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1. Introduction

The monotone minorant method is a powerful tool for studying equations in ordered
spaces. It has been used in conjunction with the theory of fixed point index to prove
the existence of continuum of solutions for equations, which depends on a parameter
(see [1, 3, 8, 11, 19, 21, 22] and references therein). Recently, this method has been
employed by J. Mallet-Paret, R. Nussbaum [17], R. Mahadevan [15] and K.C. Chang
[7] to generalize Krein-Rutman’s result on eigenvalues of positive linear operators to
homogeneous increasing operators.

The fixed point index for multivalued operators in cones was introduced by P.M.
Fitzpatrick and W.V. Pettryshn in [9], and has been applied to proving Krasnoselskii
theorem on cone expansion and compression, and Leggett-Williams fixed point theo-
rem for multivalued operators (see, for example [2, 18, 20]). However, to the best of
our knowledge, the monotone minorant method has not been applied in the settings
of multivalued operators in literature. The main difficulty lies on the lack of a suitable
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notion of monotonicity for multivalued operators. Nevertheless, by using a natural
notion of monotonicity and some general principles on ordered sets, S. Carl-S. Heik-
ila, A. Bucur-L. Guran-A. Petrusel in [4, 5, 6] and N.B. Huy-N.H. Khanh in [12, 13]
obtained fixed point theorems for increasing multivalued operators, which may be
discontinuous and have nonconvex values. These results shed the light of applying
the monotone minorant method in studying equations with multivalued operators.

In the present paper, we shall use the monotone minorant method in combination
with the theory of fixed point index to obtain a general theorem on existence of
continuous branch of solutions for multivalued operators depending on a parameter
(see Section 2.1). Using this result allow us to prove the existence of a positive eigen-
pair of multivalued homogeneous increasing operators. We also generalize the notion
of u0-positiveness of Krasnoselskii, the notion of semi-strongly positiveness and some
quantities of the type of spectral radius in [7] to multivalued operators and then apply
them to investigate some estimates involving the eigenvalue, and prove its simplicity
and uniqueness (see Section 2.2).

2. Main results

2.1. The monotone minorant method. Firstly, we review some preliminaries
about the continuity and the theory of fixed point index for multivalued operators.

Definition 2.1. (see e.g. [8]) Let X, Y be Banach spaces and F : D ⊂ X→2Y \ {∅}
be a multivalued operator.

1. The operator F is said to be upper (resp. lower) semi-continuous in D if the
set

{x ∈ D : F (x) ⊂ V } (resp. {x ∈ D : F (x) ∩ V 6= ∅})
is open in D for every open subset V ⊂ Y .

2. The operator F is called compact if for any bounded subset B ⊂ D, the set
F (B) = ∪x∈BF (x) is relatively compact.

The following result gives necessary conditions for the continuity of multivalued
operators.

Proposition 2.2. (see e.g. [10]) 1. Assume that F is an upper semi-continuous
multivalued operator in D with closed values and xn → x, yn ∈ F (xn), and yn → y.
Then y ∈ F (x).

2. If the multivalued operator F is lower semi-continuous in D, then for any se-
quence xn → x, and for every y ∈ F (x), there is subsequence {xnk

} and a sequence
{yk}such that yk ∈ F (xnk

) and yk→y.

Proposition 2.3. (see [16]) Let F : D ⊂ X→2Y \ {∅} be a lower semi-continuous
operator with closed convex values. Then F admits a continuous selection, that is,
there is a continuous single-valued operator f : D→Y such that f (x) ∈ F (x) for all
x ∈ D.

Let X be a Banach space and K be a cone in X. In X we define an order by x ≤ y
iff y − x ∈ K and we call the pair (X,K) an ordered Banach space. We also define
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�
K = K\ {θ} and the dual cone K∗ = {f ∈ X∗ : f (x) ≥ 0 for all x ∈ K} where θ is
the zero element in X. It can be verified that x ≥ θ iff f (x) ≥ 0 for all f ∈ K∗.

