT (0) spaces
and hyperconvex metric spaces, respectively.

(3) Theorem 3.6 is a natural generalization of fundamental fixed point theorem
for nonexpansive mappings by Takahashi [31] and for asymptotically nonex-
pansive mappings by Kohlenbach and Leustean [24].
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