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1. Introduction

Boundary value problems with positive solutions describe many phenomena in
the applied sciences such as the nonlinear diffusion generated by nonlinear sources,
thermal ignition of gases, and concentration in chemical or biological problems (see [4],
[5], [9], [11], [12], [26], [29]). Integral boundary conditions arise in thermal conduction,
semiconductor and hydrodynamic problems (see for example [6], [7], [23], [35]). In
the last decades, many authors investigated scalar problems with integral boundary
conditions (see for example [1], [3], [24], [25], [28], [33], [38], [40]). We also mention
the papers [8], [10], [13], [21], [22], [27], [30], [36], [39], [41], [42], where the authors
studied the existence of positive solutions for some systems of differential equations
with integral boundary conditions.

In this paper, we consider the system of nonlinear second-order ordinary differential
equations

(S)

{
(a(t)u′(t))′ − b(t)u(t) + f(t, v(t)) = 0, 0 < t < 1,

(c(t)v′(t))′ − d(t)v(t) + g(t, u(t)) = 0, 0 < t < 1,
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with the integral boundary conditions

(BC)


αu(0)−βa(0)u′(0)=

∫ 1

0

u(s)dH1(s), γu(1) + δa(1)u′(1) =

∫ 1

0

u(s)dH2(s),

α̃v(0)−β̃c(0)v′(0)=

∫ 1

0

v(s)dK1(s), γ̃v(1) + δ̃c(1)v′(1)=

∫ 1

0

v(s)dK2(s),

where the above integrals are Riemann-Stieltjes integrals.
We present some weaker assumptions on the functions f and g, which do not possess

any sublinear or superlinear growth conditions and may be singular at t = 0 and/or
t = 1, such that positive solutions for problem (S)−(BC) exist. By a positive solution
of (S) − (BC) we understand a pair of functions (u, v) ∈ (C([0, 1],R+) ∩ C2(0, 1))2

satisfying (S) and (BC) with supt∈[0,1] u(t) > 0, supt∈[0,1] v(t) > 0. This problem

is a generalization of the problem studied in [14], where in (S) we have a(t) = 1,

c(t) = 1, b(t) = 0, d(t) = 0 for all t ∈ (0, 1) (denoted by (S̃)), and α = α̃ = 1,

β = β̃ = 0, γ = γ̃ = 1, δ = δ̃ = 0, H1 and K1 are constant functions, and H2 and

K2 are step functions. Problem (S̃)− (BC) also generalizes the problem investigated

in [31], where the authors studied the existence of positive solutions for system (S̃)
with the boundary conditions u(0) = 0, u(1) = αu(η), v(0) = 0, v(1) = αv(η) with
η ∈ (0, 1), 0 < αη < 1. The existence and multiplicity of positive solutions for problem
(S) − (BC) when the nonlinearities f and g are nonsingular functions were studied
in [19] by using some theorems from the fixed point index theory. Some integral
boundary value problems for systems of ordinary differential equations which involve
positive eigenvalues were investigated in recent years by using the Guo-Krasnosel’skii
fixed point theorem. For example, in [15], we give sufficient conditions for λ, µ, f and
g such that the system

(S1)

{
(a(t)u′(t))′ − b(t)u(t) + λp(t)f(t, u(t), v(t)) = 0, 0 < t < 1,

(c(t)v′(t))′ − d(t)v(t) + µq(t)g(t, u(t), v(t)) = 0, 0 < t < 1,

with the boundary conditions (BC) has positive solutions (u(t) ≥ 0, v(t) ≥ 0 for
all t ∈ [0, 1] and (u, v) 6= (0, 0)). For some higher-order multi-point boundary value
problems we mention the papers [16], [17], [18], [32], [37], and the book [20].

In Section 2, we shall present some auxiliary results which investigate a boundary
value problem for second-order equations. In Section 3, we shall prove two existence
results for the positive solutions with respect to a cone for our problem (S)− (BC),
which are based on the Guo-Krasnosel’skii fixed point theorem (see [11]) which we
present now.
Theorem 1.1. Let X be a Banach space and let C ⊂ X be a cone in X. Assume
Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let A :
C ∩ (Ω2 \ Ω1) → C be a completely continuous operator (continuous, and compact,
that is, it maps bounded sets into relatively compact sets) such that, either

i) ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or
ii) ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.
Then A has a fixed point in C ∩ (Ω2 \ Ω1).
Finally, in Section 4, two examples are given to support our main results.
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2. Auxiliary results

In this section, we present some auxiliary results from [15] related to the following
second-order differential equation with integral boundary conditions

(a(t)u′(t))′ − b(t)u(t) + y(t) = 0, t ∈ (0, 1), (2.1)

αu(0)− βa(0)u′(0) =

∫ 1

0

u(s) dH1(s), γu(1) + δa(1)u′(1) =

∫ 1

0

u(s) dH2(s). (2.2)

For a ∈ C1([0, 1], (0,∞)), b ∈ C([0, 1], [0,∞)), α, β, γ, δ ∈ R, |α| + |β| 6= 0,
|γ|+ |δ| 6= 0, we denote by ψ and φ the solutions of the following linear problems{

