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Abstract. A generalized Lüders operation on states of a von Neumann algebra is considered, and

the fixed points of this operation are investigated. In particular, a description of the fixed points is
obtained for arbitrary semifinite von Neumann algebras, generalizing thus the one obtained for the

full algebra. There is some similarity between the results for the Lüders operation on states and the

results for the analogous Lüders operation on the algebra, however, the analogy is not complete and
the difference is already seen for the full algebra.
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Introduction

In 1951 G. Lüders [6] defined the following operation for bounded operators on a
complex separable Hilbert space H

x 7→
∑
i

eixei, x ∈ B(H),

where {ei} is a countable partition of the identity into pairwise orthogonal projections,
and characterised the fixed points of this operation as those x’s which commute with
all the ei. Since then various generalizations of the Lüders operation have been
considered and their fixed points analysed (see [1, 2, 5, 7, 9]). The most general form
of this generalized Lüders operation is

x 7→
∑
i

a∗i xai, x ∈ B(H),

with the assumption ∑
i

a∗i ai =
∑
i

aia
∗
i = 1.
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It is immediately seen that if x commutes with all the ai, then it is a fixed point of
this operation; however, the natural conjecture that the converse is also true turned
out false as shown in [1]. On the other hand, if the generalized Lüders operation
is considered for normal states on B(H), given as is well known by density matrices
(i.e. positive operators of trace one), then the fixed points coincide with the density
matrices which commute with all the ai (see [2]). This result raised the natural
question about the fixed points of the generalized Lüders operation for normal states
on an arbitrary von Neumann algebra, or slightly more general: the fixed points of the
generalized Lüders operation on the predual of a von Neumann algebra. In the paper,
we investigate this problem for semifinite algebras, and show that the fixed points
again coincide with the normal functionals that commute with all the ai. It turns
out that the same also holds true for an arbitrary algebra, but under the additional
assumption that the von Neumann algebra generated by the ai is abelian.

1. Preliminaries and notation

Let M be an arbitrary von Neumann algebra with identity 1 acting on a Hilbert
space H. The predual M∗ of M is a Banach space of all normal, i.e. continuous in
the ultraweak topology, linear functionals on M. In the sequel, three basic norms will
be considered: the norm in M, the norm in M∗, and the norm in the space L1(M, τ).
They will be denoted respectively by ‖ · ‖∞ — norm for bounded operators in M, ‖ · ‖
— norm for bounded functionals, and ‖ · ‖1 — L1-norm. The same notation will be
employed also for maps on these spaces, thus e.g. for a map Φ, the symbol ‖Φ‖1 will
denote the norm of Φ regarded as a map on L1(M, τ).

A state on M is a bounded positive linear functional ρ : M→ C of norm one. For
a normal state ρ its support, denoted by s(ρ), is defined as the smallest projection in
M such that ρ(s(ρ)) = ρ(1). In particular, we have

ρ(s(ρ)x) = ρ(xs(ρ)) = ρ(x), x ∈M,

and if ρ(s(ρ)xs(ρ)) = 0 for s(ρ)xs(ρ) > 0, then s(ρ)xs(ρ) = 0.
For any a ∈M and ρ ∈M∗, we define functionals aρ, ρa ∈M∗ as

aρ = ρ(· a), ρa = ρ(a ·).
Let {ai} be a countable (finite or infinite) family of elements of M such that∑

i

a∗i ai = 1 and
∑
i

aia
∗
i = 1, (1.1)

(for an infinite family, the series is assumed to converge in the σ-weak topology, i.e.
the σ(M,M∗)-topology). By A is denoted the von Neumann algebra generated by all
the ai, A = W ∗({ai}). Define a generalized Lüders operation Φ∗ : M∗ → M∗ by the
formula

Φ∗(ρ) =
∑
i

aiρa
∗
i , ρ ∈M∗.

Observe that if ρ is positive, then aiρa
∗
i is also positive, and we have∑

i

‖aiρa∗i ‖ =
∑
i

(aiρa
∗
i )(1) =

∑
i

ρ(a∗i ai) = ρ(1),
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thus the series is norm-convergent for positive ρ’s, which yields its norm-convergence
for all ρ ∈M∗.

The dual map Φ: M→M is defined by the condition

Φ∗(ρ) = ρ ◦ Φ, ρ ∈M∗,

and it is easily seen that we have

Φ(x) =
∑
i

a∗i xai, x ∈M,

where the series is convergent in the σ-weak topology.
Let us look closer at conditions (1.1). The first equality there yields for a state ρ

(Φ∗(ρ))(1) =
∑
i

(aiρa
∗
i )(1) =

∑
i

ρ(a∗i ai) = ρ(1),

thus Φ∗ sends states to states. The second equality in (1.1) is called the trace-
preserving property (of Φ). It is justified by the fact that for the full algebra B(H)
and canonical trace “tr” we have, roughly speaking,

tr Φ(h) =
∑
i

tr(a∗i hai) =
∑
i

tr(aia
∗
i h) = tr

(∑
i

aia
∗
i

)
h = trh,

for trace-class h ∈ B(H). The trace-preserving property has also one more important
consequence. Namely, denote by Fix Φ∗ the fixed-point space of Φ∗, i.e.

Fix Φ∗ = {ρ ∈M∗ : Φ∗(ρ) = ρ}.

By a small abuse of notation, let us agree to denote by M∗ ∩A′ the set of all normal
functionals which commute with all elements in A, i.e.

M∗ ∩A′ = {ρ ∈M∗ : aρ = ρa for all a ∈ A}.

