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Abstract. We know that any linear operator associated with a positive square stochastic matrix
has a unique fixed point in the simplex. However, in general, the similar result for a quadratic

operator acting on the simplex does not hold true. Namely, there is a quadratic operator associated

with a positive cubic stochastic matrix which has more than one fixed point in the simplex. The
first attempt to give an example for such kind of quadratic operators was done by A.A. Krapivin

and Yu.I. Lyubich. However, we showed that their examples are wrong. Therefore, in this paper,

we decided to give a correct example for a quadratic operator with positive coefficients having three
fixed points in the simplex. Moreover, we also describe the number of fixed points of the quadratic

operator associated with a positive cubic stochastic matrix.
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1. Introduction

In many fields, an equilibrium is the fundamental concept that can be described in
term of a fixed point of some mapping. In general, a problem of showing an existence
or/and uniqueness of fixed points of a mapping is a tedious task. However, there
are some results which speak about an existence and uniqueness of fixed points of a
continuous mapping in suitable spaces. For instance, the Perron–Frobenius theorem
states that a linear operator associated with a positive square stochastic matrix has
a unique fixed point in the simplex. However, the similar result in the nonlinear case
does not hold true. This is the mainstream of the paper.
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By being the simplest nonlinear mapping, a quadratic operator has an incredible
application in population genetics [1, 3, 4, 7, 10], game theory [2], control systems
[6, 17, 18]. In population genetics, the quadratic operator describes a distribution
of the next generation of the system if the current distribution is given [10, 20].
In this sense, the quadratic operator is a primary source for investigations of evolution
of population genetics. The detailed exposure of the theory of quadratic operators
is presented in [5, 11, 12, 13, 14, 15, 16]. Meanwhile, a fixed point of the quadratic
operator is an equilibrium for the system. In contrast to the linear case, the fixed point
set of the quadratic operator is sophisticated. For instance, regardless of positivity of
an associated cubic stochastic matrix, the quadratic operator may have more than one
fixed point. The first attempt to give an example for such kind of quadratic operators
was done by A. A. Krapivin in [8] and by Yu. I. Lyubich in [10]. However, it turns out
that their examples are wrong. In fact, we shall show that Krapivin’s example as well
as Lyubich’s example has a unique fixed point in the simplex. At the same time, we
shall also provide an example for the quadratic operator associated with the positive
cubic stochastic matrix which has three fixed points in the simplex. Moreover, we
also describe the number of fixed points of the quadratic operator associated with a
positive cubic stochastic matrix.

2. Preliminary

Let ‖x‖1 =
m∑
k=1

|xk| be a norm of a vector x = (x1, · · · , xm) ∈ Rm. We say that

x ≥ 0 (resp. x > 0) if xk ≥ 0 (resp. xk > 0) for all k = 1,m. Let

Sm−1 = {x ∈ Rm : ‖x‖1 = 1, x ≥ 0}

be the (m − 1)−dimensional standard simplex. An element of the simplex Sm−1 is
called a stochastic vector.

A square matrix P = (pij)
m
i,j=1 is called stochastic if

m∑
j=1

pij = 1, pij ≥ 0, ∀i, j = 1,m.

Every square stochastic matrix is associated with a linear operator L : Sm−1 → Sm−1
as follows L(x) = xP, i.e.,

(L(x))j =

m∑
i=1

xipij , ∀ j = 1,m. (2.1)

A square stochastic matrix P = (pij)
m
i,j=1 is said to be positive (written P > 0) if

pij > 0, ∀ i, j = 1,m. A linear operator associated with a positive square stochastic
matrix is called positive. Let Fix(L) = {x ∈ Sm−1 : L(x) = x} be a fixed point set.
If L : Sm−1 → Sm−1 is the positive linear operator then due to the Perron-Frobenius
theorem, one has that |Fix(L)| = 1.
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A cubic matrix P = (pijk)mi,j,k=1 is called stochastic if

m∑
k=1

pijk = 1, pijk ≥ 0, ∀i, j, k = 1,m.

Every cubic stochastic matrix is associated with a quadratic operator Q : Sm−1 →
Sm−1 as follows

(Q(x))k =

m∑
i,j=1

xixjpijk, ∀ k = 1,m. (2.2)

A cubic stochastic matrix P = (pijk)
m
i,j,k=1 is said to be positive (written P > 0)

if pijk > 0, ∀i, j, k = 1,m. A quadratic operator associated with a positive cubic
stochastic matrix is called positive. Let Fix(Q) = {x ∈ Sm−1 : Q(x) = x} be a
fixed point set. Due to Brouwer’s fixed point theorem, Fix(Q) 6= ∅. In general,
if P > 0 then it is not necessary to be true that |Fix(Q)| = 1. The first attempt
to provide an example for the positive quadratic operator having more than one
fixed point was done by A.A.Krapivin [8]. Later, Y.I. Lyubich also provided an
example for the positive quadratic operator having three fixed points in his book [10]
by slightly modifying Krapivin’s example. It turns out that Krapivin’s example as well
as Lyubich’s example has a unique fixed point. In the next section, we shall discuss
those examples. Moreover, we shall also provide an example for positive quadratic
operators having three fixed points in the simplex.