Moreover, if x ∈intK then f (x) > 0 for all f ∈ K∗\
{
θ̂
}

(θ̂ is the zero element in

X∗).
Let D ⊂ X be an open bounded subset and F : K∩D→2K\ {∅} be an upper semi-

continuous compact operator with closed convex values. If x /∈ F (x) for all x ∈ K∩∂D
then the fixed point index (or relatively topological degree) of the operator F in D
with respect to K is defined, which is an integer denoted by iK (F,D) (see e.g. [9]).

This index has all useful properties of topological degree of a single compact oper-
ator. The following results on the computation of the index were taken in [9, proof
of Theorem 3.2].

Proposition 2.4. Let D be a bounded open subset and F : D ∩K→2K\ {∅} be an
upper semi-continuous compact operator with closed convex values such that x /∈ F (x)
for all x ∈ K ∩ ∂D. Then

1. iK (F,D) = 0 if there is x0 ∈ K\ {θ} such that x /∈ F (x) + tx0 for all
t > 0, x ∈ K ∩ ∂D.

2. iK (F,D) = 1 if tx /∈ F (x) for all t > 1, x ∈ K ∩ ∂D.
Now we introduce some orders between the two subsets.

Definition 2.5. Let (X,K) be an ordered Banach space.
1. For subsets A, B ∈ 2X\ {∅} we define
(a) A ≤(1) B iff (∀x ∈ A, ∃y ∈ B such that x ≤ y).
(b) A ≤(2) B iff (∀y ∈ B, ∃x ∈ A such that x ≤ y).
(c) A ≤(3) B iff (x ∈ A and y ∈ B imply that x ≤ y).
Clearly, the above relations are transitive and coincident with the order defined in

(X,K) if the sets A and B are singletons.
2. An operator F : M ⊂ X→2X\ {∅} is said to be (k)-increasing, k = 1, 2,

if x, y ∈ M and x ≤ y imply that F (x) ≤(k) F (y); moreover, it is said to be (3)-
increasing if x, y ∈M and x < y imply that F (x) ≤(3) F (y) .

Example. It is easy to see that if A : X→X is a single-valued linear operator then A
is increasing iff A (x) ∈ K for every x ∈ K (or equivalently x ≥ θ implies A (x) ≥ θ).
In multivalued analysis, a replacement of linear operator which is so-called convex
processes, is an operator A : X→2X\ {∅} satisfying

(i) A (x) +A (y) ⊂ A (x+ y) for all x, y ∈ X ,
(ii) A (tx) = tA (x) for every t > 0, x ∈ X (we also say A is positively 1-

homogeneous).
If A is a convex process then we have

1. A is (1)-increasing if {θ} ≤(1) A (x) for all x ≥ θ,
2. A is (2)-increasing if A (x) ≤(2) {θ} for all x ≤ θ.

Let us prove the first assertion. For x ≤ y we have {θ} ≤(1) A (y − x) and hence
∃u ∈ A (y − x) : θ ≤ u. From A (y − x) +A (x) ⊂ A (y) , we deduce that

∀v ∈ A (x) ∃w ∈ A (y) : u+ v = w and v ≤ w as well.

Therefore, A (x) ≤(1) A (y) .
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Theorem 2.6. Let (X,K) be an ordered Banach space and F : K→2K\ {∅} be an
upper semi-continuous compact operator with closed convex values. Assume that there
is (2)-increasing operator B : K→2K\ {∅} satisfying

(i) B (x) ≤(2) F (x) for every x ∈ K,
(ii) there are positive numbers a, b and an element u ∈ K\ {θ} such that {btu} ≤(2)

B (tu) for all t ∈ [0, a] .