Now, the trace-preserving property yields

M∗ ∩A′ ⊂ Fix Φ∗,

and for M = B(H), a result in [2], mentioned in the Introduction, gives the equality

Fix Φ∗ = M∗ ∩A′. (FP*)

We are interested in the situations when the above equality holds true. A similar
problem, which however has attracted so far much more attention, is as follows.
Denote the fixed-point space of Φ by Fix Φ, i.e.

Fix Φ = {x ∈M : Φ(x) = x}.

Obviously, we have

M ∩A′ ⊂ Fix Φ,

and the question is when there is equality above. In general, the inclusion is strict as
shown in [1]. However, if there is a normal faithful Φ-invariant state ϕ, i.e. Φ∗(ϕ) = ϕ,
then ergodic theory for von Neumann algebras yields the following facts:

(i) Fix Φ = M ∩A′,
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(ii) there exists a normal faithful conditional expectation
E : M→ Fix Φ such that ϕ ◦ E = ϕ, and

lim
n→∞

1

n

n−1∑
k=0

Φk(x) = Ex, x ∈M,

where the series is convergent in the σ-weak topology,
(iii) Fix Φ∗ = {ρ ◦ E : ρ ∈M∗}.

In this case, we further obtain for each ρ ∈M∗

lim
n→∞

1

n

n−1∑
k=0

ρ
(
Φk(x)

)
= ρ(Ex), x ∈M,

i.e.

weak− lim
n→∞

1

n

n−1∑
k=0

Φk∗(ρ) = ρ ◦ E, ρ ∈M∗.

On account of the Mean Ergodic Theorem in Banach spaces (cf. [4, Theorem 1.1]),
we infer that for each ρ ∈M∗

norm− lim
n→∞

1

n

n−1∑
k=0

Φk∗(ρ) = ρ ◦ E.

To finish our considerations concerning the fixed-points of Φ, let us note that if the
algebra A is abelian, then we again have the equality Fix Φ = M∩A′ as shown in [9].

In the course of our analysis, we shall be concerned with slightly weaker conditions
on the ai, namely, ∑

i

a∗i ai = 1 and
∑
i

aia
∗
i = c 6 1, (1.2)

where c is some positive operator in M. Consequently, in this situation, we shall aim
at showing the inclusion

Fix Φ∗ ⊂M∗ ∩A′.

Together with the operations Φ∗ and Φ we shall consider conjugate operations Φ̃∗
and Φ̃ defined on M∗ and M, respectively, by the formulae

Φ̃∗(ρ) =
∑
i

a∗i ρai, ρ ∈M∗,

and

Φ̃(x) =
∑
i

aixa
∗
i , x ∈M.

The maps Φ and Φ̃ are completely positive and

‖Φ‖∞ = 1, ‖Φ̃‖∞ = ‖c‖∞;

in particular, the following Schwarz-Kadison inequalities hold for all x ∈M

Φ(x∗)Φ(x) 6 Φ(x∗x), Φ̃(x∗)Φ̃(x) 6 ‖Φ̃‖∞Φ̃(x∗x) 6 Φ̃(x∗x). (1.3)
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(Later it will be shown that if Fix Φ∗ 6= {0}, then ‖c‖∞ = 1.) Moreover, since

(Φ∗)
∗ = Φ and (Φ̃∗)

∗ = Φ̃, we have

‖Φ∗‖ = ‖Φ‖∞ = 1 and ‖Φ̃∗‖ = ‖Φ̃‖∞ = ‖c‖∞.

2. Fixed points

Lemma 2.1. Let 0 6 ϕ ∈ Fix Φ∗ be faithful. Then the linear space {a′ϕ : a′ ∈ Fix Φ}
is norm-dense in Fix Φ∗.

Proof. The results in ergodic theory mentioned earlier, yield that Fix Φ = M∩A′ and
Fix Φ = E(M), where E is the conditional expectation described before. On account
of [3, Lemma 7], Fix Φ∗ is isometrically isomorphic to the predual of Fix Φ, and this
isomorphism is given by

Fix Φ∗ 3 ρ←→ ρ|Fix Φ ∈ (Fix Φ)∗.

Since ϕ is faithful, the space

{a′(ϕ|Fix Φ) : a′ ∈ Fix Φ}
is norm-dense in (Fix Φ)∗. Indeed, should it be not so, then there would be an
0 6= x0 ∈ ((Fix Φ)∗)

∗ = Fix Φ such that

(a′ϕ)(x0) = 0

for all a′ ∈ Fix Φ. Taking a′ = x∗0, we would obtain

ϕ(x0x
∗
0) = 0,

so x0 = 0, giving a contradiction.
For every a′ ∈ Fix Φ and every x ∈M, we have

(a′ϕ)(Ex) = ϕ((Ex)a′) = ϕ(E(xa′)) = ϕ(xa′) = (a′ϕ)(x),

showing that
(a′ϕ) ◦ E = a′ϕ.

Now take arbitrary ρ ∈ Fix Φ∗. There is a net {a′γϕ}, with a′γ ∈ Fix Φ, such that

norm− lim
γ

(a′γϕ|Fix Φ) = ρ|Fix Φ.

Since ρ is E-invariant, we obtain

‖ρ− a′γϕ‖ = ‖(ρ− a′γϕ) ◦ E‖ = ‖(ρ− a′γϕ)|Fix Φ‖ →
γ

0

which proves the claim. �

As a starting point in our investigation of the fixed points, let us note the following
result.

Theorem 2.2. Let M be an arbitrary von Neumann algebra, and assume that there
is a normal faithful state ϕ ∈M∗ ∩A′. It follows that

Fix Φ∗ = M∗ ∩A′. (FP*)

Moreover, we then have
∑
i

aia
∗
i = 1.
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Proof. Indeed, since Fix Φ ⊂ A′, we have for all a′ ∈ Fix Φ and all a ∈ A

a(a′ϕ) = a′(aϕ) = a′(ϕa) = (a′ϕ)a,

which means that all a′ϕ commute with A. From the denseness of the set of all a′ϕ in
Fix Φ∗, it follows that all elements in Fix Φ∗ commute with A, showing that equality
(FP*) holds.