3. Krapivin’s example

A. A. Krapivin has considered the following quadratic operator Vε : S2 → S2,
Vε(x) = x′ = (x′1, x

′
2, x
′
3) in his paper [8]

Vε :


x′1 = (1− 4ε)x21 + 2εx22 + 10εx23 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x′2 = 2εx21 + (1− 3ε)x22 + εx23 + ( 1
2 + 2ε)x1x2 + 2εx1x3 + (1 + 8ε)x2x3

x′3 = 2εx21 + εx22 + (1− 11ε)x23 + ( 3
2 − 6ε)x1x2 + (1− 6ε)x1x3 + (1− 16ε)x2x3

A.A. Krapivin claimed [8] that the quadratic operator Vε : S2 → S2 has two fixed

points on the line segment L =

{(
t

2
,

1− t
2

,
1

2

)}
0≤t≤1

where 0 < ε < 1
100 . However,

this claim is wrong.
Proposition 3.1. The quadratic operator Vε does not have any fixed point on L.
Proof. We search for a fixed point x0 = ( t2 ,

1−t
2 , 12 ) on the line segment L. We should

have that Vε(x0) = x0. After some algebraic calculations, we obtain the following
system of equations 

(1− 6ε)t2 − (1 + 4ε)t+ 20ε = 0

(1− 6ε)t2 − (1− 4ε)t+ 12ε = 0

(1− 6ε)t2 −
(
1 + 4

3ε
)
t+ 52

3 ε = 0

(3.1)

If we take a difference of the first two equations of the system (3.1) we then get
that 8εt = 8ε or t = 1. However, if we substitute t = 1 into the third equation
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in the system (3.1) we then have that 10ε = 0 which contradicts to the condition
0 < ε < 1

100 . Therefore, the system (3.1) does not have any solution. This completes
the proof.

Now, we are aiming to prove that |Fix(Vε)| = 1.
It is clear that Vε(S2) ⊂ intS2 = {x ∈ S2 : x1x2x3 > 0}. Hence, Fix(Vε) ⊂ intS2.
In order to find all fixed points, we have to solve the system of equations
x1 = (1− 4ε)x21 + 2εx22 + 10εx23 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x2 = 2εx21 + (1− 3ε)x22 + εx23 + ( 1
2 + 2ε)x1x2 + 2εx1x3 + (1 + 8ε)x2x3

x3 = 2εx21 + εx22 + (1− 11ε)x23 + ( 3
2 − 6ε)x1x2 + (1− 6ε)x1x3 + (1− 16ε)x2x3

Proposition 3.2. One has ξ1 6= η1, ξ2 6= η2, ξ3 6= η3 for ξ, η ∈ Fix(Vε), ξ 6= η.
Proof. Let ξ, η be two distinct solutions of the system given above (if any). Since
x3 = 1− x1 − x2, we can rewrite the system in terms of x1 and x2 as follows{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 − 10εx22 − ( 1
2 + 6ε)x1x2 + 6εx2 + ε = 0

(3.2)

Case ξ1 6= η1. Our aim is to show that ξ1 6= η1. We suppose the contrary that is
ξ1 = η1. Since ξ 6= η, we must have that ξ2 6= η2. This means that for x1 = ξ1 = η1,
the following two quadratic equations (with respect to x2)

4εx22 + ((12ε− 1)ξ1 − 12ε)x2 + (2ξ21 − 16ξ1 + 10)ε = 0,

− 10εx22 +

[
−
(

1

2
+ 6ε

)
ξ1 + 6ε

]
x2 + (ξ21 + 1)ε = 0

must have two distinct common roots ξ2 and η2. Consequently, we should have that

4ε

−10ε
=

(12ε− 1)ξ1 − 12ε

−
(

1

2
+ 6ε

)
ξ1 + 6ε

=
2ξ21 − 16ξ1 + 10

ξ21 + 1
.