Then the solution set S =

{
x ∈

�
K : ∃λ > 0, x ∈ λF (x)

}
forms an unbounded con-

tinuous branch emanating from θ, that is, S ∩ ∂G 6= ∅ for any bounded open subset
G 3 θ.

Proof. Let G ⊂ X be a bounded open subset and G 3 θ. We now claim that
S ∩ ∂G 6= ∅. Indeed, assume by contradiction that x /∈ λF (x) for all x ∈ K ∩ ∂G,
∀λ > 0. Then, by the homotopy-invariant property, the index iK (λF,G) is a constant
for λ ∈ (0,∞) .

We shall show iK (λF,G) = 1 for sufficiently small λ by proving that

tx /∈ λF (x) ∀x ∈ K ∩ ∂G, ∀t > 1. (2.1)

In fact, since G is open with θ ∈ G and F (K ∩ ∂G) is relatively compact, there
are numbers α > 0 and β > 0 such that ‖x‖ ≥ α ∀x ∈ K ∩ ∂G and ‖y‖ ≤ β
∀y ∈ F (K ∩ ∂G) . If tx ∈ λF (x) for some x ∈ K ∩ ∂G and t, λ > 0 then we have

tα ≤ t ‖x‖ ≤ λβ. (2.2)

Therefore, (2.1) holds for λ <
α

β
.

To obtain a contradiction we will show iK (λF,G) = 0 for large enough λ. Let us
prove that

∃λ0 > 0 : x /∈ λF (x) + tu, ∀x ∈ K ∩ ∂G, ∀λ ≥ λ0. (2.3)

Indeed, if (2.3) is not true, we can find sequences {xn} ⊂ K ∩ ∂G, {tn} ⊂ (0,∞) and
{λn} ⊂ (0,∞) such that

λn→∞, xn ∈ λnF (xn) + tnu . (2.4)

Let sn be a maximal number satisfying xn ≥ snu. From (2.4), we get sn ≥ tn and
hence sn > 0. Set N1 = {n ∈ N∗ : sn ≤ a} and N2 = {n ∈ N∗ : sn > a} . We shall
show that both N1 and N2 are finite, thus we get a contradiction. Indeed, for n ∈ N1

we have

{bsnu} ≤(2) B (snu) ≤(2) B (xn) ≤(2) F (xn) . (2.5)

It follows from (2.4) that λnF (xn) ≤(2) {xn} which togeter with (2.5) yields xn ≥
λnbsnu. By the maximality of sn, we deduce λnb ≤ 1. Therefore, N1 is finite. For
n ∈ N2, by the same argument used to obtain (2.5), we arrive at

{λnabu} ≤(2) λnB (au) ≤(2) λnB (snu) ≤(2) λnF (xn) ≤(2) {xn} . (2.6)

If N2 is infinite then from (2.6), the boundeness of {xn} and λn→∞ we obtain u ≤ θ.
This is a contradiction. Thus (2.3) holds and iK (λF,G) = 0 for sufficiently large λ.
The proof is complete. �
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Theorem 2.7. If hypothesis on ”upper semi-continuous” of Theorem 2.6 is replaced
by ”lower semi-continuous” then the conclusion is still true.

Proof. Let f be a continuous selection of F . Then f is completely continuous,
B (x) ≤(2) f (x) and {x ∈ K\ {θ} : x = λf (x)} ⊂ {x ∈ K\ {θ} : x ∈ λF (x)} . By
applying Theorem 2.6 to f , we obtain the conclusion. �

2.2. Application to eigenvalue problems. In what follows, we consider an ordered
Banach space (X,K) . The pair (λ0, x0) is called a positive eigen-pair of the operator
A : K→2K\ {∅} if x0 ∈ K\ {θ} , λ0 > 0 and λ0x0 ∈ A (x0) .

2.2.1. Existence of a positive eigen-pair.

Theorem 2.8. Let A : K→2K\ {∅} be a positively 1-homogeneous, compact, upper
semi-continuous operator with closed convex values, such that

(i) A is (2)-increasing,
(ii) ∃u ∈ K\ {θ}, ∃α > 0 : {αu} ≤(2) A (u) .