Moreover, we have

ϕ =
∑
i

aiϕa
∗
i = ϕ

∑
i

aia
∗
i = ϕc,

hence for each x ∈M, we get

(xϕ)(1) = ϕ(x) = (ϕc)(x) = ϕ(cx) = (xϕ)(c),

and since the elements xϕ for x ∈M lie densely in M∗ (cf. the reasoning in the proof
of Lemma 2.1), we obtain

ρ(1) = ρ(c)

for each ρ ∈M∗, which yields c = 1. �

From the theorem above, we get

Corollary. Let M be a finite von Neumann algebra. Then equality (FP*) holds.

Indeed, if M is σ-finite and τ is a normal finite faithful trace on M, then it is
immediately seen that τ ∈ M∗ ∩ A′. If M is not σ-finite, then the reasoning above
applies to a faithful family of normal finite traces on M in place of a single normal
finite faithful trace.

Now, assume that M is semifinite, and let τ be a normal semifinite faithful trace
on M. An isometric isomorphism between M∗ and L1(M, τ) is given by

M∗ 3 ρ←→ hρ ∈ L1(M, τ), ρ(x) = τ(xhρ), x ∈M.

hρ is called the density of ρ. In line with our previous terminology, we adopt the
notation ρ = hρτ , thus

M∗ = {hτ : h ∈ L1(M, τ)}.
Let h+ ∈ L1

+(M, τ). There is ϕ ∈ M+
∗ such that h+ is the density of ϕ. We have

aih+ ∈ L1(M, τ), and thus∑
i

‖aih+a
∗
i ‖1 =

∑
i

τ(aih+a
∗
i ) =

∑
i

τ(a∗i aih+) =
∑
i

ϕ(a∗i ai)

= ϕ(1) = τ(h+) = ‖h+‖1 <∞,

which shows that the series
∑
i

aiha
∗
i converges in the norm ‖ · ‖1 for each h+ ∈

L1
+(M, τ). Since every h ∈ L1(M, τ) is a linear combination of four elements from

L1
+(M, τ), the series

∑
i

‖aiha∗i ‖1 converges for each h ∈ L1(M, τ). By the same

token, we obtain that the series
∑
i

‖a∗i hai‖1 converges for each h ∈ L1(M, τ).
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Proposition 2.3. Assume that for Φ∗ condition (1.2) is satisfied. Then the following
assertions hold:

(i) Φ̃ and Φ can be extended to bounded linear maps of norm one from L1(M, τ)

to L1(M, τ) (denoted by the same symbol) such that ‖Φ̃‖1 = 1, ‖Φ‖1 6 ‖c‖∞,
and

τ ◦ Φ̃ = τ, τ ◦ Φ 6 τ.

(It will be shown later that if Fix Φ∗ 6= {0}, then ‖Φ‖1 = 1);
(ii) for any x, h ∈M ∩ L1(M, τ) we have

τ(xΦ̃(h)) = τ(Φ(x)h); (2.1)

(iii) for each ρ ∈M∗, we have

hΦ∗(ρ) = Φ̃(hρ).

Proof. First, take an arbitrary h ∈M∩L1(M, τ). There is ρ ∈M∗ such that h = hρ.
For each x ∈M ∩ L1(M, τ), we have as before∑

i

‖xaihρa∗i ‖1 6
∑
i

‖x‖∞‖aihρa∗i ‖1 = ‖x‖∞
∑
i

‖aihρa∗i ‖1 <∞,

and ∑
i

‖a∗i xaihρ‖1 6
∑
i

‖a∗i xai‖1‖hρ‖∞ = ‖hρ‖∞
∑
i

‖a∗i xai‖1 <∞,

in particular, the series
∑
i

xaihρa
∗
i ,
∑
i

a∗i xaihρ,
∑
i

aihρa
∗
i and

∑
i

a∗i xai converge

in ‖ · ‖1-norm. On the other hand, we have

Φ̃(x) =
∑
i

aixa
∗
i , x ∈M,

where the series on the right-hand side converges σ-weakly. Thus

Φ̃(x)hρ =
(∑

i

aixa
∗
i

)
hρ =

∑
i

aixa
∗
i hρ,

and
x
∑
i

aihρa
∗
i =

∑
i

xaihρa
∗
i ,

where the series on the right-hand sides of the equalities above converge in ‖·‖1-norm.
Consequently, we obtain

τ(xΦ̃(hρ)) = τ
(
x
∑
i

aihρa
∗
i

)
= τ

(∑
i

xaihρa
∗
i

)
=
∑
i

τ(xaihρa
∗
i ) =

∑
i

τ(a∗i xaihρ)

= τ
(∑

i

a∗i xaihρ

)
= τ(Φ(x)hρ),

(2.2)

showing (ii). On the other hand, we have

τ
(
xhΦ∗(ρ)

)
= (Φ∗(ρ))(x) = ρ(Φ(x)) = τ

(
Φ(x)hρ

)
,
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which yields

τ
(
xhΦ∗(ρ)

)
= τ

(
xΦ̃(hρ)

)
for x ∈ M ∩ L1(M, τ). Since M ∩ L1(M, τ) is dense in L1(M, τ) in ‖ · ‖1-norm, the
equality above holds for all x ∈ L1(M, τ), which means that

hΦ∗(ρ) = Φ̃(hρ)

for all hρ ∈ M ∩ L1(M, τ). Taking into account isometric isomorphism between M∗
and L1(M, τ), we obtain for such hρ

