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Abstract. In this paper we consider a pair of nonlinear matrix equations of the form X = Q1 +

(Y ∗XY )r1 , Y = Q2 + (X∗Y X)r2 , where Q1, Q2 are n × n Hermitian positive definite matrices,
r1, r2 ∈ R and prove the existence and uniqueness of positive definite solutions of these equations.

We provide an algorithm to approach the solution. We present a coupled fixed point theorem for

non-decreasing mapping and show that a particular case of our nonlinear matrix equations also can
be solved by using the derived coupled fixed point theorem. Also we show that by replacing Y with

Y −1 in first equation and X with X−1 in second equation and taking Q1 = Q2 and r1 = r2, the

reduced system can be solved using the coupled fixed point theorem of Berinde [5].
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1. Introduction and preliminaries

Ran and Reurings [1] extended the Banach contraction principle in partially or-
dered metric space and presented an application to solve a nonlinear matrix equation
of the form

X ±
m∑
i=1

Ai
∗XAi = Q, (1.1)

where Q is a positive definite matrix and A1, .., Am arbitrary n × n matrices. Since
then, there has been a constantly increasing interest in developing theory and inves-
tigating solution of matrix equation. Later Nieto and López [2] extended it a little
further in partial ordered set and also presented its application in ordinary differential
equation. They established the following result.
Theorem 1.1. ([2]) Let (X,≤) be a partially ordered set and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Assume that X satisfies
the property that, if a non-decreasing sequence xn → x in X, then xn ≤ x, ∀ n. Let
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f : X → X be a monotone non-decreasing mapping such that there exists k ∈ [0, 1)
with

d (f(x), f(y)) ≤ k d(x, y), ∀ x ≥ y. (1.2)

If there exists x0 ∈ X with x0 ≤ f(x0), then f has a fixed point. In addition if for
any two x, y ∈ X there exists z ∈ X comparable with both x, y, then f has a unique
fixed point x̄ and the sequence xn defined by xn+1 = f(xn), ∀ n ≥ 0 converges to x̄
and we have the following estimate:

d(x̄, xn) ≤ kn

1− k
d(x1, x0). (1.3)

Next we mention some definitions related to coupled fixed point theory. Let (X,≤)
be a partially ordered set. Endow X× X with partial order:

for (x, y), (u, v) ∈ X× X, (x, y) �p (u, v) iff x ≤ u, y ≥ v. (1.4)

Definition 1.2. A mapping F : X×X→ X has a non-decreasing property if F (x, y)
is monotone non-decreasing in x and also in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and, respectively,

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≤ F (x, y2).

Definition 1.3. ([4]) A mapping F : X × X → X has a mixed monotone property
if F (x, y) is monotone non-decreasing in x and is monotone non-increasing in y, that
is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and, respectively,

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Definition 1.4. ([4]) A pair (x, y) ∈ X × X is called a coupled fixed point of a
mapping F : X× X→ X if F (x, y) = x and F (y, x) = y.

Coupled fixed point theory have been studied by many mathematicians like Guo
and Lakshmikantham [3], Bhaskar and Lakshmikantham [4], Berinde [5], Bota et al
[6] and many more. Using the mixed monotone property Bhaskar and Lakshmikan-
tham [4] presented a coupled fixed point theorem in partial ordered metric spaces
and applied it to solve periodic boundary value problem. Later in 2011, Berinde [5]
generalized the result of Bhaskar-Lakshmikantham [4]. He established the following
result.
Theorem 1.5. ([5]) Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Let F : X × X → X be a mixed
monotone mapping for which there exists a constant k ∈ [0, 1) such that for each
u ≥ x, v ≤ y,

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)]. (1.5)

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), (1.6)



SOLUTION OF A PAIR OF NONLINEAR MATRIX EQUATIONS 267

or

x0 ≥ F (x0, y0) and y0 ≤ F (y0, x0), (1.7)

then there exist x̄, ȳ ∈ X such that x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄). In addition if for
all (x, y), (u, v) ∈ X2, there exists (z1, z2) ∈ X2 comparable with (x, y) and (u, v) with
respect to partial ordering �p defined in (1.4), then F has a unique coupled fixed
point.