Then A admits a positive eigen-pair (λ0, x0) with λ0 ≥ α and ‖x0‖ = 1.

Proof. Applying Theorem 2.6 to the operator A (x) +
u

n
with A playing the role of a

minorant, we find two sequences {xn} and {λn} such that

λn > 0, xn ∈ K, ‖xn‖ = 1 and λnxn ∈ A (xn) +
u

n
,

or equivalently, λnxn = yn +
u

n
for some yn ∈ A (xn) . Since A is compact, we can

assume that {yn} is convergent to some y0 ∈ K. We shall show λn ≥ α for all n. Let

tn be a maximal number such that xn ≥ tnu. Then we have tn ≥
1

nλn
and

{αtnu} ≤(2) A (tnu) ≤(2) A (xn) ≤(2) {λnxn} .

Therefore, tn ≥
αtn
λn

so λn ≥ α. We can assume that λn→λ0 ≥ α. Hence, xn =

1

λn
yn +

1

nλn
u converges to some x0 ∈ K, and so λ0x0 = y0 and ‖x0‖ = 1. Since A

is upper semi-continuous, we have y0 ∈ A (x0) . Thus (λ0, x0) is a positive eigen-pair
of A. �

Theorem 2.9. Let A : K→2K\ {∅} be a positively 1-homogeneous, compact, upper
semi-continuous operator with closed convex values such that

(i) A is (2)-increasing,
(ii) The number ρ (A) = supu∈K,‖u‖=1

{
inf
{
λ > 0 : ∃x ≥ u, A (x) ≤(2) λx

}}
is

positive.
Then A has a positive eigen-pair (λ0, x0) with λ0 ≥ ρ (A). Moreover, if A is (3)-
increasing then λ0 = ρ (A).

Proof. From the definition of ρ (A) , there is a sequence {un} ⊂ K such that ‖un‖ = 1
and the sequence tn = inf

{
λ > 0 : ∃x ≥ un, A (x) ≤(2) λx

}
converges to ρ (A). The

application of Theorem 2.6 to the operators A (x) +
un
n

gives us the existence of
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sequences {xn} ⊂ K and {λn} satisfying ‖xn‖ = 1, λn > 0 and λnxn ∈ A (xn) +
un
n

so λnxn = yn +
un
n

for some yn ∈ A (xn) . First we shall prove that λn ≥ tn.

Indeed, from nλnxn ∈
1

λn
A (nλnxn) + un, we have nλnxn ≥ un and A (nλnxn) ≤(2)

λn (nλnxn) . Therefore, λn ≥ tn according to the definition of tn. Following the same
arguments as in the proof of Theorem 2.8, we can assume that λn→λ0 ≥ ρ (A) ;
xn→x0; yn→y0 ∈ A (x0) and we also deduce that λ0x0 ∈ A (x0) .

Now, let A be (3)-increasing, we shall prove that λ0 ≤ ρ (A) . Consider an element
x such that x ≥ x0 and A (x) ≤(2) λx. Let t be a maximal number such that x ≥ tx0.
Clearly, t ≥ 1 and

tλ0x0 ∈ A (tx0) ≤(3) A (x) ≤(2) {λx} .

It follows from Definition 2.5 that tλ0x0 ≤ λx. By the maximality of t, we get t ≥ tλ0
λ
,

and so λ ≥ λ0. Thus inf
{
λ > 0 : ∃x ≥ x0, A (x) ≤(2) λx

}
≥ λ0 and ρ (A) ≥ λ0. The

proof is complete. �

2.2.2. Some Krein-Rutman’s properties. We first generalize the notion of
u0−positiveness, the notion of semi-strong positiveness and some quantities due to
K.C.Chang [7] for multivalued operators.