‖Φ̃(hρ)‖1 = ‖hΦ∗(ρ)‖1 = ‖Φ∗(ρ)‖ 6 ‖ρ‖ = ‖hρ‖1,
and the denseness of M ∩ L1(M, τ) in L1(M, τ) in ‖ · ‖1-norm yields the extension of

Φ̃. For hρ ∈ L1
+(M, τ), we have as before

‖Φ̃(hρ)‖1 = τ(Φ̃(hρ)) =
∑
i

τ(aihρa
∗
i ) = τ(hρ) = ‖hρ‖1,

showing that ‖Φ̃‖1 = 1. Moreover, the calculations above yield the relation

τ ◦ Φ̃ = τ

on L1
+(M, τ), and hence on the whole of L1(M, τ). Observe that since for each h ∈

L1(M, τ) the series
∑
i

aiha
∗
i is convergent in the norm ‖ · ‖1, we have the formula

Φ̃(h) =
∑
i

aiha
∗
i , h ∈ L1(M, τ).

The reasoning above may be repeated almost verbatim for Φ taking into account
relation (2.2) and the equality

τ(xhΦ̃∗(ρ)) = (Φ̃∗(ρ))(x) = ρ(Φ̃(x)) = τ(Φ̃(x)hρ) = τ(xΦ(hρ)),

giving the formula
hΦ̃∗(ρ) = Φ(hρ)

for hρ ∈M ∩ L1(M, τ). Further, we have

‖Φ(hρ)‖1 = ‖hΦ̃∗(ρ)‖1 = ‖Φ̃∗(ρ)‖ 6 ‖Φ̃∗‖‖ρ‖
= ‖c‖∞‖ρ‖ = ‖c‖∞‖hρ‖1,

and thus ‖Φ‖1 6 ‖c‖∞.
Let h ∈ L1

+(M, τ), and let ϕ ∈M+
∗ be such that hϕ = h. Then

τ(Φ(h)) = τ
(∑

i

a∗i hai

)
=
∑
i

τ(aia
∗
i h)

=
∑
i

ϕ(aia
∗
i ) = ϕ(c) 6 ϕ(1) = τ(h),

showing the Φ-subinvariance of τ .
Let now hρ be an arbitrary element of L1(M, τ). For a given ε > 0, choose

hϕ ∈M ∩ L1(M, τ) such that
‖hρ − hϕ‖1 < ε.
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We have

‖Φ̃(hρ)− Φ̃(hϕ)‖1 6 ‖hρ − hϕ‖1 < ε,

and on account of isometric isomorphism between M∗ and L1(M, τ) we obtain

‖hΦ∗(ρ) − hΦ∗(ϕ)‖1 = ‖Φ∗(ρ)− Φ∗(ϕ)‖
6 ‖ρ− ϕ‖ = ‖hρ − hϕ‖1 < ε.

Since

hΦ∗(ϕ) = Φ̃(hϕ),

we get

‖hΦ∗(ρ) − Φ̃(hρ)‖1 6 ‖hΦ∗(ρ) − hΦ∗(ϕ)‖1 + ‖hΦ∗(ϕ) − Φ̃(hϕ)‖1
+ ‖Φ̃(hϕ)− Φ̃(hρ)‖1 < ε+ 0 + ε = 2ε,

showing that

hΦ∗(ρ) = Φ̃(hρ). �

Remark. It can be shown that equality (2.1) still holds true if one of the elements,
say x, is in M and the other, h, is in L1(M, τ), but we shall not need such generality.

As a consequence of Proposition 2.3, we obtain

Lemma 2.4. Assume that for Φ∗ condition (1.2) holds. Then for each ρ ∈M∗, each
positive integer k, and any x, h ∈M ∩ L1(M, τ) the following formulae hold

hΦk
∗(ρ) = Φ̃k(hρ), τ

(
xΦ̃k(h)

)
= τ

(
Φk(x)h

)
.

Proof. Indeed, we have

hΦ2
∗(ρ) = hΦ∗(Φ∗(ρ)) = Φ̃

(
hΦ∗(ρ)

)
= Φ̃(Φ̃(hρ)) = Φ̃2(hρ),

and the general case follows by induction. The second equality is proven in virtually
the same way. �

Assume that there is a normal faithful state ϕ ∈ Fix Φ∗, and take an arbitrary
ρ ∈M∗. By the Mean Ergodic Theorem as referred to in Section 1, it follows that

norm− lim
n→∞

1

n

n−1∑
k=0

Φk∗(ρ) = ρ ◦ E,

where by “norm− lim” is meant the limit in the norm in M∗. On account of isometric
isomorphism between M∗ and L1(M, τ), we get

‖ · ‖1 − lim
n→∞

1

n

n−1∑
k=0

hΦk
∗(ρ) = hρ◦E,

and from Lemma 2.4 we get

‖ · ‖1 − lim
n→∞

1

n

n−1∑
k=0

Φ̃k(hρ) = hρ◦E, hρ ∈ L1(M, τ).



310 KATARZYNA LUBNAUER, ANDRZEJ  LUCZAK AND HANNA PODSȨDKOWSKA

Denoting the limit above by Ẽhρ, we obtain that Ẽ is a positive projection of norm

one from L1(M, τ) onto Fix Φ̃ such that

τ ◦ Ẽ = τ.

The next lemma is an obvious result in the theory of noncommutative Lp-spaces
but for the sake of completeness we present its simple proof here.

Lemma 2.5. For an arbitrary semifinite von Neumann algebra N with normal semifi-
nite faithful trace ψ, the space {aψ : a ∈ N ∩ L1(N, ψ)} is norm-dense in N∗.