If we endow X × X with a different partial ordering � defined by (x1, y1) �
(x2, y2) =⇒ x1 ≤ x2 and y1 ≤ y2, then we can establish an analogous result for
a non-decreasing map F : X × X → X to have a coupled fixed point, the proof of
which is similar to the proof of Theorem 1.5. We give the statement here, which we
will use later.
Theorem 1.6. Let (X,≤) be a partially ordered set and suppose there is a metric d̃ on

X such that (X, d̃) is a complete metric space. Let F : X×X→ X be a non-decreasing
mapping for which there exists a constant k ∈ [0, 1) such that for each x ≤ u, y ≤ v,

d̃(F (x, y), F (u, v)) + d̃(F (y, x), F (v, u)) ≤ k[d̃(x, u) + d̃(y, v)]. (1.8)

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≤ F (y0, x0),

then there exist x̄, ȳ ∈ X such that x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄). In addition if for
all (x, y), (u, v) ∈ X2, there exists (z1, z2) ∈ X2 comparable with (x, y) and (u, v) with
respect to partial ordering �, then F has a unique coupled fixed point.

In the last few years many authors have presented Hermitian positive defi-
nite solutions of different classes of matrix equations via fixed point and coupled
fixed point theorems (See [7, 8, 9, 10, 11, 12, 13, 14] and the references therein).
Among them, in 2012, Berzig [10] solved a system of nonlinear matrix equation
X = Q+

∑m
i=1Ai

∗XAi−
∑m

i=1Bi
∗Y Bi using Bhaskar-Lakshmikantam coupled fixed

point theorem.
In this paper, we consider the following nonlinear matrix equations

X = Q1 + (Y ∗XY )r1 , Y = Q2 + (X∗Y X)r2 , (1.9)

where, Q1, Q2 are Hermitian positive definite matrices and r1, r2 ∈ R. We here
establish existence and uniqueness of a positive definite solution of this class of matrix
equations and also provide an algorithm for approaching the solution. We show that
a particular case of our equations (taking Q1 = Q2 = Q and r1 = r2 = r in (1.9))
can be solved using Theorem 1.6. We also show that by taking Q1 = Q2 and r1 = r2
and replacing Y with Y −1 in first equation and X with X−1 in second equation, the
derive system can be solved using Theorem 1.5.

Let H(n)
(
P (n)

)
be the set of all n × n Hermitian (Hermitian positive definite)

matrices and Q ∈ P (n). So, there exists a non-singular matrix S such that S−1QS
is diagonal. Let K(n, S,Q) be the set of all n × n Hermitian positive semi-definite
matrices A such that S−1AS is diagonal. Then K(n, S,Q) is closed convex cone of
(H(n), ‖ . ‖1). Recall that ‖ . ‖1 is Ky Fan norm defined as ‖ A ‖1=

∑n
j=1 sj(A),

where sj(A), j = 1, ..., n, are the singular values of A. We write A ≤ B iff B − A ∈
K(n, S,Q). Then K(n, S,Q) is normal cone with normal constant 1.
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Definition 1.7. ([15]) Elements A and B belonging to K(n, S,Q) but not both zero
are said to be linked if and only if there exist finite (positive) real numbers δ and µ
with A ≤ δB and B ≤ µA.

This equivalence relation splits K(n, S,Q) into a set of mutually exclusive con-
stituents, C.

Now we endow each C of K(n, S,Q) with Thompson metric d( , ) defined by,

d(A,B) = log
{

max
{
α, β

}}
, (1.10)

where α = inf
{
δ : A ≤ δB

}
and β = inf

{
µ : B ≤ µA

}
.

Lemma 1.8. ([15]) Each constituent, C of K(n, S,Q) is complete with respect to
d( , ).

Therefore P (n, S,Q), the set of all n × n Hermitian positive definite matrices A
such that S−1AS is diagonal, is complete with respect to Thompson metric d( , ). It

turns out if A,B ∈ P (n, S,Q), α = inf
{
δ : A ≤ δB

}
= λ+(B−

1
2AB−

1
2 ), maximum

eigenvalue of B−
1
2AB−

1
2 while β = inf

{
µ : B ≤ µA

}
= λ+(A−

1
2BA−

1
2 ), maximum

eigenvalue of A−
1
2BA−

1
2 . Therefore it is convenient here to use Thompson metric.