It follows from the first equality that ξ1 = 8ε
8ε−1 . Since 0 < ε < 1

100 , we get that ξ1 < 0
which is a contradiction.
Case ξ2 6= η2. Our aim is to show that ξ2 6= η2. We again suppose the contrary that
is ξ2 = η2. Since ξ 6= η, we must have that ξ1 6= η1. It follows from (3.2) that for
x2 = ξ2 = η2, the following two quadratic equations (with respect to x1)

2εx21 + ((12ε− 1)ξ2 − 16ε)x1 + (4ξ22 − 12ξ2 + 10)ε = 0,

εx21 −
(

1

2
+ 6ε

)
ξ2x1 + (−10ξ22 + 6ξ2 + 1)ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

2ε

ε
=

(12ε− 1)ξ2 − 16ε

−
(

1

2
+ 6ε

)
ξ2

=
4ξ22 − 12ξ2 + 10

−10ξ22 + 6ξ2 + 1
.
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It follows from the first equality that ξ2 = 2
3 . By substituting ξ2 = 2

3 into the last

fraction, we get that
4ξ22−12ξ2+10

−10ξ22+6ξ2+1
= 34

5 6= 2 = 2ε
ε . This is again contradiction.

Case ξ3 6= η3. Our aim is to show that ξ3 6= η3. We again suppose the contrary that
is ξ3 = η3. Since ξ 6= η, we must have that ξ1 6= η1. In this case, we can rewrite the
system of equations in terms of x1 and x3 as follows{

(1− 6ε)x21 + 4εx23 + (1− 4ε)x1x3 − x1 + 4εx3 + 2ε = 0

(9ε− 3
2 )x21 + 6εx23 + (18ε− 3

2 )x1x3 + ( 3
2 − 8ε)x1 − 18εx3 + ε = 0

This yields that for x3 = ξ3 = η3, the following two quadratic equations (with respect
to x1)

(1− 6ε)x21 + ((1− 4ε)ξ3 − 1)x1 + (4ξ23 + 4ξ3 + 2)ε = 0,

(9ε− 3

2
)x21 +

[(
18ε− 3

2

)
ξ3 +

(
3

2
− 8ε

)]
x1 + (6ξ23 − 18ξ3 + 1)ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

1− 6ε

9ε− 3
2

=
(1− 4ε)ξ3 − 1

(18ε− 3
2 )ξ3 + 3

2 − 8ε
=

4ξ23 + 4ξ3 + 2

6ξ23 − 18ξ3 + 1
.

It follows from the first equality that ξ3 = 2
3 . By substituting ξ3 = 2

3 into the last

fraction, we get that
4ξ23+4ξ3+2

6ξ23−18ξ3+1
= − 58

75 6= −
2
3 = 1−6ε

9ε− 3
2

. This is again contradiction.

This completes the proof.

Theorem 3.3. Let Vε : S2 → S2 be the quadratic operator given above. Then for

sufficiently small ε, one has that Fix(Vε) =
{(

3a20−3a0+1
2−3a0 , a0,

1−2a0
2−3a0

)}
where a0 is

the unique positive root in
(
0, 12
)

of the following quartic equation

(9− 54ε)a4 + (132ε− 15)a3 + (9− 68ε)a2 − (12ε+ 2)a+ 10ε = 0.

Proof. Since x3 = 1−x1−x2, it is enough to find all solutions (x1, x2) of the following
system of equations{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 − 10εx22 − ( 1
2 + 6ε)x1x2 + 6εx2 + ε = 0

(3.3)

which satisfy the conditions 0 < x1, x2 < 1 and 0 < x1 + x2 < 1.
Let x1 = x be a variable and x2 = a be a parameter. Then the system (3.3) takes

the following form

x2 +
(12ε− 1)a− 16ε

2ε
x+ (2a2 − 6a+ 5) = 0, (3.4)

x2 +
a(−1− 12ε)

2ε
x+ (−10a2 + 6a+ 1) = 0. (3.5)

Due to Proposition 3, these two quadratic equations cannot have two common roots.
Hence, the system (3.3) has a solution (x1, x2) with 0 < x1, x2 < 1, 0 < x1 + x2 < 1
if and only if two quadratic equations (3.4) and (3.5) must have a unique common
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root in (0, 1) for a ∈ (0, 1). We know (see [19]) that two quadratic equations (3.4)
and (3.5) have a unique common root if and only if their resultant is equal to zero,
i.e.,

(9− 54ε)a4 + (132ε− 15)a3 + (9− 68ε)a2 + (−12ε− 2)a+ 10ε = 0. (3.6)

In this case, x = 3a2−3a+1
2−3a is the unique common root of two quadratic equations

(3.4) and (3.5). In order to have conditions 0 < x1, x2 < 1, 0 < x1 + x2 < 1, we have
to solve the following system of inequalities

0 < 3a2−3a+1
2−3a < 1

0 < a < 1

0 < a+ 3a2−3a+1
2−3a < 1.

(3.7)

The solution of the system (3.7) is a ∈ (0, 12 ). Therefore, the total number of solutions
(x1, x2), 0 < x1, x2 < 1, 0 < x1 + x2 < 1 of the system (3.3) is the same as the total
number of roots of the quartic equation (3.6) in the interval (0, 12 ). Moreover, there

is one-to-one correspondence between a root a0 ∈ (0, 12 ) of the quartic equation (3.6)

and a fixed point
(

3a20−3a0+1
2−3a0 , a0,

1−2a0
2−3a0

)
of the quadratic operator Vε : S2 → S2 .

