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Abstract. We introduce an iterative algorithm for approximating a common fixed point of an
infinite family of left Bregman strongly nonexpansive mappings which is also a common solution

of a finite system of generalized mixed equilibrium problems and a common zero of a finite family

of maximal monotone operators in a reflexive real Banach space. A strong convergence theorem is
also proved for finding an element in the intersection of the set of solution of a fixed point problem

for infinite family of left Bregman strongly nonexpansive mappings, the set of solutions of a system

of generalized mixed equilibrium problems and the set of zero points of a finite family of maximal
monotone operators in a reflexive real Banach space. The result of this paper complement many

related and important results in the literature.
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1. Introduction

Let E be a reflexive real Banach space and C a nonempty, closed and convex subset
of E. Throughout this paper, we shall denote the dual space of E by E∗. The norm
and the duality pairing between E and E∗ are respectively denoted by ‖.‖ and 〈., .〉.
R stands for the set of real numbers.
Let T : C → C be a mapping, a point x ∈ C is called a fixed point of T if Tx = x.
The set of fixed points of T is denoted by F (T ).
Let g : C×C → R be a bifunction, ϕ : C → R∪{+∞} be a function and B : C → E∗

be a nonlinear mapping. The Generalized mixed equilibrium problem is to find u ∈ C
such that

g(u, y) + 〈Bu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C. (1.1)
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Denote the set of solutions of the problem (1.1) by GMEP (g, ϕ,B). That is

GMEP (g, ϕ,B) = {u ∈ C : g(u, y) + 〈Bu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C}.
If B = 0, then the generalized mixed equilibrium problem (1.1) reduces to the follow-
ing mixed equilibrium problem, find u ∈ C such that

g(u, y) + ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C.
If ϕ = 0, then the generalized mixed equilibrium problem (1.1) becomes the general-
ized equilibrium problem, find u ∈ C such that

g(u, y) + 〈Bu, y − u〉 ≥ 0, ∀y ∈ C.
Again if B = ϕ = 0, then the generalized mixed equilibrium problem (1.1) becomes
the equilibrium problem, find u ∈ C such that

g(u, y) ≥ 0, ∀y ∈ C.
Equilibrium problems and their generalizations are well known to have been important
tools for solving problems arising in the fields of linear or nonlinear programming,
variational inequalities, complementary problems, optimization problems, fixed point
problems and have been widely applied to physics, structural analysis, management
sciences and economics, etc (see, for example [9, 26, 40, 41]).

In solving equilibrium problem (1.1), the bifunction g is said to satisfy the following
conditions:
(A1) g(x, x) = 0 for all x ∈ C;
(A2) g is monotone, i.e., g(x, y) + g(y, x) ≥ 0 for all x, y ∈ C;
(A3) for each x, y ∈ C, limt→0 g(tz + (1− t)x; y) ≤ g(x; y);
(A4) for each x ∈ C; y 7→ g(x, y) is convex and lower semicontinuous.

Cholamjiak and Suantai [25] proposed a hybrid iterative scheme for finding a com-
mon element in the solution set of system of equilibrium problems and the common
fixed points set of an infinitely countable family of quasi-nonexpansive mappings and
prove the following strong convergence theorem.
Theorem 1.1. Let E be a uniformly convex and uniformly smooth Banach space, and
let C be a nonempty, closed and convex subset of E. Let {fj}Mj=1 be bifunctions from
C × C to R which satisfies conditions (A1) − (A4), and let {Ti}∞i=1 be an infinitely
countable family of closed and relatively quasi-nonexpansive mappings from C into
itself. Assume that F := (∩∞i=1F (Ti)) ∩ (∩Mj=1EP (fj)) 6= ∅. For any initial point
x0 ∈ E with x1 = ΠC0

x0 and C1 = C, define the sequence {xn} as follows:
yn,i = J−1(αnJxn + (1− αn)JTixn),

un,i = T fMrM,nT
fM−1
rM−1,n ...T

f1
r1,nyn,i,

Cn+1 = {z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0, n ≥ 0.

(1.2)

Assume that {αn} and {rj,n} for j = 1, 2, ...,M are sequences which satisfy the fol-
lowing conditions:
(B1) lim supn→∞ αn < 1,
(B2) lim infn→∞ rj,n > 0.
Then the sequence {xn} converges strongly to ΠFx0.
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Many authors have contributed in developing efficient and implementable algo-
rithms for solving equilibrium problems and some of their generalizations, (see, for
example,[1, 26, 33] and the references therein).

Let A : E → 2E
∗

be a set valued mapping. The domain of A is the set domA =
{x ∈ E : Ax 6= ∅} and the graph of A is the set G(A) = {(x, x∗) ∈ E×E∗ : x∗ ∈ Ax}.
A set-valued mapping A is said to be monotone if 〈x∗ − y∗, x − y〉 ≥ 0 whenever
(x, x∗), (y, y∗) ∈ G(A). If in addition that the graph of A is not contained in the graph
of any other monotone operator, then A is said to be a maximal monotone operator
on E. It is well known that if A is maximal monotone , then the set A−1(0∗) = {z ∈
E : 0∗ ∈ Az} is closed and convex.
The problem of finding the zeroes of a maximal monotone operator is very vital
in optimization, because it can be reduced to a convex minimization problem and
variational inequality problem.

Rockafeller [49], motivated by the work of Martinet [35], introduced in a Hilbert
space H the following proximal point iterative algorithm:{

x1 = x ∈ H,
xn+1 = Jλnxn, ∀n ≥ 1,

(1.3)

where {λn} ⊂ (0,∞) and Jλn is the resolvent of A defined by Jλ = (I + λA)−1

for all λ > 0, and A is a maximal monotone operator on H. He proved that the
sequence {xn} generated by (1.3) converges weakly to an element in A−1(0) provided
lim infn→∞ λn > 0.
A weak convergence result was also obtained by Kamimura and Takahashi [30] in a
real Hilbert space with the following iterative scheme:

xn+1 = αnxn + (1− αn)Jλnxn, ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) under some suitable conditions on {λn} ⊂
(0,∞).
Inspired by the result of Kamimura and Takahashi [30], Kohsaka and Takahashi [32],
in reflexive Banach space introduced the following iterative algorithm:

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(Jλnxn)), ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞), f : E → R is a Bregman function and
Jλ = (∇f + λA)−1∇f for all λ > 0. They obtained a weak convergence result with
the proposed algorithm.
For some other existing results for finding zero points of maximal monotone operators
see for example [13, 14, 24, 29, 38, 44, 50] and some of the references therein.

