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Abstract. We investigate the Hyers-Ulam stability of the Laplace operator A and of a multiple of
it, acting on suitable domains. Moreover, we obtain an explicit representation of the Hyers-Ulam
constant.
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1. INTRODUCTION

Let A, B be normed spaces and L : A — B a linear operator. The following
definition can be found in [11]; see also the references therein.
Definition 1.1. We say that L is Hyers-Ulam stable with constant K > 0 if for
each € > 0 and each f € A with |Lf]| < ¢ there exists g € A such that Lg = 0 and
If—gll < Ke.

Obviously, L is HU-stable with constant K if and only if for each f € A with
|[ILf]] <1 there exists g in the null space N(L) of L such that ||f — g| < K.

Hyers-Ulam stability is one of the main topics in functional equations theory. A
functional equation is called HU-stable if for every approximate solution of the equa-
tion there exists an exact solution near it. In the last years in many papers the
authors studied the HU-stability of ordinary differential equations and partial dif-
ferential equations. Some of these papers deal with second order partial differential
equations; for more details on stability of functional equations see [8].

In this paper we investigate the HU-stability of the Laplace operator A acting on
a certain space of functions. The HU-stability of A on other spaces was studied with
different methods in [4], [5], [7].

We investigate also the HU-stability of the operator p(z)A, where

1
pa)i= oo (1=t = —a?

for all z in the unit ball of R™. This operator is related to the infinitesimal generator

of a Cp-semigroup systematically studied in [2], [3], [10] and the references given there.
Moreover, we give explicit forms of the involved HU-constants for A and p(x)A.
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2. THE HU-STABILITY OF A

Let G C R™, n > 1, be an open and connected set bounded by a surface S of class

C*. Consider the Laplace operator A = 53—:? o2

“ 5,7 » acting on the space
n

D(A) = {ue C*(G)NC(G): Aue CH(G)NC(G)}.

On C(G) and on its subspaces we consider the supremum norm denoted by ||.|.

In our approach we need the following result; for more details see [9, p. 68].
Theorem 2.1. For each f € C1(G)NC(G) there exists a unique u € D(A) such that
Au= f and u|s = 0.

Consequently A : D(A) — R(A) is surjective, where the range of A is

R(A) = CHG)nC(G).

Moreover, according to Theorem 2.1 there exists a unique ¢ € D(A) such that

Ag=-1
qls = 0.
Theorem 2.2. The operator A : D(A) — R(A) is HU-stable with constant ||g||.
Proof. Let f € D(A), ||Af|| < 1. Then Af € CY(G) N C(G), and Theorem 2.1
guarantees the existence of u € D(A) such that Au= Af and u|s = 0.
Then [|Au|| < 1, which entails A(u+¢) = Au—1 < 0. Since (u+¢)|s = 0, we get
u+ ¢ > 0. Similarly, A(u —¢) = Au+12> 0 and (u— ¢)|s = 0 imply u — ¢ < 0.
So we have —q < u < g, i.e., |lu] < |lq]-

Let g := f —u. Then Ag = 0 and ||f — g|| = ||ul]] < ||¢||, which concludes the
proof. O
In particular, if G is the unit ball of R™, then
1 1
o) = (L —af — o —a2) and ] = o

Consequently we have
Corollary 2.3. If G is the unit ball of R", then A : D(A) — R(A) is HU-stable with
constant ﬁ

3. THE HU-STABILITY OF pA

In this section G will be the unit ball of R™, n > 1. Consider the function

1
pa) = 5 (1—af == a), e,

and the operator W := pA with domain
D(W):= {u cC*(G)NCG): AueCHG)Nn C’(é)} .

According to Theorem 2.1, the range of W is R(W) = {pv : v € C*(G) N C(G)}.
Consider the function

9 t n—1
ho(t) i= —2 /O 2 s, te0,1).
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1
For z € G let r(z) := (22 + - -+ 4+ 22)2 and ¢, (z) := / hy (t)dt.
r(x)

Then p(x)A¢,(x) = —1, and ¢,|s = 0.

Theorem 3.1. The operator W : D(W) — R(W) is HU-stable with constant ||¢n||.

Proof. Let f € D(W), |[Wf|] < 1. Then pAf = Wf € R(W), so that pAf = pv,
with v € C'(G) N C(G). This entails Af = v, and Theorem 2.1 guarantees the
existence of u € C?*(G) N C(G) with Au = v and u|g = 0. Now pAf = pAu, i.e.,
[Wull = [Wf]| <1.

In particular, p(x)Au(z) > —1 = p(z)Ad,(x), so that A(u — ¢,) > 0. Since
(u — ¢n)|ls = 0, we get u — ¢, < 0. Similarly we deduce u + ¢, > 0, and finally,
—¢n < u < ¢p,. This means that [|u]] < ||¢n]-

Now let g :== f —wu. Then Wg =W f —Wu = pAf —pAu =0, i.e., Wg =0 and
I = gll = llull < ||¢nll- So the proof is finished. O

Now let’s evaluate the constant ||¢,||. Since h,, is nonnegative, we have

1
lénll = / i (1),

and it is easy to infer that

0 t2k+l
= > 1.
hn(t) =2n n—|—2k7n_1
k=0
Therefore,
>, 1
= —_— > 1.

It follows immediately that

2
1]l =log 4, 2]l = -

Let n > 3. By using [1, (6.3.16)] with z = § — 1 we get

n > 1
v(3) :_7+(”_2)g(k+1)(n+2k)’

k=0
where 1 is the Digamma function and v = —(1) is Euler’s constant.
So we have n n
[nll = m(ﬂ)(g) + 7).

According to [1, (6.3.4)] and [1, (6.3.6)],

1 =~ 1
Q/J(n+2> —Z;m—logll—’y,

n—1

P(n) =

— .

i
a
| =

Therefore we get the following result.
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Theorem 3.2. A HU-constant of W is ||¢n ||, where:

2
™
111 = log4, lgall = -,

m—1

m 1
mll = —— - > 2,
loomll = =5 " 7. m
k=1
2m + 1 LR
=— |2 —log4 > 1.
1$2m41ll = 5 —— ;%_1 ogd), m=

Remark 3.3. It is known (see, e.g., [6]) that the infimum of the set of HU-constants

for

an operator is not necessarily a HU-constant. It would be interesting to find, for

A and p(z)A, the corresponding infima and to see if they are HU-constants.
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