Also it has some useful properties for positive definite Hermitian matrices.
Lemma 1.9. ([8]) d(X,Y ) = d(X−1, Y −1) = d(MXM∗,MYM∗), for any X,Y ∈
P (n) and non-singular matrix M .
Lemma 1.10. ([8]) d(Xr, Y r) ≤ rd(X,Y ), for any X,Y ∈ P (n) and r ∈ [0, 1].
Lemma 1.11. ([8]) For all A,B,C,D ∈ P (n), we have d(A + B,C + D) ≤
max

{
d(A,C), d(B,D)

}
. In particular d(A+B,A+ C) ≤ d(B,C).

Lemma 1.12. For all X,Y, U, V ∈ P (n, S,Q) with X ≤ U and Y ≤ V ,
d(Y ∗XY, V ∗UV ) ≤ 2 d(Y, V ) + d(X,U).
Proof. Since X,Y, U, V ∈ P (n, S,Q), they are commutative with each other. Now as
X ≤ U and Y ≤ V , there exist α, β ≥ 1 such that U ≤ αX and V ≤ βY . Here α, β are
infima of all scalars satisfying the respected inequalities. Therefore Y ∗XY ≤ V ∗UV
and V ∗UV ≤ β2α Y ∗XY . So d(Y ∗XY, V ∗UV ) ≤ log(β2α) = 2 d(Y, V ) + d(X,U).

Note that Thompson metric on P (n, S,Q)(⊂ P (n)) is the restriction of Thompson
metric on P (n) over P (n, S,Q). So if a sequence (Xn)n≥0 converges to X and X ′ in
P (n, S,Q) and P (n,L,Q) respectively, then X = X ′.

2. Main results

Theorem 2.1. Suppose that Q1, Q2 are commutative and r1, r2 ∈ [0, 13 ). Then

equation (1.9) has a unique solution (X̄, Ȳ ) ∈ P (n, S,Q1)2, where S ∈ GL(n,R) such
that S−1Q1S and S−1Q2S are diagonal matrices. Moreover for X(0) = Q1, Y (0) =
Q2 ∈ P (n, S,Q1), the sequence

(
X(k), Y (k)

)
, k ≥ 0 defined by

X(k + 1) = Q1 +
(
Y (k)∗X(k)Y (k)

)r1
, Y (k + 1) = Q2 +

(
X(k)∗Y (k)X(k)

)r2
(2.1)

converges to (X̄, Ȳ ) and the error estimation is given by,

max
{
d(X(k), X̄), d(Y (k), Ȳ )

}
≤ δk

1− δ
max

{
d(X(1), X(0)), d(Y (1), Y (0))

}
, (2.2)

where δ is a certain constant in [0, 1).
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Proof. Since Q1, Q2 ∈ P (n) are commutative, they are simultaneously diagonaliz-
able i.e, there exists an S ∈ GL(n,R) such that S−1Q1S and S−1Q2S are diagonal.
Therefore Q1, Q2 ∈ P (n, S,Q1) = P (n, S,Q2).
Now we endow a metric dm on P (n, S,Q1)× P (n, S,Q1) defined by,

dm
(
(X,Y ), (U, V )

)
= max

{
d(X,U), d(Y, V )

}
, (2.3)

where d( , ) is Thompson metric in P (n, S,Q1). We also endow a partial order �
on P (n, S,Q1) × P (n, S,Q1) defined by, (X,Y ) � (U, V ) iff X ≤ U and Y ≤ V .
Therefore,

(
P (n, S,Q1)× P (n, S,Q1),�, dm

)
is a complete partially ordered, regular

non-decreasing metric space (i.e, if (Xn)n≥0 is a non-decreasing sequence converges
to X, then Xn � X,∀ n ≥ 0).
Consider a function f : P (n, S,Q1)×P (n, S,Q1)→ P (n, S,Q1)× P (n, S,Q1) defined
by,

f(X,Y ) =
(
Q1 + (Y ∗XY )r1 , Q2 + (X∗Y X)r2

)
. (2.4)

Then f is order preserving mapping and also (Q1, Q2) � f(Q1, Q2). So for (X,Y ) �
(U, V ) we have

dm
(
f(X,Y ), f(U, V )

)
= dm

((
Q1 + (Y ∗XY )r1 , Q2 + (X∗Y X)r2

)
,(

Q1 + (V ∗UV )r1 , Q2 + (U∗V U)r2
))