Definition 2.10. Let K be a cone in Banach space X and A : K→2K\ {∅}, u0 ∈
K\ {θ} . We denote 〈u0〉+ = {tu0 : t > 0} .

1. A is said to be u0− positive if ∀x ∈ K\ {θ} we have 〈u0〉+ ≤(2) A (x) ≤(1) 〈u0〉+
or equivalently

∀x ∈ K\ {θ} ,∀y ∈ A (x) ∃α, β > 0 : αu0 ≤ y ≤ βu0.

2. A is said to be strongly u0− positive if ∀x ∈ K\ {θ} then ∃α, β > 0 such that

αu0 ≤(2) A (x) ≤(1) βu0.

Definition 2.11. Assume that intK 6= ∅. An operator A : K→2K\ {∅} is said to

be semi strongly positive if ∃g ∈ K∗ such that ∀x ∈
�
K\intK, we have 〈g, x〉 = 0 and

〈g, z〉 > 0 for all z ∈ A (x) .

Definition 2.12. Given an operator A : K→2K\ {∅} .

1. We associate every x ∈
�
K with the subsets of K∗:

K∗ (x) = {f ∈ K∗ : f (x) > 0} , S∗ (x) = {f ∈ K∗ : f (x) = 1}

and with the numbers

µ∗ (x) = inf {〈f, z〉 : z ∈ A (x) , f ∈ S∗ (x)} and

µ∗ (x) = sup {〈f, z〉 : z ∈ A (x) , f ∈ S∗ (x)} .

2. We define

r∗ (A) = sup
x∈K\{θ}

µ∗ (x) and r∗ (A) = inf
x∈K\{θ}

µ∗ (x) .
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If intK 6= ∅ we define

or∗ (A) = sup
x∈intK

µ∗ (x) and or∗ (A) = inf
x∈intK

µ∗ (x) .

Lemma 2.13. 1. µ∗ (x)x ≤(2) A (x) ∀x ∈ K\ {θ} .
2. If µ∗ (x) <∞ then A (x) ≤(1) µ

∗ (x)x.
3. µ∗ (x) < ∞ iff ∃µ > 0 : A (x) ≤(1) µx. If x ∈intK and A (x) is compact then

µ∗ (x) <∞.

Proof. 1. It follows from Definition 2.12 that µ∗ (x) ≤ 〈f, z〉 for all z ∈ A (x) ,
f ∈ S∗ (x) . Hence

µ∗ (x) 〈f, x〉 ≤ 〈f, z〉 for all z ∈ A (x) , f ∈ K∗ (x) . (2.7)

Since K∗ (x) is dense in K∗ (see [7, p.544]), we deduce from (2.7) that
〈f, z − µ∗ (x)x〉 ≥ 0, ∀f ∈ K∗. Hence, µ∗ (x)x ≤ z ∀z ∈ A (x) .
2. Similarly to (2.7), we have

〈f, z〉 ≤ µ∗ (x) 〈f, x〉 for all z ∈ T (x) , f ∈ K∗ (x) . (2.8)

The set K∗ (x) is dense in K∗ so (2.8) holds for ∀f ∈ K∗. This implies that z ≤
µ∗ (x)x, ∀z ∈ A (x), or equivalently, A (x) ≤(1) µ

∗ (x)x.
3. The first assertion follows from the definition of µ∗ (x) and property 2. Let x ∈intK
and r > 0 such that B (x, r) ⊂ K. For y ∈ X with ‖y‖ = 1 we have x ≥ ±ry.

Therefore, we have 1 ≥ r |f (y)| for all f ∈ S∗ (x) . Thus, ‖f‖ ≤ 1

r
for all f ∈ S∗ (x) .