In 1967, Bregman [12] introduced a nice and effective method for using the so
called Bregman distance function Df (see Definition 2.1 in Section 2) in the process
of designing and analysing feasibility and optimization algorithms. This opened a
growing area of research in which Bregman’s technique is applied in various ways
in order to design and analyze iterative algorithms for solving equilibria, for ap-
proximating equilibria, and for computing fixed points of nonlinear mappings (see,
e.g.,[2, 3, 4, 5, 8, 12, 16, 17, 19, 20, 21, 27, 31, 42, 43, 44, 45, 46, 47, 48, 51, 23] and
the references therein).
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Inspired and motivated by the researches going on in this direction, we propose
an iterative algorithm for approximating a fixed point of an infinite family of left
Bregman strongly nonexpansive mappings, which is a common solution to a finite
system of equilibrium problems and also a zero point of a finite family of maximal
monotone operators in a reflexive real Banach space and prove its strong convergence
in this work.

2. Preliminaries

In this section, we present the basic notions and facts that are needed in the sequel.
The pairing 〈ξ, x〉 is defined by the action of ξ ∈ E∗ at x ∈ E, that is, 〈ξ, x〉 := ξ(x).
The domain of a convex function f : E → R is defined to be

domf := {x ∈ E : f(x) < +∞}.
When domf 6= ∅ , we say that f is proper. The Fenchel conjugate function of f is the
convex function f∗ : E∗ → R defined by

f∗(ξ) = sup{〈ξ, x〉 − f(x) : x ∈ E}.
It is not difficult to check that whenever f is proper and lower semicontinuous, so is
f∗. The function f is said to be cofinite if domf∗ = E∗.
Let x ∈ int(domf), for any y ∈ E, we define the directional derivative of f at x by

fo(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.1)

If the limit as t → 0+ in (2.1) exists for each y, then the function f is said to be
Gâteaux differentiable at x. In this case, the gradient of f at x is the linear func-
tion ∇f(x), which is defined by 〈∇f(x), y〉 := fo(x, y) for all y ∈ E (see [22]). The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at each
x ∈ int(domf). When the limit as t→ 0 in (2.1) is attained uniformly for any y ∈ E
with ‖y‖ = 1, we say that f is Fréchet differentiable at x. Throughout this paper,
f : E → R is always an admissible function, that is, a proper, lower semicontinuous,
convex and Gâteaux differentiable function. Under these conditions we know that f
is continuous in int(domf) (see [6]).
The function f is said to be Legendre if it satisfies the following two conditions.
(L1) int(domf) 6= ∅, and the subdifferential ∂f is single-valued on its domain.
(L2) int(domf∗) 6= ∅, and ∂f∗ is single-valued on its domain.
The class of Legendre functions in infinite dimensional Banach spaces was first intro-
duced and studied by Bauschke, Borwein and Combettes in [6]. Their definition is
equivalent to conditions (L1) and (L2) because the space E is assumed to be reflexive
(see [6], Theorems 5.4 and 5.6, page 634). It is well known that in reflexive Banach
spaces ∇f = (∇f∗)−1 (see [10], page 83). When this fact is combined with conditions
(L1) and (L2), we obtain

ran∇f = dom∇f∗ = int(domf)∗and ran∇f∗ = dom∇f = int(domf).

It also follows that f is Legendre if and only if f∗ is Legendre (see [6], Corollary 5.5,
page 634) and that the functions f and f∗ are Gateaux differentiable and strictly
convex in the interior of their respective domains.
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When the Banach space E is smooth and strictly convex, in particular, a Hilbert space,

the function

(
1

p

)
‖.‖p with p ∈ (1,∞) is Legendre (cf. [6], Lemma 6.2, page 639).

For examples and more information regarding Legendre functions, see, for instance,
[5, 6].
Definition 2.1. The bifunction Df : domf × int(domf)→ [0; +∞) defined by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 (2.2)

is called the Bregman distance (cf. [12, 22]).
The Bregman distance does not satisfy the well-known properties of a metric, but

it does have the following important property, which is called the three point identity:
for any x ∈ domf and y, z ∈ int(domf)

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉. (2.3)

The modulus of total convexity of f is the bifunction vf : int(domf) × [0,+∞) →
[0,+∞] which is defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t〉.

The function f is said to be totally convex at a point x ∈ int(domf) if vf (x; t) > 0
whenever t > 0. The function f is said to be totally convex when it is totally convex
at every point x ∈ int(domf). This property is less stringent than uniform convexity
(see [16], Section 2.3, page 92). Examples of totally convex functions can be found,
for instance, in [11, 16, 19].
We remark that f is totally convex on bounded subsets if and only if f is uniformly
convex on bounded subsets (see [19], Theorem 2.10, page 9).
The Bregman projection (cf. [12]) with respect to f of x ∈ int(domf) onto a
nonempty, closed and convex set C ⊂ int(domf) is defined as the necessarily unique

vector ProjfC(x) ∈ C which satisfies

Df (ProjfC(x), x) = inf{Df (y, x) : y ∈ C}. (2.4)

Let C be a nonempty, closed, and convex subset of E. Let f : E → R be a Gâteaux
differentiable and totally convex function and let x ∈ E. It is known from [19] that

z = ProjfCx if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0 for all y ∈ C. We also have

Df (y, ProjfC(x)) +Df (ProjfC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C. (2.5)

Similar to the metric projection in Hilbert spaces, the Bregman projection with re-
spect to totally convex and Gâteaux differentiable functions has a variational charac-
terization (cf. [19], Corollary 4.4, page 23).
Proposition 2.2. (see [43]) (Characterization of Bregman Projections) Suppose that
f : E → R is totally convex and Gâteaux differentiable in int(domf). Let x ∈
int(domf) and let C ⊂ int(domf) be a nonempty, closed and convex set. If x̂ ∈ C,
then the following conditions are equivalent.
(i) The vector x̂ is the Bregman projection of x onto C with respect to f .
(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f(x)−∇f(z), z − y〉 ≥ 0, ∀y ∈ C.
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(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ C.

Recall that the function f is said to be sequentially consistent [7] if for any two se-
quences {xn} and {yn} in E such that the first is bounded,

lim
n→∞

Df (xn, yn) = 0⇒ lim
n→∞

‖xn − yn‖ = 0. (2.6)

The resolvent of a bifunction g : C ×C → R (see, [45]) is the operator Resfg : E → C
defined by

Resfg (x) = {z ∈ C : g(z, y) + 〈∇f(z)−∇f(x), y − z〉 ≥ 0 ∀y ∈ C}. (2.7)

For any x ∈ E, there exists z ∈ C such that z = Resfg (x), see [45].
Let C be a convex subset of int(domf) and let T be a self-mapping of C. A point
p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}∞n=0

which converges weakly to p and limn→∞ ‖xn−Txn‖ = 0. The set of asymptotic fixed

points of T is denoted by F̂ (T ).
Recall that the Bregman distance is not symmetric, we define the following oper-

ators.
Definition 2.3. A mapping T with a nonempty asymptotic fixed point set is said to
be:
(i) left Bregman strongly nonexpansive (see [37]) with respect to a nonempty F̂ (T ) if

Df (p, Tx) ≤ Df (p, x) ∀x ∈ C, p ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

lim
n→∞

Df (Txn, xn) = 0.