Now, we want to show that the quartic equation (3.6) has a unique root in the
interval (0, 12 ) for sufficiently small ε. To do so, we have to apply the Sturm theorem

for the quartic equation (3.6) in (0, 12 ) (see [19]).

Let p(a) = (9−54ε)a4+(132ε−15)a3+(9−68ε)a2+(−12ε−2)a+10ε be a quartic
polynomial. Let {p0(a), p1(a), p2(a), p3(a), p4(a)} be a Sturm sequence of the quartic
polynomial p(a). Let σ(ξ) be the number of sign changes (ignoring zero terms) in the
sequence p0(ξ), p1(ξ), p2(ξ), p3(ξ), p4(ξ). Then due to the Sturm theorem, the number
of roots of the quartic polynomial p(x) in the interval (0, 12 ) is equal to σ(0)− σ( 1

2 ).
Simple calculations show that for sufficiently small ε, one has that

p0(0) = 10ε > 0, p0
(
1
2

)
= − 1

16 + 1
8ε < 0,

p1(0) = −(12ε+ 2) < 0, p1
(
1
2

)
= 1

4 − 8ε > 0,

p2(0) ' − 5
24(6ε−1) > 0, p2

(
1
2

)
' − 13

6ε−1 > 0,

p3(0) ' 9
(3−344ε)2 > 0, p3

(
1
2

)
' 9

(3−344ε)2 > 0,

p4(0) ' 3
6ε−1 < 0, p4

(
1
2

)
' 3

6ε−1 < 0.

Therefore, we get that σ(0) − σ( 1
2 ) = 3 − 2 = 1. Consequently, this means that the

quartic equation (3.6) has a unique root a0 in the interval (0, 12 ), or equivalently, the

quadratic operator Vε : S2 → S2 has a unique fixed point
(

3a20−3a0+1
2−3a0 , a0,

1−2a0
2−3a0

)
in

the simplex S2. This completes the proof.
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4. Lyubich’s example

Yu. I. Lyubich has considered (see [10], page 296) the following quadratic operator
Wε : S2 → S2, Wε(x) = x′ = (x′1, x

′
2, x
′
3)

Wε :


x′1 = (1− 4ε)x2

1 + 2εx2
2 + 10εx2

3 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x′2 = 2εx2
1 + (1− 3ε)x2

2 + εx2
3 + ( 1

2
+ 2ε)x1x2 + 2εx1x3 + (1− 12ε)x2x3

x′3 = 2εx2
1 + εx2

2 + (1− 11ε)x2
3 + ( 3

2
− 6ε)x1x2 + (1− 6ε)x1x3 + (1 + 4ε)x2x3

where 0 < ε < 1
12 . In commentaries and references section, Yu.I. Lyubich wrote

that the quadratic operator Wε : S2 → S2 was constructed by A.A. Krapivin in
[8]. However, Krapivin’s example Vε : S2 → S2 considered in the previous section is
slightly different from the quadratic operator Wε : S2 → S2 given in Lyubich’s book

[10]. Yu. I. Lyubich claimed that if 0 < ε < 9−5
√
2

124 then the quadratic operator

Wε : S2 → S2 has three fixed points in the simplex S2. However, this is wrong.
Namely, the quadratic operator Wε has a unique fixed point for any 0 < ε < 1

12 . For
the sake of argument, we shall present its proof by repeating the same method used
in Krapivin’s example.

It is clear that Wε(S2) ⊂ intS2. Hence, Fix(Wε) ⊂ intS2.
In order to find all fixed points, we have to solve the system of equations
x1 = (1− 4ε)x21 + 2εx22 + 10εx23 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x2 = 2εx21 + (1− 3ε)x22 + εx23 + ( 1
2 + 2ε)x1x2 + 2εx1x3 + (1− 12ε)x2x3

x3 = 2εx21 + εx22 + (1− 11ε)x23 + ( 3
2 − 6ε)x1x2 + (1− 6ε)x1x3 + (1 + 4ε)x2x3

Proposition 4.1. One has ξ1 6= η1, ξ2 6= η2, ξ3 6= η3 for ξ, η ∈ Fix(Wε), ξ 6= η.
Proof. Let ξ, η be two distinct solutions of the system given above (if any). Since
x3 = 1− x1 − x2, we can rewrite the system of equations in terms of x1 and x2 as{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 + 10εx22 + (14ε− 1
2 )x1x2 − 14εx2 + ε = 0

(4.1)

Case ξ1 6= η1. Our aim is to show that ξ1 6= η1. We suppose the contrary that is
ξ1 = η1. Since ξ 6= η, we must have that ξ2 6= η2. This means that for x1 = ξ1 = η1,
the following two quadratic equations (with respect to x2)

4εx22 + ((12ε− 1)ξ1 − 12ε)x2 + (2ξ21 − 16ξ1 + 10)ε = 0,

10εx22 + ((14ε− 1

2
)ξ1 − 14ε)x2 + (ξ21 + 1)ε = 0

must have two distinct common roots ξ2 and η2. Consequently, we should have that

4ε

10ε
=

(12ε− 1)ξ1 − 12ε

(14ε− 1
2 )ξ1 − 14ε

=
2ξ21 − 16ξ1 + 10

ξ21 + 1
.