= max
{
d
(
Q1 + (Y ∗XY )r1 , Q1 + (V ∗UV )r1

)
,

d
(
Q2 + (X∗Y X)r2 , Q2 + (U∗V U)r2

)}
≤ max

{
d
(
(Y ∗XY )r1 , (V ∗UV )r1

)
, d
(
(X∗Y X)r2 , (U∗V U)r2

)}
≤ max

{
r1
(
d(Y ∗XY, V ∗UV )

)
, r2
(
d(X∗Y X,U∗V U)

)}
≤ max

{
r1
(
d(X,U) + 2d(Y, V )

)
, r2
(
2d(X,U) + d(Y, V )

)}
≤ δ max

{
d(X,U), d(Y, V )

}
= δ dm

(
(X,Y ), (U, V )

)
,

where, δ = 3 max {r1, r2} < 1.
Therefore, by using Theorem 1.1 we conclude that f has a fixed point (X̄, Ȳ ) in
P (n, S,Q1)× P (n, S,Q1). In fact the fixed point (X̄, Ȳ ) = limn→∞ fn(Q1, Q2).
Again for any X,Y, U, V ∈ P (n, S,Q1) there exist α, β > 0 such that X ≤ α U and
Y ≤ β V , so (X,Y ), (U, V ) �

(
(1 + α)U, (1 + β)V

)
= Z ∈ P (n, S,Q1)× P (n, S,Q1).

Therefore the fixed point (X̄, Ȳ ) is unique in P (n, S,Q1)× P (n, S,Q1).
From last theorem it follows that the equation (1.9) has a unique solution (X̄, Ȳ )

in P (n, S,Q)2 where S is the non-singular matrix for which S−1Q1S and S−1Q2S are
both diagonal. SinceQ1Q2 = Q2Q1 so for the solution (X̄, Ȳ ) we get X̄Ȳ = Ȳ X̄. Now

let (X̂, Ŷ ) ∈ P (n)2 be a solution of (1.9) with X̂Ŷ = Ŷ X̂. Then Q1, Q2, X̂, Ŷ are all
commute with each other. So there exists a non-singular matrix T such that T−1XT
is diagonal for all X ∈ {Q1, Q2, X̂, Ŷ }. As in Theorem 2.1 considering P (n, T,Q1) we
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can show that (X̂, Ŷ ) = limn→∞ fn(Q1, Q2), which is again same as (X̄, Ȳ ). Thus

X̄ = X̂, Ȳ = Ŷ . Therefore we have the following theorem.
Theorem 2.2. Suppose that Q1, Q2 are commutative and r1, r2 ∈ [0, 13 ). Then

equation (1.9) has a unique solution (X̄, Ȳ ) ∈ P (n)
2

such that X̄Ȳ = Ȳ X̄.
If we take Q1 = Q2 = Q ∈ P (n) and r1 = r2 = r, then (1.9) reduces to

X = Q+ (Y ∗XY )r, Y = Q+ (X∗Y X)r. (2.5)

Now using Theorem 1.6 we show that the system (2.5) has a unique solution.
Theorem 2.3. Suppose that Q ∈ P (n) and r ∈ [0, 13 ). Then equation (2.5) has a

unique solution (X̄, Ȳ ) ∈ P (n)
2

such that X̄ = Ȳ .
Proof. Consider a function F : P (n, S,Q)× P (n, S,Q)→ P (n, S,Q) defined by
F (X,Y ) = Q+(Y ∗XY )r. Then F is non-decreasing and Q ≤ F (Q,Q). So for X ≤ U
and Y ≤ V we have

d
(
F (X,Y ), F (U, V )

)
+ d
(
F (Y,X), F (V,U)

)
= d
(
Q+ (Y ∗XY )r, Q+ (V ∗UV )r

)
+ d
(
Q+ (X∗Y X)r, Q+ (U∗V U)r)

)
≤ d((Y ∗XY )r, (V ∗UV )r) + d((X∗Y X)r, (U∗V U)r)

≤ r
(
d(Y ∗XY, V ∗UV )

)
+ r
(
d(X∗Y X,U∗V U)

)
≤ r
(
d(X,U) + 2d(Y, V )

)
+ r
(
2d(X,U) + d(Y, V )

)
≤ 3r [d(X,U) + d(Y, V )].

Therefore by using Theorem 1.6 we conclude that F has a unique coupled fixed point
(X̄, Ȳ ) = limn→∞

(
Fn(Q,Q), Fn(Q,Q)

)
in P (n, S,Q)

2
. So, X̄ = Ȳ . Thus using the

same argument in Theorem 2.2 we conclude that equation (2.5) has a unique solution
(X̄, Ȳ ) ∈ P (n)2 with X̄ = Ȳ .