According to Mart́in-Márquez et al. [36], a left Bregman strongly nonexpansive map-

ping T with respect to a nonempty F̂ (T ) is called strictly left Bregman strongly non-
expansive mapping.
(ii) An operator T : C → int(domf) is said to be left Bregman firmly nonexpansive
(L-BFNE) if

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉

for any x, y ∈ C, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).

See [7, 11, 46], for more information and examples of L-BFNE operators (operators in
this class are also called Df -firm and BFNE). For two recent studies of the existence
and approximation of fixed points of left Bregman firmly nonexpansive operators,
see [37, 46]. It is also known that if T is left Bregman firmly nonexpansive and f
is Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E, then F (T ) = F̂ (T ) and F (T ) is closed and convex
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(see [46]). It also follows that every left Bregman firmly nonexpansive mapping is left

Bregman strongly nonexpansive with respect to F (T ) = F̂ (T ).
Let Vf : E × E∗ → [0,∞) associated with f be defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗),∀x ∈ E, x∗ ∈ E∗.

Observe that Vf is nonnegative and Vf (x, x∗) = Df (x,∇f∗(x∗)),∀x ∈ E, x∗ ∈ E∗.
Let f : E → R be a convex, Legendre and Gâteaux differentiable function. In

addition, if f : E → (−∞; +∞] is a proper lower semi-continuous function, then
f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower semi-continuous and convex function
(see [39]). Hence Vf is convex in the second variable. Thus, for all z ∈ E,

Df (z,∇f∗(
N∑
i=1

ti∇f(xi)) ≤
N∑
i=1

tiDf (z, xi) (2.8)

where {xi}Ni=1 ⊂ E and {ti} ⊂ (0, 1) with
∑N
i=1 ti = 1.

LetA be a maximal monotone operator, the resolvent ofA denoted byResfA : E → 2E ,
is defined as follows [7]:

ResfA(x) = (∇f +A)−1 ◦ ∇f(x).

It is known that F (ResfA) = A−1(0∗), and ResfA is single valued (see [7]). If f is
Legendre function which is bounded, uniformly Fréchet differentiable on bounded

subsets of E, then F̂ (ResfA) = F (ResfA) (see [7]). The Yosida approximation Aλ :
E → E, λ > 0 is also defined by

Aλ(x) =
1

λ
(∇f(x)−∇f(ResfλA(x)))

for all x ∈ E. From Proposition 2.7 [44], it is known that (ResfλA(x)), Aλ(x)) ∈ G(A),
and 0∗ ∈ Ax if and only if 0∗ ∈ Aλx for all x ∈ E and λ > 0.

The following lemmas are very useful in establishing our main results.
Lemma 2.4. (Reich and Sabach [43]) If f : E → R is uniformly Fréchet differentiable
and bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to the strong topology of E∗.
Lemma 2.5. (Butnariu and Iusem [16]) The function f is totally convex on bounded
sets if and only if it is sequentially consistent.
Lemma 2.6. (Reich and Sabach [44]) Let f : E → R be a Gâteaux differentiable and
totally convex function. If x0 ∈ E and the sequence {Df (xn, x0)}∞n=1 is bounded, then
the sequence {xn}∞n=1 is also bounded.
Lemma 2.7. (Reich and Sabach [45]) Let f : E → (−∞,+∞) be a coercive and
Gâteaux differentiable function. Let C be a closed and convex subset of E. If the
bifunction g : C × C → R satisfies conditions (A1)-(A4), then,
1. Resfg is single-valued;

2. Resfg is a Bregman firmly nonexpansive mapping;

3. F (Resfg ) = EP (g);
4. EP (g) is a closed and convex subset of C;



342 F.U. OGBUISI AND O.T. MEWOMO

5. for all x ∈ E and q ∈ F (Resfg ),

Df (q,Resfg (x)) +Df (Resfg (x), x) ≤ Df (q, x).

Lemma 2.8. (Xu [53]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where,
(i) {αn} ⊂ [0, 1],

∑
αn =∞;

(ii) lim supσn ≤ 0;
(iii) γn ≥ 0(n ≥ 0),

∑
γn <∞.

Then {an} → 0, as n→∞.
Lemma 2.9. (Mainge [34]) Let {an} be a sequence of real numbers such that there
exists a subsequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists
a nondecreasing sequence {mk} ⊂ N such that mk →∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
Lemma 2.10. (Suantai et al.[52]) Let E be a reflexive real Banach space. Let C be
a nonempty, closed and convex function of E. Let f : E → R be a Gâteaux differen-
tiable and totally convex function. Suppose T is a left Bregman strongly nonexpansive
mappings of C into E such that F (T ) = F̂ (T ) 6= 0. If {xn}∞n=0 is bounded sequence

such that xn − Txn → 0 and z :=
←−
P rojfΩu, then

lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 ≤ 0.

Lemma 2.11. ([44]) Let A : E → 2E
∗

be a maximal monotone operator such that
A−1(0∗) = ∅. Then

Df (p,ResfλA(x) +Df (ResfλA(x), x) ≤ Df (p, x)

for all λ > 0, p ∈ A−1(0∗) and x ∈ E.

3. Main results

Theorem 3.1. Let E be a reflexive real Banach space and C a nonempty, closed
and convex subset of E. Let {Tj}∞j=1 be an infinite family of left Bregman strongly

nonexpasive mappings from C into itself and F (Tj) = F̂ (Tj), ∀j ≥ 1. Let gk :
C × C → R, (k = 1, 2, ..., N) be bifunctions satisfying conditions (A1) − (A4). Let
Bk : E → E∗, (k = 1, 2, ..., N) be continuous and monotone mappings, ϕk : C →
R ∪ {+∞}, (k = 1, 2, ..., N) be proper lower semicontinuous and convex functions.
Let f : E → R be strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf) and Ai : E → 2E

∗
(i = 1, 2, ..., N) be maximal monotone operators, such
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that Ω := ∩∞j=1F (Tj) ∩ (∩Nk=1EP (Gk) ∩ (∩Ni=1A
−1
i (0)) 6= ∅. Then the sequence {xn}

generated for arbitrary u, x1 ∈ E by
yn = Resf

λNn AN
◦Resf

λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn,

un = ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

yn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(un) +
∑∞
j=1 γnj∇f(Tjun)), ∀n ≥ 1,

(3.1)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where

G(x, y) := g(x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x)

and the sequences αn, βn, γnj and λn satisfy the following conditions:
(i) limn→∞ αn = 0;

(ii)

∞∑
n=1

αn =∞;

(iii) αn + βn +

∞∑
j=1

γnj = 1;

(iv) 0 < a < βn,

∞∑
j=1

γnj < b < 1;

(v) lim inf
n→∞

λkn > 0 for each k = 1, 2, ..., N.