It follows from the first equality that ξ1 = 8ε
8ε−1 . Since 0 < ε < 1

12 , we get that ξ1 < 0
which is a contradiction.
Case ξ2 6= η2. Our aim is to show that ξ2 6= η2. We again suppose the contrary that
is ξ2 = η2. Since ξ 6= η, we must have that ξ1 6= η1. It follows from (4.1) that for



390 MANSOOR SABUROV AND NUR ATIKAH YUSOF

x2 = ξ2 = η2, the following two quadratic equations (with respect to x1)

2εx21 + ((12ε− 1)ξ2 − 16ε)x1 + (4ξ22 − 12ξ2 + 10)ε = 0,

εx21 + (14ε− 1

2
)ξ2x1 + (10ξ22 − 14ξ2 + 1)ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

2ε

ε
=

(12ε− 1)ξ2 − 16ε

(14ε− 1
2 )ξ2

=
4ξ22 − 12ξ2 + 10

10ξ22 − 14ξ2 + 1
.

It follows from the first equality that ξ2 = −1 which is a contradiction.
Case ξ3 6= η3. Our aim is to show that ξ3 6= η3. We again suppose the contrary that
is ξ3 = η3. Since ξ 6= η, we must have that ξ1 6= η1. In this case, we can rewrite the
system of equations in terms of x1 and x3 as follows{

(1− 6ε)x21 + 4εx23 + (1− 4ε)x1x3 − x1 + 4εx3 + 2ε = 0

(9ε− 3
2 )x21 − 14εx23 − ( 3

2 + 2ε)x1x3 + ( 3
2 − 8ε)x1 + 2εx3 + ε = 0

This yields that for x3 = ξ3 = η3, the following two quadratic equations (with respect
to x1)

(1− 6ε)x21 + ((1− 4ε)ξ3 − 1)x1 + (4ξ23 + 4ξ3 + 2)ε = 0,

(9ε− 3

2
)x21 +

[
−
(

3

2
+ 2ε

)
ξ3 +

(
3

2
− 8ε

)]
x1 + [−14ξ23 + 2ξ3 + 1]ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

1− 6ε

9ε− 3
2

=
(1− 4ε)ξ3 − 1

−( 3
2 + 2ε)ξ3 + 3

2 − 8ε
=

4ξ23 + 4ξ3 + 2

−14ξ23 + 2ξ3 + 1
.

It follows from the first equality that ξ3 = −1 which is a contradiction. This completes
the proof.

Theorem 4.2. Let Wε : S2 → S2 be the quadratic operator given above. Then for

any 0 < ε < 1
12 , one has that Fix(Wε) =

{(
1+2a0(1−a0)

2(1+a0)
, a0,

1−2a0
2(1+a0)

)}
where a0 is

the unique positive root in (0, 12 ) of the following quartic equation

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0.

Proof. Since x3 = 1−x1−x2, it is enough to find all solutions (x1, x2) of the following
system of equations{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 + 10εx22 + (14ε− 1
2 )x1x2 − 14εx2 + ε = 0

(4.2)

which satisfy the conditions 0 < x1, x2 < 1 and 0 < x1 + x2 < 1.
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Let x1 = x be a variable and x2 = a be a parameter. Then the system (4.2) takes
the following form

x2 +
(12ε− 1)a− 16ε

2ε
x+ (2a2 − 6a+ 5) = 0, (4.3)

x2 +
a(14ε− 1

2 )

ε
x+ (10a2 − 14a+ 1) = 0. (4.4)

Due to Proposition 4, these two quadratic equations cannot have two common roots.
Hence, the system (4.2) has a solution (x1, x2) with 0 < x1, x2 < 1, 0 < x1 + x2 < 1
if and only if two quadratic equations (4.3) and (4.4) must have a unique common
root in (0, 1) for a ∈ (0, 1). We know (see [19]) that two quadratic equations (4.3)
and (4.4) have a unique common root if and only if their resultant is equal to zero,
i.e.,

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0. (4.5)

In this case, x = 1+2a(1−a)
2(1+a) is the unique common root of two quadratic equations

(4.3) and (4.4). In order to have conditions 0 < x1, x2 < 1, 0 < x1 + x2 < 1, we have
to solve the following system of inequalities

0 < 1+2a(1−a)
2(1+a) < 1

0 < a < 1

0 < a+ 1+2a(1−a)
2(1+a) < 1.