Proof. We have
N∗ = {aψ : a ∈ L1(N, ψ)},

and the isometric isomorphism between L1(N, ψ) and N∗ given by

L1(N, ψ) 3 a←→ aψ ∈ N∗,

so the result follows from the ‖ · ‖1-norm denseness of N ∩ L1(N, ψ) in L1(N, ψ). �

Lemma 2.6. Assume that for Φ∗ condition (1.2) holds, and that there is a normal

faithful state ϕ ∈ Fix Φ∗. Then for arbitrary hρ ∈ M ∩ L1(M, τ), we have Ẽhρ ∈
M ∩ L1(M, τ). Moreover, for any a ∈M ∩ L1(M, τ), the following formula holds

τ((Ea)hρ) = τ(aẼhρ). (2.3)

Proof. First note that for hρ ∈M ∩ L1(M, τ), we have∥∥∥ 1

n

n−1∑
k=0

Φ̃k(hρ)
∥∥∥
∞
6

1

n

n−1∑
k=0

‖Φ̃k(hρ)‖∞ 6 ‖hρ‖∞.

For any a ∈M ∩ L1(M, τ), equality (2.1) yields

(aτ)

(
1

n

n−1∑
k=0

Φ̃k(hρ)

)
=

1

n

n−1∑
k=0

τ
(
aΦ̃k(hρ)

)
=

1

n

n−1∑
k=0

τ
(
Φk(a)hρ

)
=

1

n

n−1∑
k=0

ρ
(
Φk(a)

)
→ ρ(Ea).

(2.4)

Since the functionals aτ for a ∈ M ∩ L1(M, τ) lie densely in M∗, and the sequence(
1

n

n−1∑
k=0

Φ̃k(hρ)

)
is bounded in norm in M, it follows that it converges σ-weakly to

an element in M. But this sequence converges in the norm ‖ · ‖1 to Ẽhρ, which means

that Ẽhρ ∈M.
We have

1

n

n−1∑
k=0

Φ̃k(hρ)→ Ẽhρ in ‖ · ‖1 − norm,

so

1

n

n−1∑
k=0

aΦ̃k(hρ)→ aẼhρ in ‖ · ‖1 − norm,
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hence
1

n

n−1∑
k=0

τ
(
aΦ̃k(hρ)

)
→ τ(Ẽhρ).

Relation (2.4) yields

1

n

n−1∑
k=0

τ
(
aΦ̃k(hρ)

)
= (aτ)

(
1

n

n−1∑
k=0

Φ̃k(hρ)

)
→ ρ(Ea),

thus we obtain
τ((Ea)hρ) = ρ(Ea) = τ(aẼhρ). �

The proposition below shows an important relation between the fixed-point spaces

of the maps Φ and Φ̃.

Proposition 2.7. Assume that for Φ∗ condition (1.2) holds, and that there is a
normal faithful state ϕ ∈ Fix Φ∗. Then

Fix Φ̃ ∩ L1(M, τ) = Fix Φ ∩ L1(M, τ).

Proof. Let h ∈ Fix Φ̃∩L1(M, τ). First, observe that since Φ̃ is positive, the following
equality holds true

Φ̃(h∗) = Φ̃(h)∗ = h∗.

By virtue of relations (1.3), (2.1) and the Φ-subinvariance of τ , we have for h as above

0 6 τ((Φ(h)− h)∗(Φ(h)− h)) = τ(Φ(h∗)Φ(h))− τ((Φ(h∗)h)+

− τ(h∗Φ(h)) + τ(h∗h) = τ(Φ(h∗)Φ(h))− τ(h∗Φ̃(h))+

− τ(Φ̃(h∗)h)) + τ(h∗h) = τ(Φ(h∗)Φ(h))− τ(h∗h)

6 τ(Φ(h∗h))− τ(h∗h) 6 τ(h∗h)− τ(h∗h) = 0,

and the faithfulness of τ yields
Φ(h) = h.

In the same way, we show that for h ∈ Fix Φ ∩ L1(M, τ), we have

Φ̃(h) = h. �

The next result may be compared with Theorem 2.2, however for a semifinite
algebra we may assume a little less.

Proposition 2.8. Let M be a von Neumann algebra with normal semifinite faithful
trace τ . Assume that for Φ∗ condition (1.2) holds, and that there is a normal faithful
state ϕ ∈ Fix Φ∗. Then Fix Φ∗ ⊂M∗ ∩A′.

Proof. First, we shall show that τ |Fix Φ is semifinite. Take an arbitrary x ∈ Fix Φ,
x > 0. Since Fix Φ = M ∩A′, we have

Φ̃(x) =
∑
i

aixa
∗
i = x

∑
i

aia
∗
i = xc = cx 6 x,

which yields that for arbitrary n the following inequalities hold true

x > Φ̃(x) > Φ̃2(x) > . . . > Φ̃n(x).
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Since τ is semifinite, there is 0 6 z ∈ M such that z 6 x and 0 < τ(z) < ∞, and
the relation above yields

1

n

n−1∑
k=0

Φ̃k(z) 6
1

n

n−1∑
k=0

Φ̃k(x) 6 x.

Passing to the limit, we obtain

Ẽz 6 x.
From Proposition 2.3 we get

τ(z) = τ(Ẽz),
hence 0 < τ(Ẽz) <∞. Lemmas 2.6 and 2.7 yield Ẽz ∈ Fix Φ, so the semifiniteness of
τ |Fix Φ follows. This fact allows us to consider the space L1(Fix Φ, τ |Fix Φ).

