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Abstract. We investigate the Hyers-Ulam stability of the Laplace operator ∆ and of a multiple of

it, acting on suitable domains. Moreover, we obtain an explicit representation of the Hyers-Ulam

constant.
Key Words and Phrases: Hyers-Ulam stability, Laplace operator, Digamma function.

2010 Mathematics Subject Classification: 39B82, 35J15, 47S07.

1. Introduction

Let A, B be normed spaces and L : A → B a linear operator. The following
definition can be found in [11]; see also the references therein.
Definition 1.1. We say that L is Hyers-Ulam stable with constant K > 0 if for
each ε > 0 and each f ∈ A with ‖Lf‖ ≤ ε there exists g ∈ A such that Lg = 0 and
‖f − g‖ ≤ Kε.

Obviously, L is HU-stable with constant K if and only if for each f ∈ A with
‖Lf‖ ≤ 1 there exists g in the null space N(L) of L such that ‖f − g‖ ≤ K.

Hyers-Ulam stability is one of the main topics in functional equations theory. A
functional equation is called HU-stable if for every approximate solution of the equa-
tion there exists an exact solution near it. In the last years in many papers the
authors studied the HU-stability of ordinary differential equations and partial dif-
ferential equations. Some of these papers deal with second order partial differential
equations; for more details on stability of functional equations see [8].

In this paper we investigate the HU-stability of the Laplace operator ∆ acting on
a certain space of functions. The HU-stability of ∆ on other spaces was studied with
different methods in [4], [5], [7].

We investigate also the HU-stability of the operator p(x)∆, where

p(x) :=
1

2n
(1− x2

1 − · · · − x2
n)

for all x in the unit ball of Rn. This operator is related to the infinitesimal generator
of a C0-semigroup systematically studied in [2], [3], [10] and the references given there.
Moreover, we give explicit forms of the involved HU-constants for ∆ and p(x)∆.
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2. The HU-stability of ∆

Let G ⊂ Rn, n ≥ 1, be an open and connected set bounded by a surface S of class

C1. Consider the Laplace operator ∆ = ∂2

∂x2
1

+ · · · ∂2

∂x2
n

, acting on the space

D(∆) :=
{
u ∈ C2(G) ∩ C(G) : ∆u ∈ C1(G) ∩ C(G)

}
.

On C(G) and on its subspaces we consider the supremum norm denoted by ‖.‖.
In our approach we need the following result; for more details see [9, p. 68].

Theorem 2.1. For each f ∈ C1(G)∩C(G) there exists a unique u ∈ D(∆) such that
∆u = f and u|S = 0.

Consequently ∆ : D(∆)→ R(∆) is surjective, where the range of ∆ is

R(∆) = C1(G) ∩ C(G).

Moreover, according to Theorem 2.1 there exists a unique q ∈ D(∆) such that{
∆q = −1

q|S = 0.

Theorem 2.2. The operator ∆ : D(∆)→ R(∆) is HU-stable with constant ‖q‖.
Proof. Let f ∈ D(∆), ‖∆f‖ ≤ 1. Then ∆f ∈ C1(G) ∩ C(G), and Theorem 2.1
guarantees the existence of u ∈ D(∆) such that ∆u = ∆f and u|S = 0.

Then ‖∆u‖ ≤ 1, which entails ∆(u+ q) = ∆u− 1 ≤ 0. Since (u+ q)|S = 0, we get
u+ q ≥ 0. Similarly, ∆(u− q) = ∆u+ 1 ≥ 0 and (u− q)|S = 0 imply u− q ≤ 0.

So we have −q ≤ u ≤ q, i.e., ‖u‖ ≤ ‖q‖.
Let g := f − u. Then ∆g = 0 and ‖f − g‖ = ‖u‖ ≤ ‖q‖, which concludes the

proof. �
In particular, if G is the unit ball of Rn, then

q(x) =
1

2n
(1− x2

1 − · · · − x2
n) and ‖q‖ =

1

2n
.