(4.6)

The solution of the system (4.6) is a ∈ (0, 12 ). Therefore, the total number of solutions
(x1, x2), 0 < x1, x2 < 1, 0 < x1 + x2 < 1 of the system (4.2) is the same as the total
number of roots of the quartic equation (4.5) in the interval (0, 12 ). Moreover, there

is one-to-one correspondence between a root a0 ∈ (0, 12 ) of the quartic equation (4.5)

and a fixed point
(

1+2a0(1−a0)
2(1+a0)

, a0,
1−2a0
2(1+a0)

)
of the quadratic operator Wε : S2 → S2.

We are aiming to study the number of positive roots of the quartic equation (4.5)
in the interval (0, 12 ). Let f(a) = (2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε.

Since 0 < ε < 1
12 , it is easy to check that

f(0) = 5ε > 0, f

(
1

2

)
=

18ε− 9

8
< 0, f(2) = 18− 27ε > 0.

This means that the quartic equation (4.5) has at least two positive roots. On
the other hand, due to Descartes’s theorem, the number of positive roots cannot
be more than the number of sign changes between consecutive nonzero coefficients
2− 12ε, 16ε, 16ε− 3, −(16ε+ 1), 5ε of the quartic equation (4.5) which is two.

Therefore, the quartic equation (4.5) has exactly two positive roots in which one of
them belongs to (0, 12 ) and another one belongs to ( 1

2 , 2). Hence, for any 0 < ε < 1
12 ,

there exists a unique positive root a0 of the quartic equation (4.5) in the interval
(0, 12 ). Consequently, for any 0 < ε < 1

12 , the quadratic operator Wε has a unique

fixed point
(

1+2a0(1−a0)
2(1+a0)

, a0,
1−2a0
2(1+a0)

)
. This completes the proof
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5. Positive quadratic operator having three fixed points

In this section, we provide an example for a quadratic operator with positive coef-
ficients having three fixed points in the simplex S2.

Let A(0.1, 0.2, 0.7), B(0.4, 0.3, 0.3) and C(0.59, 0.31, 0.1) be points in the simplex.
We define a positive quadratic operator Q0 : S2 → S2, Q0(x) = x′ = (x′1, x

′
2, x
′
3) as

follows

Q0 :


x′1 = 232873

319300x
2
1 + 4717

10300x
2
2 + 207

63860x
2
3 + 7

5x1x2 + 3
5x1x3 + 1

50x2x3

x′2 = 27
100x

2
1 + 1

2x
2
2 + 3

20x
2
3 + 470171

814300x1x2 + 378421
407150x1x3 + 158157

814300x2x3

x′3 = 54
79825x

2
1 + 433

10300x
2
2 + 27037

31930x
2
3 + 18409

814300x1x2 + 191589
407150x1x3 + 1454157

814300 x2x3

The straightforward calculation shows that A,B,C are fixed points of the quadratic
operator Q0 : S2 → S2.

We can define another positive quadratic operator Q1 : S2 → S2, Q1(x) = x′ =
(x′1, x

′
2, x
′
3) as follows

Q1 :


x′1 = 17322871

22351000
x2
1 +

990257
2163000

x2
2 +

1559
13410600

x2
3 +

13
10
x1x2 +

16
25
x1x3 +

11
500

x2x3

x′2 = 224
1000

x2
1 +

488
1000

x2
2 +

125
1000

x2
3 +

703327
1017875

x1x2 +
19461451
24429000

x1x3 +
8271787
24429000

x2x3

x′3 = 4301
4470200

x2
1 +

117199
2163000

x2
2 +

2933179
3352650

x2
3 +

18371
2035750

x1x2 +
13761989
24429000

x1x3 +
1601951
977160

x2x3

The straightforward calculation shows that A,B,C are also fixed points of the qua-
dratic operator Q1 : S2 → S2.

Now, we can define a family of positive quadratic operators Qε : S2 → S2 as
Qε(x) = (1− ε)Q0(x) + εQ1(x) for any x ∈ S2 and 0 ≤ ε ≤ 1. It is clear that A,B,C
are also fixed points of the family of positive quadratic operators Qε : S2 → S2.

In the paper [9], it was conjectured that if the set of stationary vectors of a second-
order Markov chain contains k−interior points of the (k−1)−dimensional face of the
simplex then every vector in the (k − 1)−dimensional face is a stationary vector.

However, this conjecture is wrong. The family of quadratic stochastic operators
Qε : S2 → S2 defined above are counterexamples to this conjecture.