A prototype example of the control sequences are:

αn =
1

n+ 6
, βn =

n2 + 6n+ 9

(n+ 6)(n+ 3)
and γnj =

1

2j(n+ 3)
.

Proof. It is known (see [54]) that the function

G(x, y) := g(x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x)

satisfies (A1)− (A4) and GMEP (g, ϕ,B) is closed and convex.
For any x∗ ∈ Ω, then from (3.1), we have that

Df (x∗, yn) = Df (x∗, Resf
λNn AN

◦Resf
λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn)

≤ Df (x∗, Resf
λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn)

...

≤ Df (x∗, xn). (3.2)

Also from (3.1), we have

Df (x∗, un) = Df (x∗, ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

yn)

≤ Df (x∗, ResfGN−1
◦ ... ◦ResfG2

◦ResfG1
yn)

...

≤ Df (x∗, yn). (3.3)
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Again from (2.8), (3.1), (3.2) and (3.3), we have

Df (x∗, xn+1) = Df (x∗,∇f∗(αn∇f(u) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tjun)))

≤ αnDf (x∗, u) + βnDf (x∗, un) +

∞∑
j=1

γnjDf (x∗, Tj(un))

≤ αnDf (x∗, u) + βnDf (x∗, un) +

∞∑
j=1

γnjDf (x∗, un)

= αnDf (x∗, u) + (βn +

∞∑
j=1

γnj)Df (x∗, un)

≤ αnDf (x∗, u) + (βn +

∞∑
j=1

γnj)Df (x∗, yn)

≤ αnDf (x∗, u) + (βn +

∞∑
j=1

γnj)Df (x∗, xn)

= αnDf (x∗, u) + (1− αn)Df (x∗, xn)

≤ max{Df (x∗, u), Df (x∗, xn)}
...

≤ max{Df (x∗, u), Df (x∗, x1)}. (3.4)

Therefore {Df (x∗, xn)} is bounded and so also are {Df (x∗, un)} and {Df (x∗, yn)},
and consequently, we have that the sequences {xn}, {un} and {yn} are bounded.
Moreover,

Df (x∗, un+1) ≤ Df (x∗, xn+1)

= Vf (x∗, αn∇f(u) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tjun))

≤ Vf (x∗, αn∇f(u) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tjun)

− αn(∇f(u)−∇f(x∗)))− 〈∇f∗(αn∇f(u) + βn∇f(un)

+

∞∑
j=1

γnj∇f(Tjun))− x∗,−αn(∇f(u)−∇f(x∗))〉

= Vf (x∗, αn∇f(x∗) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tjun))

+ αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉
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= Df (x∗,∇f∗(αn∇f(x∗) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tjun))

+ αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉

≤ αnDf (x∗, x∗) + βnDf (x∗, un) +

∞∑
j=1

γnjDf (x∗, Tjun)

+ αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉

= βnDf (x∗, un) +

∞∑
j=1

γnjDf (x∗, Tjun)

+ αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉

≤ βnDf (x∗, un) +

∞∑
j=1

γnjDf (x∗, un)

+ αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉
= (1− αn)Df (x∗, un) + αn〈xn+1 − x∗,∇f(u)−∇f(x∗)〉. (3.5)

We now consider two cases to obtain strong convergence.
Case 1. Suppose that there exists n0 ∈ N such that {Df (x∗, un)}∞n=1 is monotonically
nonincreasing. Then {Df (x∗, un)}∞n=1 converges and

Df (x∗, un+1)−Df (x∗, un)→ 0, n→∞.

Let sn := ∇f∗
(

βn
1−αn∇f(un) +

∑∞
j=1 γnj

1−αn ∇f(Tjun)
)
. Then,

Df (x∗, sn) = Df (x∗,∇f∗
( βn

1− αn
∇f(un) +

∑∞
j=1 γnj

1− αn
∇f(Tjun)

)
≤ βn

1− αn
Df (x∗, un) +

∑∞
j=1 γnj

1− αn
Df (x∗, Tjun)

≤ βn
1− αn

Df (x∗, un) +

∑∞
j=1 γnj

1− αn
Df (x∗, un)

≤
βn +

∑∞
j=1 γnj

1− αn
Df (x∗, un). (3.6)

Thus,

0 ≤ Df (x∗, un)−Df (x∗, sn)

= Df (x∗, un)−Df (x∗, un+1) +Df (x∗, un+1)−Df (x∗, sn)

≤ Df (x∗, un)−Df (x∗, un+1) +Df (x∗, xn+1)−Df (x∗, sn)

≤ Df (x∗, un)−Df (x∗, un+1) + αnDf (x∗, u)

+(1− αn)Df (x∗, sn)−Df (x∗, sn)

= Df (x∗, un)−Df (x∗, un+1)

+αn(Df (x∗, u)−Df (x∗, sn))→ 0, n→∞. (3.7)
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Furthermore,

Df (x∗, sn) ≤ βn
1− αn

Df (x∗, un) +

∑∞
j=1 γnj

1− αn
Df (x∗, Tjun)

=
(
1−

∑∞
j=1 γnj

1− αn
)
Df (x∗, un) +

∑∞
j=1 γnj

1− αn
Df (x∗, Tjun)

= Df (x∗, un) +

∑∞
j=1 γnj

1− αn
(Df (x∗, Tjun)−Df (x∗, un)). (3.8)

Therefore from (3.8), we have∑∞
j=1 γnj

1− αn
(Df (x∗, un)−Df (x∗, Tjun)) ≤ Df (x∗, un)−Df (x∗, sn)→ 0, n→∞. (3.9)

Since Tj is left Bregman strongly nonexpansive, we obtain that

lim
n→∞

Df (un, Tjun) = 0,

which implies that

lim
n→∞

||un − Tjun|| = 0. (3.10)

Since {un} is bounded and E is a reflexive Banach space, there exists a subsequence
{unj} of {un} that converges weakly to p ∈ C. It then follows from (3.10) that

p ∈ ∩∞j=1F (Tj), since F (Tj) = F̂ (Tj).
We next show that p ∈ ∩∞k=1EP (Gk) = ∩∞k=1GMEP (Fk, ϕk, Bk).