The set S∗ (x) is bounded and (∗)-weakly closed, hence, it is (∗)-weakly compact. The
set S∗ (x)×A (x) is compact and the operator (f, z) 7→ 〈f, z〉 is continuous with respect
to the (∗)-weak topology in X∗ and the norm-topology in X. Therefore µ∗ (x) <∞. �

Lemma 2.14. Let A be a (k)−increasing and positively 1−homogeneous operator,
k = 1, 2. Let x, y ∈ K\ {θ} and λ, µ > 0 satisfying A (x) ≤(k) λx and µy ≤(k) A (y) .
Moreover, assume that one of the following conditions holds

(i) A is u0−positive,
(ii) x ∈intK.

Then µ ≤ λ.

Proof. Let t be a maximal number such that x ≥ ty. We shall prove t > 0. Clearly, it is
true if x ∈intK. By the definition of the relation “≤(k)”, we conclude that ∃u ∈ A (x) ,
∃v ∈ A (y) such that u ≤ λx and µy ≤ v. Since A is u0−positive, we can find α, β > 0

such that αu0 ≤ u and v ≤ βu0. Therefore, x ≥ α

λ
u0 ≥

αµ

λβ
y which proves t > 0.

By the monotonicity of A we have

tµy ≤(k) tA (y) = A (ty) ≤(k) A (x) ≤(k) λx

which shows λ ≥ µ from the maximality of t. �

Theorem 2.15. Assume that the operator A is positively 1-homogeneous, compact,
upper semi-continuous with closed convex values. In addition, let A be (2)−increasing
and r∗ (A) > 0. Then A admits a positive eigen-pair (λ0, x0) with λ0 ≥ r∗ (A) . More-
over,
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1. if A is (1)−increasing then
(a) r∗ (A) ≤ λ0 ≤ r∗ (A) if A is strongly u0−positive.
(b) x0 ∈intK and r∗ (A) ≤ λ0 ≤ or∗ (A) if A is semi strong positive.

2. If A is lower semi-continuous, semi strong positive and is (3)−increasing then
r∗ (A) = λ0 = r∗ (A).

Proof. Since r∗ (A) > 0, there is a sequence {xn} ⊂ K such that ‖xn‖ = 1 and 0 <

r∗ (A)− 1

n
≤ µ∗ (xn) . By Lemma 2.13, it follows that

(
r∗ (A)− 1

n

)
xn ≤(2) A (xn).

On the other hand, we use Theorem 2.8, then there exist sequences {yn} ⊂ K, and

{λn} ⊂ [0,∞) such that λn ≥ r∗ (A) − 1

n
, ‖yn‖ = 1 and λnyn ∈ A (yn) . At this

stage, by using the same argument as in the proof of Theorem 2.8, it can be verified
that A admits a positive eigen-pair (λ0, x0) with λ0 ≥ r∗ (A) .

1a. Since A is strongly u0−positive, there is β > 0 such that A (u0) ≤(1) βu0.
Therefore, by Lemma 2.13, we have µ∗ (u0) <∞ and r∗ (A) <∞. We now choose a
sequence {yn} ⊂ K such that ‖yn‖ = 1 and µ∗ (yn)→r∗ (A) . We then have λ0x0 ≤(1)

A (x0) and A (yn) ≤(1) µ
∗ (yn) yn, which along with Lemma 2.14 yields that λ0 ≤

µ∗ (yn). Therefore, λ0 ≤ r∗ (A) .

1b. We first prove x0 ∈intK. If x0 ∈
�
K\intK then for g as in Definition 2.11 we

have

〈g, x0〉 = 0, 〈g, z〉 > 0 for all z ∈ A (x0)

which contradicts with λ0x0 ∈ A (x0) .
Since x0 ∈intK, by using Lemma 2.13, we have µ∗ (x0) < ∞ and or∗ (A) < ∞ as

well. Let {yn} ⊂intK such that ‖yn‖ = 1 and limn→∞ µ∗ (yn) = or∗ (A) . Moreover,
due to the fact that