6. The structure of the fixed point set of quadratic operator

Let Q : S2 → S2, Q(x) = x′ = (x′1, x
′
2, x
′
3) be a positive quadratic operator

Q :


x′1 = p11x

2
1 + p22x

2
2 + p33x

2
3 + 2p12x1x2 + 2p13x1x3 + 2p23x2x3

x′2 = q11x
2
1 + q22x

2
2 + q33x

2
3 + 2q12x1x2 + 2q13x1x3 + 2q23x2x3

x′3 = r11x
2
1 + r22x

2
2 + r33x

2
3 + 2r12x1x2 + 2r13x1x3 + 2r23x2x3

where pij , qij , rij > 0, pij + qij + rij = 1, pij = pji, qij = qji, rij = rji, ∀i, j = 1, 2, 3.
The possible number of fixed points of the positive quadratic operator acting on

2D simplex was described in [8, 10].
Proposition 5.1. ([8, 10]) One has that |Fix(Q)| = 1 or 3.

We shall describe the number of fixed points of positive quadratic operator in terms
of its coefficients.
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For that purpose, we introduce the following constants.

α11 = p11 + p33 − 2p13, α22 = p22 + p33 − 2p23, α12 = p33 + p12 − p13 − p23,
α1 = p13 − p33, α2 = p23 − p33, α0 = p33,

β11 = q11 + q33 − 2q13, β22 = q22 + q33 − 2q23, β12 = q33 + q12 − q13 − q23,
β1 = q13 − q33, β2 = q23 − q33, β0 = q33,

γ1 = (2β2 − 1)α11 − 2α2β11, γ2 = α11β22 − α22β11, γ0 = β0α11 − α0β11,

δ1 = α12β11 − β12α11, δ0 = (2α1 − 1)β11 − 2β1α11,

∆1 = γ2δ
2
0 − 2γ1δ0δ1 + 4γ0δ

2
1 ,

µ1 = 2β1α22 − (2α1 − 1)β22, µ2 = α22β11 − α11β22, µ0 = α22β0 − α0β22,

ν1 = α12β22 − α22β12, ν0 = 2α2β22 − (2β2 − 1)α22,

∆2 = µ2ν
2
0 − 2µ1ν0ν1 + 4µ0ν

2
1 ,

λ4 = α11γ
2
2 + 4α12γ2δ1 + 4α22δ

2
1 ,

λ3 = 2α11γ2γ1 + 2α12γ2δ0 + 4α12γ1δ1 + 4α1γ2δ1 − 2γ2δ1 + 4α22δ1δ0 + 8α2δ
2
1 ,

λ2 = 2α11γ2γ0 + α11γ
2
1 + 2α12γ1δ0 + 4α12γ0δ1 + 2α1γ2δ0 + 4α1γ1δ1 − γ2δ0 − 2γ1δ1

+α22δ
2
0 + 8α2δ1δ0 + 4α0δ

2
1 ,

λ1 = 2α11γ1γ0 + 2α12γ0δ0 + 2α1γ1δ0 + 4α1γ0δ1 − γ1δ0 − 2γ0δ1 + 2α2δ
2
0 + 4α0δ1δ0,

λ0 = α11γ
2
0 + (2α1 − 1)γ0δ0 + α0δ

2
0 .

Let us consider the following system of inequalities in the interval t ∈ (0, 1)
0 <

γ2t
2 + γ1t+ γ0
2δ1t+ δ0

< 1

0 <
(γ2 + 2δ1)t2 + (γ1 + δ0)t+ γ0

2δ1t+ δ0
< 1

(6.1)

It is clear that the set Ω of solutions of the system (6.1) is a union of finite number

of disjoint open intervals, i.e., Ω =
n⋃
i=1

(
ω
(1)
i , ω

(2)
i

)
.

Let p(x) = λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0 be a quartic polynomial. Let us

construct the Sturm sequence {p0(x), p1(x), p2(x), p3(x), p4(x)} of the polynomial p(x)
(see [19]). Let σ(ξ) be the number of sign changes (ignoring zero terms) in the
sequence p0(ξ), p1(ξ), p2(ξ), p3(ξ), p4(ξ). Then due to the Sturm theorem [19], the

number of roots of the quartic polynomial p(x) in the interval
(
ω
(1)
i , ω

(2)
i

)
is equal to

σ
(
ω
(1)
i

)
−σ
(
ω
(2)
i

)
. Consequently, the total number of roots of the quartic polynomial

p(x) in Ω =
n⋃
i=1

(
ω
(1)
i , ω

(2)
i

)
is

#(p; Ω) =

n∑
i=1

(
σ
(
ω
(1)
i

)
− σ

(
ω
(2)
i

))
.