Denote Θk = ResfGk ◦ Res
f
Gk−1
◦, ..., ◦ResfG1

for k = 1, 2, ...N and Θ0 = I. We note

that un = ΘNyn. Now, by using the fact that ResfGk , k = 1, 2, · · · , N is properly left
Bregman nonexpansive mapping, we have

Df (x∗, un) = Df (x∗,ΘNyn)

= Df (x∗, ResfGNΘN−1yn)

≤ Df (x∗,ΘN−1yn) ≤ · · · ≤ Df (x∗, yn)

≤ Df (x∗, xn). (3.11)

Since x∗ ∈ EP (GN ) = F (ResfGn), then from Lemma 2.7, (3.3) and (3.11), we have

Df (un, Res
f
GN

ΘN−1yn) = Df (ResfGNΘN−1yn),ΘN−1yn)

≤ Df (x∗,ΘN−1yn)−Df (x∗, un)

≤ Df (x∗, yn)−Df (x∗, un)

≤ Df (x∗, xn)−Df (x∗, un)

≤ (1− αn−1)Df (x∗, un−1)

+αn−1〈xn − x∗,∇f(u)−∇f(x∗)〉 −Df (x∗, un)

≤ αn−1M

+Df (x∗, un−1)−Df (x∗, un)→ 0, n→∞, (3.12)
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where M > 0 is such that Df (x∗, un−1) + 〈xn − x∗,∇f(u)−∇f(x∗)〉 ≤M.
Therefore,

lim
n→∞

Df (ΘNyn,ΘN−1yn) = lim
n→∞

Df (un,ΘN−1yn) = 0.

From Lemma 2.5, we have

lim
n→∞

||ΘNyn −ΘN−1yn|| = lim
n→∞

||un −ΘN−1yn|| = 0. (3.13)

Thus, we have from (3.13) that

lim
n→∞

||∇f(ΘNyn)−∇f(ΘN−1yn)|| = 0. (3.14)

Again, since x∗ ∈ EP (GN−1) = F (ResfGN−1
), it follows from (3.11) and Lemma 2.7

that

Df (ΘN−1yn,Θ
N−2yn) = Df (ResfGN−1

ΘN−2yn,Θ
N−2yn)

≤ Df (x∗,ΘN−2yn)−Df (x∗,ΘN−1yn)

≤ Df (x∗, yn)−Df (x∗, un)

≤ Df (x∗, xn)−Df (x∗, un)

≤ αn−1M

+Df (x∗, un−1)−Df (x∗, un)→ 0, n→∞. (3.15)

That is,

lim
n→∞

Df (ΘN−1yn,Θ
N−2yn) = 0.

Hence from Lemma 2.5, we have

lim
n→∞

||ΘN−1yn −ΘN−2yn|| = 0, (3.16)

and consequently we have

lim
n→∞

||∇f(ΘN−1yn)−∇f(ΘN−2yn)|| = 0. (3.17)

In a similar way, we can verify that

lim
n→∞

||ΘN−2yn −ΘN−3yn|| = · · · = lim
n→∞

||Θ1yn − yn|| = 0. (3.18)

It is now easily seen from (3.13),(3.16) and (3.18), that

lim
n→∞

||Θkyn −Θk−1yn|| = 0, k = 1, 2, · · · , N. (3.19)

and

lim
n→∞

||un − yn|| = 0.

Now since unj ⇀ p and limn→∞ ||un−yn|| = 0, we have that ynj ⇀ p.Also from (3.13),

(3.16), (3.18) and ynj ⇀ p, we have that Θkynj ⇀ p, j →∞, for each k = 1, 2, · · · , N .
Again using (3.19), we get that

lim
n→∞

||∇f(Θkyn)−∇f(Θk−1yn)|| = 0, k = 1, 2, · · · , N. (3.20)

Therefore by (2.7), we have that for each k = 1, 2, · · · , N,

Gk(Θkynj , y) + 〈y −Θkynj ,∇f(Θkynj )−∇f(Θk−1ynj )〉 ≥ 0, ∀y ∈ C.
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Again using (A2), we obtain

〈y −Θkynj ,∇f(Θkynj )−∇f(Θk−1ynj )〉 ≥ Gk(y,Θkynj ). (3.21)

Thus, a combination of (A4),(3.20),(3.21) and Θkynj ⇀ p, j → ∞, gives us that for
each k = 1, 2, · · · , N ,

Gk(y, p) ≤ 0, ∀y ∈ C.
Then for fixed y ∈ C, let zt,y := ty + (1 − t)p for all t ∈ (0, 1]. This implies that
zt,y ∈ C and further yields that Gk(zt,y, p) ≤ 0. It then follows from (A1) and (A4)
that

0 = Gk(zt,y, zt,y)

≤ tGk(zt,y, y) + (1− t)Gk(zt,y, p)

≤ tGk(zt,y, y).

Hence, from condition (A3), we obtain Gk(p, y) ≥ 0, ∀y ∈ C, which implies that

p ∈ ∩Nk=1EP (Gk).

Next, we show that p ∈ ∩Ni=1A
−1
i (0) = ∩Ni=1F (ResfλinAi

).

Set Φi = ResfλinAi
◦ Resf

λi−1
n Ai−1

◦ · · · ◦ Resfλ2
nA2
◦ Resfλ1

nA1
, for each i = 1, 2, · · · , N ,

and Φ0 = I. We note that yn = Φixn.
Since x∗ ∈ A−1

N (0), by Lemma 2.11, we have

Df (yn,Φ
N−1(xn)) ≤ Df (x∗,ΦN−1(xn))−Df (x∗, yn)

≤ Df (x∗, xn)−Df (x∗, yn)

= (1− αn−1)Df (x∗, un−1)

+αn−1〈zn−1 − x∗,∇f(u)−∇f(x∗)〉 −Df (x∗, yn)

≤ αn−1M1 +Df (x∗, un−1 −Df (x∗, un)→ 0, n→∞,(3.22)

where M1 is such that Df (x∗, un−1) +αn−1〈zn−1−x∗,∇f(u)−∇f(x∗)〉 ≤M1. Since
f is sequentially consistent, then we have from (3.22) that

lim
n→∞

||yn − ΦN−1xn|| = 0, (3.23)

and hence

lim
n→∞

||∇f(xn)−∇f(ΦN−1xn)|| = 0. (3.24)

Again, since x∗ ∈ A−1
N−1(0), by Lemma 2.11, we have

Df (ΦN−1(xn),ΦN−2(xn)) ≤ Df (x∗,ΦN−2(xn))−Df (x∗,ΦN−1(xn))

≤ Df (x∗, xn)−Df (x∗, yn)

≤ αn−1M1

+Df (x∗, un−1)−Df (x∗, un)→ 0, n→∞.(3.25)

Thus since f is sequentially consistent, we have

lim
n→∞

||ΦN−1(xn)− ΦN−2(xn)|| = 0, (3.26)
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and hence
lim
n→∞

||∇f(ΦN−1(xn))−∇f(ΦN−2(xn))|| = 0.