(Observe that we have Φ(Ẽz) = Ẽz, hence

‖Φ(Ẽz)‖1 = ‖Ẽz‖1 = τ(Ẽz) > 0,

showing that ‖Φ‖1 = 1.)
Now we shall show that for any a′ ∈ L1(Fix Φ, τ |Fix Φ), we have a′τ ∈ Fix Φ∗.

Assume first that a′ ∈ Fix Φ ∩ L1(Fix Φ, τ |Fix Φ) = Fix Φ ∩ L1(M, τ). Then by

Lemma 2.7, a′ ∈ Fix Φ̃, which means that Ẽa′ = a′. For any x ∈ M ∩ L1(M, τ), it
follows from relation (2.4) that

(a′τ)(Ex) = τ((Ex)a′) = τ(xẼa′) = τ(xa′) = (a′τ)(x),

and the σ-weak denseness of M ∩ L1(M, τ) in M yields

(a′τ) ◦ E = a′τ.

Since Fix Φ∩L1(Fix Φ, τ |Fix Φ) is dense in L1(Fix Φ, τ |Fix Φ) in the norm ‖ · ‖1, the
equality above holds for all a′ ∈ L1(Fix Φ, τ |Fix Φ) meaning that a′τ ∈ Fix Φ∗.

Further, we have

(Fix Φ)∗ = {a′(τ |Fix Φ) : a′ ∈ L1(Fix Φ, τ |Fix Φ)},
and the isometric isomorphism

Fix Φ∗ 3 ρ←→ ρ|Fix Φ ∈ (Fix Φ)∗

between Fix Φ∗ and (Fix Φ)∗ yields the equality

Fix Φ∗ = {a′τ : a′ ∈ L1(Fix Φ, τ |Fix Φ)}.
Since

{a′(τ |Fix Φ) : a′ ∈ Fix Φ ∩ L1(Fix Φ, τ |Fix Φ)}
is norm-dense in (Fix Φ)∗, it follows that

{a′τ : a′ ∈ Fix Φ ∩ L1(Fix Φ, τ |Fix Φ)}
is norm-dense in Fix Φ∗. For any a ∈ A, a′ ∈ Fix Φ ∩ L1(M, τ), and x ∈ M, we have
as a′ ∈M ∩A′

(a(a′τ))(x) = (a′τ)(xa) = τ(xaa′) = τ(xa′a),

and
((a′τ)a)(x) = (a′τ)(ax) = τ(axa′).
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Since xa′ ∈ L1(M, τ), it follows that

τ(axa′) = τ(xa′a),

giving

a(a′τ) = (a′τ)a

for any a ∈ A, a′ ∈ Fix Φ∩L1(M, τ). Since the functionals a′τ for a′ ∈ Fix Φ∩L1(M, τ)
lie densely in Fix Φ∗, we get

aρ = ρa

for every ρ ∈ Fix Φ∗ and a ∈ A, showing the claim. �

Observe that the existence of a normal faithful state in Fix Φ∗, and thus by the
proposition above in M∗ ∩ A′, yields, as in the proof of Theorem 2.2, that we must

have
∑
i

aia
∗
i = 1.

Before proving our main result, we show a property of the support of a normal
invariant state.

Lemma 2.9. Let 0 6 ρ ∈ Fix Φ∗. Then ais(ρ) = s(ρ)ais(ρ).

Proof. On account of [8, Lemma 1], we have

Φ(s(ρ)) > s(ρ),

hence ∑
i

a∗i s(ρ)⊥ai = Φ(s(ρ)⊥) 6 s(ρ)⊥.

Multiplying both sides of the above inequality by s(ρ) on the left and right, we get∑
i

s(ρ)a∗i s(ρ)⊥ais(ρ) = 0,

i.e. ∑
i

(s(ρ)⊥ais(ρ))∗(s(ρ)⊥ais(ρ)) = 0

which yields

s(ρ)⊥ais(ρ) = 0

for each i. Consequently, we obtain

ais(ρ) = s(ρ)ais(ρ). �

Now we are in a position to characterise the set Fix Φ∗ for a semifinite von Neumann
algebra.

Theorem 2.10. Let M be a von Neumann algebra with a normal faithful semifinite
trace τ , and let Φ∗ be a Lüders operation for which condition (1.1) holds. Then

Fix Φ∗ = M∗ ∩A′. (FP*)
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Proof. As we have already seen, condition (1.1) guarantees that

M∗ ∩A′ ⊂ Fix Φ∗,

so we only need to show the converse inclusion.
First, take an arbitrary 0 6 ϕ ∈ Fix Φ∗, and consider the reduced von Neumann

algebra

Ms(ϕ) = {s(ϕ)x|K : x ∈M},
where

K = s(ϕ)(H),

with trace τ̂ defined on positive elements s(ϕ)x|K as

τ̂(s(ϕ)x|K) = τ(s(ϕ)xs(ϕ)).

In what follows, we shall consider all operators on the subspace K only, so to simplify
the notation, we shall sometimes drop the symbol of restriction ·|K. First we shall
show that τ̂ is semifinite. Indeed, for any positive s(ϕ)xs(ϕ) there is 0 6 z ∈M such
that z 6 s(ϕ)xs(ϕ) and

0 < τ(z) <∞.
But then

z = s(ϕ)zs(ϕ),

which means that z|K ∈Ms(ϕ), and

0 < τ̂(z|K)) = τ(s(ϕ)zs(ϕ)) = τ(z) <∞,

showing the claim.
Denoting by ϕ̂ the obvious restriction of ϕ to Ms(ϕ), i.e.

ϕ̂(s(ϕ)x|K) = ϕ(s(ϕ)xs(ϕ)) = ϕ(x),

we infer that ϕ̂ is a normal positive faithful functional. Consider the map Φ̂∗ defined
on
(
Ms(ϕ)

)
∗ by the formula

Φ̂∗(ρ̂) =
∑
i

s(ϕ)ais(ϕ)ρ̂s(ϕ)a∗i s(ϕ), ρ̂ ∈
(
Ms(ϕ)

)
∗.