Theorem 5.2. Let p(x) = λ4x
4 +λ3x

3 +λ2x
2 +λ1x+λ0 be a quartic polynomial and

α11β11α22β22∆1∆2 6= 0. Let Ω be a solution set of the system (6.1). Then one has
that |Fix(Q)| = #(p; Ω). Moreover, (A0, a0, 1−B0) is the fixed point of the quadratic
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operator Q : S2 → S2 corresponding to each root a0 ∈ Ω of the quartic equation
p(x) = 0 where

A0 =
γ2a

2
0 + γ1a0 + γ0
2δ1a0 + δ0

, B0 =
(γ2 + 2δ1)a20 + (γ1 + δ0)a0 + γ0

2δ1a0 + δ0
.

Proof. In order to find all fixed points of the positive quadratic operator Q : S2 → S2,
we have to solve the following system of equations

x1 = p11x
2
1 + p22x

2
2 + p33x

2
3 + 2p12x1x2 + 2p13x1x3 + 2p23x2x3

x2 = q11x
2
1 + q22x

2
2 + q33x

2
3 + 2q12x1x2 + 2q13x1x3 + 2q23x2x3

x3 = r11x
2
1 + r22x

2
2 + r33x

2
3 + 2r12x1x2 + 2r13x1x3 + 2r23x2x3

(6.2)

Since x3 = 1 − x1 − x2, it is enough to find all solutions (x1, x2) of the first and
second equations of the system (6.2) which satisfy the conditions x1, x2 > 0 and
0 < x1 + x2 < 1. By plugging x3 = 1− x1 − x2 into the first and second equations of
the system (6.2), we may get the following system of equations{

α11x
2
1 + α22x

2
2 + 2α12x1x2 + (2α1 − 1)x1 + 2α2x2 + α0 = 0

β11x
2
1 + β22x

2
2 + 2β12x1x2 + 2β1x1 + (2β2 − 1)x2 + β0 = 0

Let x1 = x be a variable and x2 = a be a parameter. Since α11β11 6= 0, the last
system of equations takes the following form

x2 +
2α12a+ 2α1 − 1

α11
x+

α22a
2 + 2α2a+ α0

α11
= 0,

x2 +
2β12a+ 2β1

β11
x+

β22a
2 + (2β2 − 1)a+ β0

β11
= 0.

Let

A1 =
2α12a+ 2α1 − 1

α11
, B1 =

α22a
2 + 2α2a+ α0

α11
,

A2 =
2β12a+ 2β1

β11
, B2 =

β22a
2 + (2β2 − 1)a+ β0

β11
.

We then have the following two quadratic equations

x2 +A1x+B1 = 0, x2 +A2x+B2 = 0.

Since ∆1 6= 0, we have that A1 6= A2 and B1 6= B2. This means that for any
x,y ∈ Fix(Q) one has that x2 6= y2. Similarly, since α22β22∆2 6= 0, one can show
that x1 6= y1 for any x,y ∈ Fix(Q).

Therefore, the system of equations (6.2) has a solution (x1, x2) with 0 < x1, x2 < 1,
0 < x1 + x2 < 1 if and only if the last two quadratic equations must have a unique
common root in (0, 1) for a ∈ (0, 1). We know [19] that the last two quadratic
equations have a unique common root if and only if their resultant is equal to zero,
i.e., (B2−B1)2 +A1(B2−B1)(A1−A2) +B1(A1−A2)2 = 0. In this case, x = B2−B1

A1−A2

is the unique common root. It is clear that

B2 −B1 =
1

α11β11
(γ2a

2 + γ1a+ γ0), A1 −A2 =
1

α11β11
(2δ1a+ δ0).
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After simple algebra, we get the following quartic equation

λ4a
4 + λ3a

3 + λ2a
2 + λ1a+ λ0 = 0. (6.3)

and x = B2−B1

A1−A2
= γ2a

2+γ1a+γ0
2δ1a+δ0

.
In order to have conditions 0 < x1, x2 < 1, 0 < x1 + x2 < 1, we have to solve the

following system of inequalities
0 <

γ2a
2 + γ1a+ γ0
2δ1a+ δ0

< 1

0 < a < 1

0 <
γ2a

2 + γ1a+ γ0
2δ1a+ δ0

+ a =
(γ2 + 2δ1)a2 + (γ1 + δ0)a+ γ0

2δ1a+ δ0
< 1

Let Ω be a set of solutions of the system given above. Hence, the number of solutions
(x1, x2), 0 < x1, x2 < 1, 0 < x1 + x2 < 1 of the system (6.2) is the same as the
number of roots of the quartic equation (6.3) over the set Ω, i.e., |Fix(Q)| = #(p; Ω).
Moreover, (A0, a0, 1−B0) is the fixed point of the quadratic operator corresponding

to each roots a0 ∈ Ω of the quartic equation (6.3) where A0 =
γ2a

2
0+γ1a0+γ0
2δ1a0+δ0

and

B0 = A0 + a0 =
(γ2+2δ1)a

2
0+(γ1+δ0)a0+γ0

2δ1a0+δ0
. This completes the proof.
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