Following the same procedure, we have that

lim
n→∞

||ΦN−2(xn)− ΦN−3(xn)|| = · · · = lim
n→∞

||Φ1(xn)− xn|| = 0. (3.27)

Therefore, from (3.23),(3.26) and (3.27), we conclude that

lim
n→∞

||Φi(xn)− Φi−1(xn)|| = 0, i = 1, 2, · · · , N

and

lim
n→∞

||∇f(Φi(xn))−∇f(Φi−1(xn))|| = 0. (3.28)

Thus we have that
lim
n→∞

||yn − xn|| = 0.

Since ynj ⇀ p and limn→∞ ||yn − xn|| = 0, we have that xnj ⇀ p. For each i =

1, 2, · · · , N, we note that Φi(xn) = ResfλinAi
Φi−1(xn) and therefore

||AλinΦixn|| =
1

λin
||∇f(Φi−1(xn))−∇f(Φi(xn))||.

Hence from (3.28) and the condition limn→∞ λin > 0, we have

lim
n→∞

||AλinΦixn|| = 0. (3.29)

Now since (Φixn, AλinΦi−1(xn)) ∈ G(Ai) for each i = 1, 2, · · · , N. If (w,w∗) ∈ G(Ai)
for each i = 1, 2, · · · , N, then it follows from the monotonicity of Ai, i = 1, 2, · · · , N,
that

〈w∗ −AλinΦi−1(xn), w − Φi(xn)〉 ≥ 0.

Since xnj ⇀ p, then Φi(xnj ) ⇀ p for each i = 1, 2, · · · , N. Thus from (3.29), we have

〈w∗, w − p〉 ≥ 0,

and since Ai is maximally monotone for each i = 1, 2, · · · , N, we conclude that p ∈
∩Ni=1A

−1
i (0).

Thus we have
p ∈ F (T ) ∩ (∩Nk=1EP (Gk)) ∩ (∩Ni=1A

−1
i=1(0)),

that is
p ∈ F (T ) ∩ (∩Nk=1GMEP (gk, ϕk, Bk)) ∩ (∩Ni=1A

−1
i=1(0)).

We now show that {xn} converges strongly to z :=
←−
P rojfΩu.

Df (un, xn+1) = Df (un,∇f∗(αn∇f(u) + βn∇f(un) +

∞∑
j=1

γnj∇f(Tun)))

≤ αnDf (un, u) + βnDf (un, un) +

∞∑
j=1

γnjDf (un, Tun)→ 0, n→∞.

Therefore, by Lemma 2.5, it follows that

||un − xn+1|| → 0, n→∞.
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Now,

||xn − xn+1|| ≤ ||xn − yn||+ ||yn − un||+ ||un − xn+1|| → 0, n→∞.

Let z :=
←−
P rojfΩu, we now show that

lim sup
n→∞

〈xn+1 − z,∇f(u)−∇f(z)〉 ≤ 0.

Choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 = lim
j→∞
〈xnj − z,∇f(u)−∇f(z)〉.

Then, from ||xn − xn+1|| → 0, n→∞ and Lemma 2.10, we have

lim sup
n→∞

〈xn+1 − z,∇f(u)−∇f(z)〉 = lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 ≤ 0.

Now, from (3.5),

Df (z, xn+1) ≤ (1− αn)Df (z, un) + αn〈xn+1 − z,∇f(u)−∇f(z)〉
≤ (1− αn)Df (z, yn) + αn〈xn+1 − z,∇f(u)−∇f(z)〉
≤ (1− αn)Df (z, xn) + αn〈xn+1 − z,∇f(u)−∇f(z)〉.

Hence by Lemma 2.8, we obtain Df (z, xn)→ 0, n→∞ and so

||xn − z|| → 0.

That is {xn} converges strongly to z :=
←−
P rojfΩu.

Case 2. Suppose there exists a subsequence {nι} of {xn} such that

Df (x∗, xnι) ≤ Df (x∗, xnι+1) ∀ι ∈ N.

Then by Lemma 2.9, there exists a nondecreasing sequence {mτ} ⊂ N such that
mτ →∞, τ →∞,

Df (x∗, xmτ ) ≤ Df (x∗, xmτ+1)

and

Df (x∗, xτ ) ≤ Df (x∗, xmτ+1) ∀τ ∈ N.
Again, let

snτ := ∇f∗( βnτ
1− αnτ

∇f(unτ ) +

∑∞
j=1 γnτ j

1− αnτ
∇f(Tjunτ )).

Then

Df (x∗, snτ ) + Df (x∗,∇f∗( βnτ
1− αnτ

∇f(unτ ) +

∑∞
j=1 γnτ j

1− αnτ
∇f(Tjunτ )))

≤ (
βnτ

1− αnτ
)Df (x∗, unτ ) +

∑∞
j=1 γnτ j

1− αnτ
)Df (x∗, Tjunτ )

≤ (
βnτ +

∑∞
j=1 γnτ j

1− αnτ
)Df (x∗, unτ )

≤ Df (x∗, unτ ).
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Therefore,

0 ≤ Df (x∗, unτ )−Df (x∗, snτ )

= Df (x∗, unτ )−Df (x∗, unτ+1) +Df (x∗, unτ+1)−Df (x∗, snτ )

≤ Df (x∗, unτ )−Df (x∗, unτ+1) +Df (x∗, xnτ+1)−Df (x∗, snτ )

≤ Df (x∗, unτ )−Df (x∗, unτ+1) + αnτDf (x∗, u)

+(1− αnτ )Df (x∗, snτ )−Df (x∗, snτ )

= Df (x∗, unτ )−Df (x∗, unτ+1) + αnτ (Df (x∗, u)−Df (x∗, snτ )→ 0, n→∞.

Furthermore,

Df (x∗, snτ ) ≤ βnτ
1− αnτ

Df (x∗, unτ ) +

∑∞
j=1 γnτ j

1− αnτ
Df (x∗, Tjunτ )

=
(
1−

∑∞
j=1 γnτ j

1− αnτ

)
Df (x∗, unτ ) +

∑∞
j=1 γnτ j

1− αnτ
Df (x∗, Tjunτ )

= Df (x∗, unτ ) +

∑∞
j=1 γnτ j

1− αnτ
(Df (x∗, Tjunτ )−Df (x∗, unτ )). (3.30)

Thus from (3.30), we have∑∞
j=1 γnτ j

1− αnτ
(Df (x∗, unτ )−Df (x∗, Tjunτ )) ≤ Df (x∗, unτ )−Df (x∗, snτ )→ 0, n→∞.