The relation Φ(s(ϕ)) > s(ϕ) yields∑
i

s(ϕ)a∗i s(ϕ)ais(ϕ) = s(ϕ)Φ(s(ϕ))s(ϕ) = s(ϕ),

and further ∑
i

s(ϕ)ais(ϕ)a∗i s(ϕ) = s(ϕ)Φ̃(s(ϕ))s(ϕ)

6 s(ϕ)Φ̃(1)s(ϕ) 6 s(ϕ),

thus, since s(ϕ) is the identity of Ms(ϕ), our previous considerations may be applied

to the von Neumann algebra Ms(ϕ) and the Lüders operation Φ̂ satisfying conditions
(1.2).
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For the functional ϕ̂ we have∑
i

(s(ϕ)ais(ϕ)ϕ̂s(ϕ)a∗i s(ϕ))(s(ϕ)xs(ϕ)) =
∑
i

ϕ(a∗i s(ϕ)xs(ϕ)ai)

=
∑
i

(aiϕa
∗
i )(s(ϕ)xs(ϕ)) = ϕ(s(ϕ)xs(ϕ)) = ϕ̂(s(ϕ)xs(ϕ))

showing that Φ̂∗(ϕ̂) = ϕ̂. Since ϕ̂ is faithful, we have, as observed after Proposition
2.8,

s(ϕ)Φ̃(s(ϕ))s(ϕ) =
∑
i

s(ϕ)ais(ϕ)a∗i s(ϕ) = s(ϕ), (2.5)

giving

s(ϕ)(1− Φ̃(s(ϕ)))s(ϕ) = 0.

From this we obtain

s(ϕ)(1− Φ̃(s(ϕ))) = 0,

which means that

s(ϕ) = s(ϕ)Φ̃(s(ϕ)) = Φ̃(s(ϕ))s(ϕ),

showing the inequality

s(ϕ) 6 Φ̃(s(ϕ)).

Further, we have

Φ̃(s(ϕ)⊥) = Φ̃(1)− Φ̃(s(ϕ)) 6 1− s(ϕ) = s(ϕ)⊥,

which means that ∑
i

ais(ϕ)⊥a∗i 6 s(ϕ)⊥.

This yields the relation ∑
i

s(ϕ)ais(ϕ)⊥a∗i s(ϕ) = 0,

i.e.

s(ϕ)ais(ϕ)⊥ = 0.

The last equality means that

s(ϕ)ai = s(ϕ)ais(ϕ),

which together with Lemma 2.9 gives

s(ϕ)ai = ais(ϕ). (2.6)

Taking into account Proposition 2.8, we obtain

s(ϕ)ais(ϕ)ϕ̂ = ϕ̂ s(ϕ)ais(ϕ). (2.7)

For each x ∈M, we have by virtue of (2.6)

(s(ϕ)ais(ϕ) ϕ̂)(s(ϕ)xs(ϕ)) = ϕ̂(s(ϕ)xs(ϕ)ais(ϕ))

= ϕ(s(ϕ)xs(ϕ)ais(ϕ)) = ϕ(xs(ϕ)ai)

= ϕ(xais(ϕ)) = ϕ(xai),
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and

(ϕ̂ s(ϕ)ais(ϕ))(s(ϕ)xs(ϕ)) = ϕ̂(s(ϕ)ais(ϕ)xs(ϕ)) = ϕ(ais(ϕ)x)

= ϕ(s(ϕ)aix) = ϕ(aix),

which means that

(aiϕ)(x) = ϕ(xai) = (s(ϕ)ais(ϕ) ϕ̂)(s(ϕ)xs(ϕ))

= (ϕ̂ s(ϕ)ais(ϕ))(s(ϕ)xs(ϕ)) = ϕ(aix) = (ϕai)(x).

As is easily seen, the last equality is equivalent to the relation

ϕ ∈M∗ ∩A′.

Now, let ϕ ∈ Fix Φ∗ be arbitrary. We have

ϕ = ϕ1 + iϕ2,

with ϕ1 and ϕ2 hermitian. It is clear that ϕ1, ϕ2 ∈ Fix Φ∗. For the Jordan decompo-
sition

ϕk = ϕ+
k − ϕ

−
k , k = 1, 2,

we have
ϕk = Φ∗(ϕk) = Φ∗(ϕ

+
k )− Φ∗(ϕ

−
k ),

and
‖Φ∗(ϕ+

k )‖ = ϕ+
k (Φ(1)) = ϕ+

k (1) = ‖ϕ+
k ‖,

and similarly for ϕ−k , so the uniqueness of the Jordan decomposition yields

Φ∗(ϕ
+
k ) = ϕ+

k and Φ∗(ϕ
−
k ) = ϕ−k ,

i.e. ϕ+
k , ϕ

−
k ∈ Fix Φ∗. From the first part of the proof, it follows that ϕ+

k , ϕ
−
k ∈M∗∩A′,

and thus ϕ ∈M∗ ∩A′ which ends the proof. �

The theorem above, together with some earlier results, yields a number of inter-
esting consequences, namely:

1. Assume that for the Lüders operation Φ∗ condition (1.1) holds. Then we have

Fix Φ∗ = Fix Φ̃∗ = M ∩A′.

2. Assume that for the Lüders operation Φ∗ condition (1.2) holds with c 6= 1.
Then there is no faithful Φ-invariant normal state.