Now if we take Q1 = Q2 = Q ∈ P (n) and r1 = r2 = r, and replace Y with Y −1 in
the first equation and X with X−1 in the second equation of (1.9) then the equations
in (1.9) reduces to

X = Q+
(
(Y −1)∗XY −1

)r
, Y = Q+

(
(X−1)∗Y X−1

)r
. (2.6)

Notice that if F : P (n, S,Q) × P (n, S,Q) → P (n, S,Q) is a function defined by

F (X,Y ) = Q+
(
(Y −1)∗XY −1

)r
then F has mixed monotone property. Therefore we

can use Theorem 1.5 to obtain a solution of (2.6). Thus we have the following result.
Theorem 2.4. Suppose that Q ∈ P (n) and r ∈ [0, 13 ). If Q + I ≤ Q2 then equation

(2.6) has a unique solution (X̄, Ȳ ) ∈ P (n)
2

such that X̄ = Ȳ .
Proof. Consider a function F : P (n, S,Q)× P (n, S,Q)→ P (n, S,Q) defined by

F (X,Y ) = Q +
(
(Y −1)∗XY −1

)r
. Then F has mixed monotone property with Q ≤
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F (Q,Q2) and Q2 ≥ F (Q2, Q). So for X ≤ U and Y ≥ V we have

d
(
F (X,Y ), F (U, V )

)
+ d
(
F (Y,X), F (V,U)

)
= d
(
Q+

(
(Y −1)∗XY −1

)r
, Q+

(
(V −1)∗UV −1

)r)
+

d
(
Q+

(
(X−1)∗Y X−1

)r
, Q+

(
(U−1)∗V U−1

)r
)
)

≤ d
((

(Y −1)∗XY −1
)r
,
(
(V −1)∗UV −1

)r)
+

d
((

(X−1)∗Y X−1
)r
,
(
(U−1)∗V U−1

)r)
≤ r
(
d
(
(Y −1)∗XY −1, (V −1)∗UV −1

))
+

r
(
d
(
(X−1)∗Y X−1, (U−1)∗V U−1

))
≤ r
(
d(X,U) + 2d(Y −1, V −1)

)
+ r
(
2d(X−1, U−1) + d(Y, V )

)
≤ r
(
d(X,U) + 2d(Y, V )

)
+ r
(
2d(X,U) + d(Y, V )

)
≤ 3r [d(X,U) + d(Y, V )].

Therefore by using Theorem 1.5 we conclude that F has a unique coupled fixed point
(X̄, Ȳ ) = limn→∞

(
Fn(Q,Q2), Fn(Q2, Q)

)
in P (n, S,Q)

2
. Also since for every pair of

elements of P (n, S,Q) has an upper bound or lower bound in P (n, S,Q), so we have
X̄ = Ȳ . Thus using the same argument in Theorem 2.2 we conclude that equation
(2.6) has a unique solution (X̄, Ȳ ) ∈ P (n)2 with X̄ = Ȳ .

Now we give a numerical example to illustrate our obtained result.
Example. Consider the pair of matrix equations

X = Q1 + (Y ∗XY )
1
6 , Y = Q2 + (X∗Y X)

1
6 , (2.7)

where, Q1 =

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

 and Q2 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 .

Then Q1 and Q2 are commutative and 3r1 = 3r2 = 1
2 < 1. We are interested

in approximating positive definite solutions of (2.7). Using iteration in (2.1) with
X(0) = Q1 and Y (0) = Q2, after 25th iteration we get unique pair of commutative
solution (X̄, Ȳ ) given by

X̄ = X(25) =

 2.59306 0.36202 0.36202
0.36202 2.59306 0.36202
0.36202 0.36202 2.59206

 ,

Ȳ = Y (25) =

 2.59754 0.63552 0.63552
0.63552 2.59754 0.63552
0.63552 0.63552 2.59754


and the residue error is R(25) = dm

(
(X̄, Ȳ ), f(X̄, Ȳ )

)
= 2.15938 × 10−12. The con-

vergence history is given by figure 1. Here Curve 1 corresponds to d(X(k), X(k+ 1))
and Curve 2 corresponds to d(Y (k), Y (k + 1)).
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Figure 1. Convergence history of (2.7)
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