(3.31)
Since T is left Bregman strongly nonexpansive, we obtain that

lim
τ→∞

Df (unτ , Tjunτ ) = 0,

which implies that

lim
τ→∞

||unτ − Tjunτ || = 0. (3.32)

By the same arguments as in Case 1, we obtain that

lim sup
τ→∞

〈xnτ+1 − z,∇f(u)−∇f(z)〉 ≤ 0, (3.33)

and

Df (z, xnτ+1) ≤ (1− αnτ )Df (z, xnτ ) + αnτ 〈xnτ+1 − z,∇f(u)−∇f(z)〉,

which since Df (z, xnτ ) ≤ Df (z, xnτ+1) implies

αnτDf (z, xnτ ) ≤ Df (z, xnτ )−Df (z, xnτ+1) + αnτ 〈xnτ+1 − z,∇f(u)−∇f(z)〉
≤ αnτ 〈xnτ+1 − z,∇f(u)−∇f(z)〉.

Thus since αnτ > 0, we have

Df (z, xnτ ) ≤ 〈xnτ+1 − z,∇f(u)−∇f(z)〉.

Hence it follows from (3.33) that

lim
τ→∞

Df (z, xnτ ) = 0.
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Since Df (z, xτ ) ≤ Df (z, xmτ+1) for all τ ∈ N, we conclude that xτ → z, τ →∞. This
implies that xn → z, n→∞, which completes the proof.
Corollary 3.2. Let E be a reflexive real Banach space and C a nonempty, closed
and convex subset of E. Let {Tj}∞j=1 be an infinite family of left Bregman nonex-

pasive mappings from C into itself and F (Tj) = F̂ (Tj), ∀j ≥ 1. Let f : E → R
be strongly coercive Legendre function which is bounded, uniformly Fréchet differ-
entiable and totally convex on bounded subsets of E such that C ⊂ int(domf)
and Ai : E → 2E

∗
(i = 1, 2, ..., N) be maximal monotone operators, such that

Ω := ∩∞j=1F (Tj) ∩ (∩Ni=1A
−1
i (0)) 6= ∅. Then the sequence {xn} generated for arbi-

trary u, x1 ∈ E by{
yn = Resf

λNn AN
◦Resf

λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(yn) +
∑∞
j=1 γnj∇f(Tjyn)), ∀n ≥ 1,

(3.34)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where the sequences αn, βn, γnj and

λn satisfy the following conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) αn + βn +
∑∞
j=1 γnj = 1;

(iv) 0 < a < βn,
∑∞
j=1 γnj < b < 1;

(v) lim inf
n→∞

λkn > 0 for each k = 1, 2, ..., N.

Corollary 3.3. Let E be a reflexive real Banach space and C a nonempty, closed
and convex subset of E. Let {Tj}∞j=1 be an infinite family of left Bregman non-

expasive mappings from C into itself and F (Tj) = F̂ (Tj), ∀j ≥ 1. Let gk :
C × C → R, (k = 1, 2, ..., N) be bifunctions satisfying conditions (A1) − (A4). Let
Bk : E → E∗, (k = 1, 2, ..., N) be continuous and monotone mappings, ϕk : C →
R ∪ +∞, (k = 1, 2, ..., N) be proper lower semicontinuous and convex functions. Let
f : E → R be strongly coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E such that C ⊂ int(domf),
such that Ω := ∩∞j=1F (Tj) ∩ (∩Nk=1EP (Gk) 6= ∅. Then the sequence {xn} generated
for arbitrary u, x1 ∈ E by{

un = ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

xn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(un) +
∑∞
j=1 γnj∇f(Tjun)), ∀n ≥ 1,

(3.35)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where G(x, y) := g(x, y) + 〈Bx, y −

x〉+ϕ(y)−ϕ(x) and the sequences αn, βn, and γnj satisfies the following conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) αn + βn +
∑∞
j=1 γnj = 1;

(iv) 0 < a < βn,
∑∞
j=1 γnj < b < 1.

4. Applications

4.1. Convex feasibility problem. Let {Kj}∞j=1 be nonempty closed and convex
subsets of E such that ∩∞j=1Kj 6= ∅. The convex feasibility problem (CFP) is to find
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x ∈ ∩∞j=1Kj . Obviously F (
←−
P roj

f

Kj ) = Kj for all j ≥ 1. If the Legendre function
is uniformly Fréchet differentiable and bounded on bounded subsets of E, then the

Bregman projection
←−
P roj

f

Kj is BFNE, hence BSNE and F (
←−
P roj

f

Kj ) = F̂ (
←−
P roj

f

Kj )

(see, [46] Lemma 1.2.3). Thus, if we take Tj =
←−
P roj

f

Kj in Theorem 3.1, we get a strong
convergence theorem for approximating the solution of convex feasibility problems, a
common solution to a finite system of generalized mixed equilibrium problems and a
common element of the set of zeros of a finite family of maximal monotone operators.
Theorem 4.1. Let E be a reflexive real Banach space and C a nonempty, closed

and convex subset of E. Let Tj =
←−
P roj

f

Kj , where {Kj}∞j=1, are nonempty closed and

convex subsets of C. Let gk : C × C → R, (k = 1, 2, ..., N) be a bifunction satisfying
conditions (A1)−(A4). Let Bk : E → E∗, (k = 1, 2, ..., N) be a continuous and mono-
tone mappings, ϕk : C → R∪{+∞}, (k = 1, 2, ..., N) be a proper lower semicontinuous
and convex functions. Let f : E → R be strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E
such that C ⊂ int(domf) and Ai : E → 2E

∗
(i = 1, 2, ..., N) be maximal monotone op-

erators, such that Ω := ∩∞j=1F (Tj)∩(∩Nk=1EP (Gk)∩(∩Ni=1Ai) 6= ∅. Then the sequence
{xn} generated for arbitrary u, x1 ∈ E by

yn = Resf
λNn AN

◦Resf
λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn,

un = ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

yn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(un) +
∑∞
j=1 γnj∇f(Tjun)), ∀n ≥ 1,

(4.1)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where G(x, y) := g(x, y) + 〈Bx, y −

x〉+ϕ(y)−ϕ(x) and the sequences αn, βn, γnj and λn satisfy the following conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) αn + βn +
∑∞
j=1 γnj = 1;

(iv) 0 < a < βn,
∑∞
j=1 γnj < b < 1;

(v) lim inf
n→∞

λkn > 0 for each k = 1, 2, ..., N.

4.2. Zeroes of Bregman inversely strongly monotone operators. Let the Le-
gendre function f be such that

ran(∇f −A) ⊆ ran(∇f). (4.2)

The operator A : E → 2E
∗

is called Bregman inversly strongly monotone (BISM) if

(domA) ∩ (int(domf) 6= ∅

and for any x, y ∈ int(domf), and each ξ ∈ Ax, η ∈ Ay, we have

〈ξ − η,∇f∗(∇f(x)− ξ)−∇f∗(∇f(y)− η)〉 ≥ 0.