Consequently we have
Corollary 2.3. If G is the unit ball of Rn, then ∆ : D(∆)→ R(∆) is HU-stable with
constant 1

2n .

3. The HU-stability of p∆

In this section G will be the unit ball of Rn, n ≥ 1. Consider the function

p(x) =
1

2n
(1− x2

1 − · · · − x2
n), x ∈ G,

and the operator W := p∆ with domain

D(W ) :=
{
u ∈ C2(G) ∩ C(G) : ∆u ∈ C1(G) ∩ C(G)

}
.

According to Theorem 2.1, the range of W is R(W ) =
{
pv : v ∈ C1(G) ∩ C(G)

}
.

Consider the function

hn(t) :=
2n

tn−1

∫ t

0

sn−1

1− s2
ds, t ∈ [0, 1).
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For x ∈ G let r(x) := (x2
1 + · · ·+ x2

n)
1
2 and φn(x) :=

∫ 1

r(x)

hn(t)dt.

Then p(x)∆φn(x) = −1, and φn|S = 0.
Theorem 3.1. The operator W : D(W )→ R(W ) is HU-stable with constant ‖φn‖.
Proof. Let f ∈ D(W ), ‖Wf‖ ≤ 1. Then p∆f = Wf ∈ R(W ), so that p∆f = pv,
with v ∈ C1(G) ∩ C(G). This entails ∆f = v, and Theorem 2.1 guarantees the
existence of u ∈ C2(G) ∩ C(G) with ∆u = v and u|S = 0. Now p∆f = p∆u, i.e.,
‖Wu‖ = ‖Wf‖ ≤ 1.

In particular, p(x)∆u(x) ≥ −1 = p(x)∆φn(x), so that ∆(u − φn) ≥ 0. Since
(u − φn)|S = 0, we get u − φn ≤ 0. Similarly we deduce u + φn ≥ 0, and finally,
−φn ≤ u ≤ φn. This means that ‖u‖ ≤ ‖φn‖.

Now let g := f − u. Then Wg = Wf −Wu = p∆f − p∆u = 0, i.e., Wg = 0 and
‖f − g‖ = ‖u‖ ≤ ‖φn‖. So the proof is finished. �

Now let’s evaluate the constant ‖φn‖. Since hn is nonnegative, we have

‖φn‖ =

∫ 1

0

hn(t)dt,

and it is easy to infer that

hn(t) = 2n

∞∑
k=0

t2k+1

n+ 2k
, n ≥ 1.

Therefore,

‖φn‖ = n

∞∑
k=0

1

(k + 1)(n+ 2k)
, n ≥ 1.

It follows immediately that

‖φ1‖ = log 4, ‖φ2‖ =
π2

6
.

Let n ≥ 3. By using [1, (6.3.16)] with z = n
2 − 1 we get

ψ
(n

2

)
= −γ + (n− 2)

∞∑
k=0

1

(k + 1)(n+ 2k)
,

where ψ is the Digamma function and γ = −ψ(1) is Euler’s constant.
So we have

‖φn‖ =
n

n− 2
(ψ(

n

2
) + γ).

According to [1, (6.3.4)] and [1, (6.3.6)],

ψ

(
n+

1

2

)
= 2

n∑
k=1

1

2k − 1
− log 4− γ,

ψ(n) =

n−1∑
k=1

1

k
− γ.

Therefore we get the following result.
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Theorem 3.2. A HU-constant of W is ‖φn‖, where:

‖φ1‖ = log 4, ‖φ2‖ =
π2

6
,

‖φ2m‖ =
m

m− 1

m−1∑
k=1

1

k
, m ≥ 2,

‖φ2m+1‖ =
2m+ 1

2m− 1

(
2

m∑
k=1

1

2k − 1
− log 4

)
, m ≥ 1.

Remark 3.3. It is known (see, e.g., [6]) that the infimum of the set of HU-constants
for an operator is not necessarily a HU-constant. It would be interesting to find, for
∆ and p(x)∆, the corresponding infima and to see if they are HU-constants.
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