λ0x0 ≤(1) A (x0) , A (yn) ≤(1) µ
∗ (yn) yn

and Lemma 2.14, we obtain λ0 ≤ µ∗ (yn), hence, λ0 ≤ or∗ (A) .
2. Fix an element u ∈ K\ {θ} . For every sufficiently small ε we have x0±εu ∈intK

and define xε = x0 + εu, yε = x0 − εu,

β (xε) = inf {〈f, z〉 : f ∈ S∗ (x0) , z ∈ A (xε)} and

γ (yε) = sup {〈f, z〉 : f ∈ S∗ (x0) , z ∈ A (yε)} .

We shall prove β (xε)→µ∗ (x0) and γ (yε)→µ∗ (x0) as ε→ 0.
Since S∗ (x0) × A (xε) is compact, there is (fε, zε) ∈ S∗ (x0) × A (xε) such that

β (xε) = 〈fε, zε〉 . We can assume that fε→f0 ∈ S∗ (x0) (∗)-weakly, zε→z0 ∈ A (x0) .
Therefore, β (xε)→〈f0, z0〉 ≥ µ∗ (x0) . On the other hand, since A is lower semicon-
tinous and xε → x0, it follows from Proposition 2.2 that for every v ∈ A (x0) there
exists uε′ ∈ A (xε′) such that uε′→v ({xε′} is a subsequence of {xε}). For any f
∈ S∗ (x0) we have

β (xε′) ≤ 〈f, uε′〉 = 〈f, v〉+ 〈f, uε′ − v〉
which implies limε′→0 β (xε′) ≤ 〈f, v〉 . Thus limε→0 β (xε) ≤ µ∗ (x0) . Similarly,
γ (yε)→ µ∗ (x0) .
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Finally, from A (yε) ≤(3) A (x0) ≤(3) A (xε) , we have

v ≤ λ0x0 ≤ w and 〈f, v〉 ≤ λ0 ≤ 〈f, w〉 for all f ∈ S∗ (x0) , v ∈ A (yε) , w ∈ A (xε) .

Therefore, γ (yε) ≤ λ0 ≤ β (xε) which implies µ∗ (x0) ≤ λ0 ≤ µ∗ (x0) and hence
µ∗ (x0) = λ0 = µ∗ (x0). �

Definition 2.16. Given A : K→2K\ {∅} .
1. The operator A is said to be u0− increasing if x ≤ y implies

〈u0〉+ ≤(2) [A (y)−A (x)] ∩
�
K,

or equivalently, for all v ∈ A (y) , u ∈ A (x) if v − u ∈
�
K then ∃α > 0 such that

v − u ≥ αu0.
2. Let (λ0, x0) be a positive eigen-pair of A. Then λ0 is said to be geometrically

simple if from λ0x ∈ A (x) with x ∈
�
K, it follows x ∈ 〈x0〉+ .

3. We say that the positive eigen-pair (λ0, x0) of the operator A is unique if for
any positive eigen-pair (λ, x) of A we have λ = λ0 and x ∈ 〈x0〉+ .

Theorem 2.17. Let A : K→2K\ {∅} be a positively 1-homogeneous, u0−positive,
u0−increasing operator and (λ0, x0) be a positive eigen-pair of A. Then

1. λ0 is geometrically simple.
2. If A is (3)−increasing then (λ0, x0) is unique.

Proof. 1. Suppose that λ0x ∈ A (x) with x ∈
�
K. We need to prove x ∈ 〈x0〉+. Since

A is u0−positive, it is easy to see that x0 and x are comparable with u0 and so they
are comparable with each other. Therefore, there exists a maximal positive number t
such that x0 ≥ tx. We shall prove x0 = tx. Indeed, otherwise, if x0 6= tx then we have

λ0x0 ∈ A (x0) , λ0tx ∈ A (tx) , λ0x0 − λ0tx ∈
�
K.