This class of operators was introduced by Butnariu and Kassey (see [18]). For any
operator A : E → 2E

∗
, the anti resolvent Af : E → 2E of A is defined by

Af := ∇f∗ ◦ (∇f −A).
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Observe that domAf ⊆ (domA)∩ (int(domf) and ranAf ⊆ int(domf). The operator
A [18] is BISM if and only if the anti-resolvent Af is a single valued BFNE operator.
Some examples of BISM operator can be seen in [18]. From the definition of anti-
resolvent and ([18], Lemma 3.5), we obtain the following proposition.
Proposition 4.2. Let f : E → (−∞,+∞] be a Legendre function and let A : E →
2E
∗

be a BISM operator such that A−1(0)∗ 6= ∅. Then the following statements holds;
(i) A−1(0)∗ = F (Af ),
(ii) For any u ∈ A−1(0)∗ and x ∈ domAf , we have

Df (u,Af ) +Df (Afx, x) ≤ Df (u, x).

So, if the Legendre function f is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then the resolvent of Af of A is a single-valued BSNE operator
which satisfies F (Af ) = F̂ (Af ) ([46] Lemma 1.3.2).

In Theorem 3.1, if we let Ti = Afi and let f be the Legendre function such that
(4.2) is satisfied then we obtain the following result for approximating a common
zeroes of infinite family Bregman Inversely Strongly Monotone Operators, a common
solution to a finite system of generalized mixed equilibrium problems and a common
element of the set of zeros of a finite family of maximal monotone operators.
Theorem 4.3. Let E be a reflexive real Banach space and C a nonempty, closed and

convex subset of E. Let {Tj}∞j=1 = {Afj }∞j=1. Let gk : C × C → R, (k = 1, 2, ..., N) be

bifunctions satisfying conditions (A1) − (A4). Let Bk : E → E∗, (k = 1, 2, ..., N)
be continuous and monotone mappings, ϕk : C → R ∪ {+∞}, (k = 1, 2, ..., N)
be proper lower semicontinuous and convex functions. Let f : E → R be a
strongly coercive Legendre function which is bounded, uniformly Fréchet differen-
tiable and totally convex on bounded subsets of E such that C ⊂ int(domf) and
Ai : E → 2E

∗
(i = 1, 2, ..., N) be maximal monotone operators, such that Ω :=

∩∞j=1F (Tj) ∩ (∩Nk=1EP (Gk) ∩ (∩Ni=1A
−1
i (0)) 6= ∅. Then the sequence {xn} generated

for arbitrary u, x1 ∈ E by
yn = Resf

λNn AN
◦Resf

λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn,

un = ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

yn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(un) +
∑∞
j=1 γnj∇f(Tjun)), ∀n ≥ 1,

(4.3)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where G(x, y) := g(x, y) + 〈Bx, y −

x〉+ϕ(y)−ϕ(x) and the sequences αn, βn, γnj and λn satisfy the following conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) αn + βn +
∑∞
j=1 γnj = 1;

(iv) 0 < a < βn,
∑∞
j=1 γnj < b < 1;

(v) lim inf
n→∞

λkn > 0 for each k = 1, 2, ..., N.

4.3. Variational inequalities. Let A : E → E∗ be a BISM operator and let C be
a nonempty, closed and convex subset of domA. The variational inequality problem
corresponding to A is to find x̄ ∈ C such that

〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C. (4.4)
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The set of solutions of (4.4) is denoted by VI(A,C).
Proposition 4.4. ([45]Proposition 8) Let f : E → (−∞,+∞] be a Legendre and
totally convex function which satisfies the range condition (4.2). Let A : E → E∗ be a
BISM operator. If C is a nonempty, closed and convex subset of domA ∩ int(domf),

then V I(A,C) = F (
←−
P roj

f

C ◦Af ).
So, if the Legendre function f is uniformly Fréchet differentiable and bounded on
bounded subsets of E, the anti-resolvent Af is single-valued ([18], Lemma 3.5(d))and

BSNE operator (see Section 2 and [18] Lemma 3.5(c)) which satisfy F (Af ) = F̂ (Af ).

Since the Bregman projection
←−
P roj

f

C is a BFNE operator, it is a BSNE which satisfy

F (
←−
P roj

f

C) = F̂ (
←−
P roj

f

C). It now follows (see [42] Lemma 2) that
←−
P roj

f

C ◦Af is also a

BSNE operator which satisfies F (
←−
P roj

f

C ◦Af ) = F̂ (
←−
P roj

f

C ◦Af ). From Proposition

4.4, we know that F (
←−
P roj

f

C ◦ Af ) = V (A,C). Therefore in Theorem 3.1, if we let

Ti =
←−
P roj

f

C ◦Af , we get an algorithm for finding a common solution to the variational
inequality problem corresponding to infinitely many BISM operators and system of
equilibrium problem.
Theorem 4.5. Let E be a reflexive real Banach space and C a nonempty, closed
and convex subset of E. Let Aj : E → E∗, j ≥ 1, be an infinite family of BISM

operators such that C ⊂ domAj and {Tj}∞n=1 = {
←−
P roj

f

C ◦ A
f
j }∞j=1. Let gk : C ×

C → R, (k = 1, 2, ..., N) be bifunctions satisfying conditions (A1) − (A4). Let Bk :
E → E∗, (k = 1, 2, ..., N) be continuous and monotone mappings, ϕk : C → R ∪
{+∞}, (k = 1, 2, ..., N) be proper lower semicontinuous and convex functions. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf) and Ai : E → 2E

∗
(i = 1, 2, ..., N) be maximal monotone operators, such

that Ω := ∩∞j=1F (Tj) ∩ (∩Nk=1EP (Gk) ∩ (∩Ni=1A
−1
i (0)) 6= ∅. Then the sequence {xn}

generated for arbitrary u, x1 ∈ E by
yn = Resf

λNn AN
◦Resf

λN−1
n AN−1

◦ · · · ◦Resfλ2
nA2
◦Resfλ1

nA1
xn,

un = ResfGN ◦Res
f
GN−1

◦ ... ◦ResfG2
◦ResfG1

yn,

xn+1 = ∇f∗(αn∇f(u) + βn∇f(un) +
∑∞
j=1 γnj∇f(Tjun)), ∀n ≥ 1,

(4.5)

converges strongly to a point p =
←−
P rojfΩu ∈ Ω, where G(x, y) := g(x, y) + 〈Bx, y −

x〉+ϕ(y)−ϕ(x) and the sequences αn, βn, γnj and λn satisfy the following conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) αn + βn +
∑∞
j=1 γnj = 1;

(iv) 0 < a < βn,
∑∞
j=1 γnj < b < 1;

(v) lim inf
n→∞

λkn > 0 for each k = 1, 2, ..., N.
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