3. Assume that for the Lüders operation Φ∗ condition (1.2) holds. Let pr be the
recurrence projection for Φ, i.e.

pr = sup{s(ρ) : 0 6 ρ ∈ Fix Φ∗}.
Then by [8, Lemma 1], we have Φ(pr) > pr, and exactly as in the proof of
Lemma 2.9 we obtain

aipr = praipr,

and equivalently
pra
∗
i = pra

∗
i pr.

Further, we have

aipra
∗
i = praipra

∗
i = praipra

∗
i pr,
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and summing up on i we get

Φ̃(pr) = prΦ̃(pr)pr.

Now, following the lines of the proof of Theorem 2.10 from equation (2.5) on,
we first obtain

Φ̃(p⊥r ) 6 p⊥r ,

and then

prai = praipr,

which gives

prai = aipr.

Consequently,

c >
∑
i

aipra
∗
i = prc = cpr,

showing that

pr 6 c,

and thus ∑
i

aipra
∗
i = prc = pr.

In particular, if Fix Φ∗ 6= {0}, i.e. pr 6= 0, then we must have ‖c‖∞ = 1.
4. Assume that for the Lüders operation Φ∗ condition (1.1) holds. It is easily

seen that the relation ∑
i

aiρa
∗
i = ρ

for ρ ∈M∗ is equivalent to the relation∑
i

aihρa
∗
i = hρ

for the densities hρ ∈ L1(M, τ), and that the relation

aρ = ρa, a ∈ A

is equivalent to the relation

ahρ = hρa, a ∈ A.

Thus Theorem 2.10 gives the description of the fixed points of the operation

Φ̃ : L1(M, τ) → L1(M, τ) as those elements in L1(M, τ) that commute with
A.

To complete our considerations, we shall show the equality (FP*) for an arbitrary
algebra but with a more restrictive assumption about the ai.

Theorem 2.11. Let M be an arbitrary von Neumann algebra, and let Φ∗ be a Lüders
operation for which condition (1.1) holds. Assume that A is abelian. Then

Fix Φ∗ = M∗ ∩A′. (FP*)
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Proof. By the argument used in the proof of the preceding theorem, it is enough to
show that for any 0 6 ϕ ∈ Fix Φ∗ we have ϕ ∈M∗ ∩A′.

Assume first that ϕ is faithful. Let E : M → Fix Φ = M ∩ A′ be the conditional
expectation such that

ϕ ◦ E = ϕ

as described before. Since A ⊂ A′, we have for any x ∈M and a ∈ A

(aϕ)(x) = ϕ(xa) = ϕ(E(xa)) = ϕ((Ex)a)

= ϕ(aEx) = ϕ(E(ax)) = ϕ(ax) = (ϕa)(x),

showing that ϕ ∈M∗ ∩A′.
For arbitrary 0 6 ϕ ∈ Fix Φ∗, we consider the reduced von Neumann algebra Ms(ϕ)

and proceed exactly as in the proof of Theorem 2.10. �

From the result above, we obtain

Corollary. Let Φ be the classical Lüders operation defined on the predual of an arbi-
trary von Neumann algebra M as

Φ(ρ) =
∑
i

eiρei, ρ ∈M∗,

where {ei} is a partition of identity into orthogonal projections from M. Then equality
(FP*) holds.

3. Concluding remarks

The object of our interest in this paper has been the equality

Fix Φ∗ = M∗ ∩A′ (FP*)

for a generalized Lüders operation Φ∗. A “dual” equality is

Fix Φ = M ∩A′ (FP)

but even in the case ai = a∗i , despite the same form of Φ∗ and Φ, there are situations in
which only one of these equalities hold and situations in which hold both. For instance,
for semifinite algebras we have (FP*) but not always (FP) (example: M = B(H), see
[1]), while for finite algebras we have both. The same is true if the ai and a∗i in the
definition of Φ∗ commute. If Fix Φ∗ contains a faithful state, then we have (FP) but
whether (FP*) holds is an open problem even though Fix Φ is then a von Neumann
algebra and we have the relation

(Fix Φ)∗ = Fix Φ∗.

In general, the relation between the two equalities (FP*) and (FP) is not clear, and
let us finish with showing the extreme situation

Fix Φ∗ = {0},

and Fix Φ — a non-trivial von Neumann algebra. Put

H = L2([0, 1],m),
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where m is Lebesgue measure, M = B(H), and consider the von Neumann algebra
L∞([0, 1],m). This algebra is generated by the spectral measure e defined as

e(∆) = χ∆, ∆ ∈ B([0, 1]),

where χ∆ is the characteristic function of Borel set ∆. Define a1 ∈ L∞([0, 1],m) by
the formula

a1 =

∫ 1

0

√
λ e(dλ),

and put a2 = (1− a2
1)1/2. We have a2

1 + a2
2 = 1, and

A = W ∗({a1, a2}) = L∞([0, 1],m);

moreover, A = A′ since L∞([0, 1],m) is maximal abelian. Let Φ∗ be the Lüders
operation defined by a1, a2. Assume that 0 6 ρ ∈ Fix Φ∗. Then, as is easily seen, for
its density hρ we have

hρ =

2∑
i=1

aihρai,

which on account of [2] yields hρ ∈ A′ = A. In particular, the spectral projections
of hρ belong to A. But since hρ is tracial, these projections are of finite rank, and
L∞([0, 1],m) has no finite rank projections except 0. Consequently, hρ = 0, i.e.
ρ = 0, and the argument used in the proof of Theorem 2.10 shows that for arbitrary
ρ ∈ Fix Φ∗ we have ρ = 0. On the other hand, as shown in [2], we have

Fix Φ = A′ = L∞([0, 1],m).

As indicated in the Introduction, the investigations of Fix Φ∗ have, in principle,
hardly begun, and we hope that the present paper will be a starting point in this
direction.
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