This implies that there exist α′, α > 0 such that λ0 (x0 − tx) ≥ αu0 ≥ α′x. It follows
x0 ≥

(
t+ α′λ−10

)
x, we obtain a contradiction with the maximality of t.

2. Suppose that λ1x1 ∈ A (x1) with x1 ∈
�
K and λ1 > 0. We need to prove

λ1 = λ0. Assume by contradiction that λ0 > λ1. Since x0 and x1 are comparable,
there exists a maximal positive number t such that x1 ≥ tx0. If x1 6= tx0 then we
have

λ0tx0 ∈ A (tx0) , λ1x1 ∈ A (x1) , tx0 < x1,

which give λ1x1 ≥ λ0tx0 by (3)-nonotonicity of A. By the maximality of t, this yields
λ1 ≥ λ0, which is a contradiction with λ0 > λ1. Thus, x1 = tx0. Taking λ0 = a2λ1
with a > 1, we obtain

ax0 ∈ A
(
x0
aλ1

)
, x0 ∈ A

(
x0
λ1

)
,
x0
aλ1

<
x0
λ1
.

This is a contradiction with the fact that A is (3)−increasing. Thus λ0 = λ1 and
hence, x1 ∈ 〈x0〉+. �
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Theorem 2.18. Let intK 6= ∅, A : K→2K\ {∅} be a positively 1-homogeneous
operator and (λ0, x0) be a positive eigen-pair of A. Then

1. λ0 is geometrically simple if A is semi strongly increasing, this is, ∃g ∈ K∗ such

that if x− y ∈
�
K\intK then

〈g, x− y〉 = 0 and 〈g, u〉 > 0 for all u ∈ A (x)−A (y) . (2.9)

2. If A is semi strongly increasing and is (3)−increasing then (λ0, x0) is unique.

Proof. 1. First we shall prove that x0 ∈intK. Indeed, assume by the contradiction

that x0 ∈
�
K\intK. Taking y = θ in (2.9), we obtain 〈g, x0〉 = 0 and 〈g, λ0x0 − v〉 > 0

for v ∈ A (θ). Hence, 0 = 〈g, λ0x0〉 ≥ 〈g, λ0x0 − v〉 > 0, which is a contradiction.

Let λ0x1 ∈ A (x1) , x1 ∈
�
K. Since x0 ∈intK, there exists a maximal positive t

such that x0 ≥ tx1. If x0 6= tx1, by the maximality of t we have x0 − tx1 ∈
�
K\intK.

Therefore, it follows from λ0x0 ∈ A (x0) , tλ0x1 ∈ A (tx1) and (2.9) that g (x0 − tx1) =
0 and g (λ0x0 − λ0tx1) > 0. This is a contradiction.
2. Argue by the contradiction that λ1x1 ∈ A (x1) and λ0 > λ1. Since A is semi
strongly increasing, we have x0 ∈intK and x1 ∈intK. Let t be a maximal number
such that x1 ≥ tx0, then t > 0. If x1 6= tx0 then x1− tx0 ∈ ∂K\ {θ} . Hence, ∃g ∈ K∗
such that g (x1 − tx0) = 0 and g (λ1x1 − tλ0x0) > 0. Since A is (3)−increasing, then
tλ0x0 ≤ λ1x1 and

0 < g (λ1x1)− g (tλ0x0) = λ1g (x1)− λ0tg (x0)

= λ1tg (x0)− λ0tg (x0) = t (λ1 − λ0) g (x0) ≤ 0,

which is a contradiction. Thus, x1 = tx0. By an argument analogous to that used for
the proof of Theorem 2.17, we complete the proof. �

Remark 2.19. If A is a single positively 1-homogeneous increasing operator then our
results in Section 2.2 coincide with those in Theorems 4.8, 4.13 of [7]. The condition of
the (3)−increasing of the operator A seems to be strong and weakening this condition
is still open and would be an interesting problem to be studied elsewhere.
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