(a(t)ψ′(t))′ − b(t)ψ(t) = 0, 0 < t < 1,
ψ(0) = β, a(0)ψ′(0) = α,{
(a(t)φ′(t))′ − b(t)φ(t) = 0, 0 < t < 1,
φ(1) = δ, a(1)φ′(1) = −γ,

respectively.
We denote by θ1 the function θ1(t) = a(t)(φ(t)ψ′(t) − φ′(t)ψ(t)) for t ∈ [0, 1]. By

using the equations above, we deduce that θ′1(t) = 0, that is θ1(t) = const., for all
t ∈ [0, 1]. We denote this constant by τ1.
Lemma 2.1. ([15]) We assume that a ∈ C1([0, 1], (0,∞)), b ∈ C([0, 1], [0,∞)),
α, β, γ, δ ∈ R, |α| + |β| 6= 0, |γ| + |δ| 6= 0, and H1, H2 : [0, 1] → R are functions of
bounded variation. If τ1 6= 0,

∆1 =

(
τ1 −

∫ 1

0

ψ(s) dH2(s)

)(
τ1 −

∫ 1

0

φ(s) dH1(s)

)
−
(∫ 1

0

ψ(s) dH1(s)

)(∫ 1

0

φ(s) dH2(s)

)
6= 0,

and y ∈ C(0, 1) ∩ L1(0, 1), then the unique solution of (2.1)-(2.2) is given by

u(t) =

∫ 1

0

G1(t, s)y(s) ds,

where the Green’s function G1 is defined by

G1(t, s) = g1(t, s)

+
1

∆1

[
ψ(t)

(∫ 1

0

φ(s) dH2(s)

)
+ φ(t)

(
τ1 −

∫ 1

0

ψ(s) dH2(s)

)]∫ 1

0

g1(τ, s) dH1(τ)

+
1

∆1

[
ψ(t)

(
τ1 −

∫ 1

0

φ(s) dH1(s)

)
+ φ(t)

(∫ 1

0

ψ(s) dH1(s)

)]∫ 1

0

g1(τ, s) dH2(τ),

(2.3)
for all (t, s) ∈ [0, 1]× [0, 1], and

g1(t, s) =
1

τ1

{
φ(t)ψ(s), 0 ≤ s ≤ t ≤ 1,

φ(s)ψ(t), 0 ≤ t ≤ s ≤ 1.
(2.4)

Now, we introduce the assumptions
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(A1) a ∈ C1([0, 1], (0,∞)), b ∈ C([0, 1], [0,∞)).
(A2) α, β, γ, δ ∈ [0,∞) with α+ β > 0 and γ + δ > 0.
(A3) If b(t) ≡ 0, then α+ γ > 0.
(A4) H1, H2 : [0, 1]→ R are nondecreasing functions.

(A5) τ1 −
∫ 1

0

φ(s) dH1(s) > 0, τ1 −
∫ 1

0

ψ(s) dH2(s) > 0 and ∆1 > 0.

Lemma 2.2. ([2], [34]) Let (A1) − (A3) hold. Then the function g1 given by (2.4)
has the properties

a) g1 is a continuous function on [0, 1]× [0, 1].
b) g1(t, s) ≥ 0 for all t, s ∈ [0, 1], and g1(t, s) > 0 for all t, s ∈ (0, 1).
c) For any σ ∈ (0, 1/2), we have min

t∈[σ,1−σ]
g1(t, s) ≥ ν1g1(s, s) for all s ∈ [0, 1],

where ν1 = min

{
φ(1− σ)

φ(0)
,
ψ(σ)

ψ(1)

}
.

Lemma 2.3. ([15]) Let (A1)− (A5) hold. Then the Green’s function G1 of problem
(2.1)-(2.2) given by (2.3) is continuous on [0, 1]× [0, 1] and satisfies G1(t, s) ≥ 0 for
all (t, s) ∈ [0, 1] × [0, 1]. Moreover, if y ∈ C(0, 1) ∩ L1(0, 1) satisfies y(t) ≥ 0 for all
t ∈ (0, 1), then the solution u of problem (2.1)-(2.2) satisfies u(t) ≥ 0 for all t ∈ [0, 1].
Lemma 2.4. ([15]) Assume that (A1)− (A5) hold. Then the Green’s function G1 of
problem (2.1)-(2.2) satisfies the inequalities
a) G1(t, s) ≤ J1(s), ∀ (t, s) ∈ [0, 1]× [0, 1], where

J1(s) = g1(s, s)

+
1

∆1

[
ψ(T )

(∫ 1

0

φ(s) dH2(s)

)
+φ(0)

(
τ1−

∫ 1

0

ψ(s) dH2(s)

)]∫ 1

0

g1(τ, s) dH1(τ)

+
1

∆1

[
ψ(T )

(
τ1−

∫ 1

0

φ(s) dH1(s)

)
+φ(0)

(∫ 1

0

ψ(s) dH1(s)

)]∫ 1

0

g1(τ, s) dH2(τ).

b) For every σ ∈ (0, 1/2), we have

min
t∈[σ,1−σ]

G1(t, s) ≥ ν1J1(s) ≥ ν1G1(t′, s), ∀ t′, s ∈ [0, 1],

where ν1 is given in Lemma 2.2.
Lemma 2.5. ([15]) Assume that (A1) − (A5) hold and let σ ∈ (0, 1/2). If y ∈
C(0, 1) ∩ L1(0, 1), y(t) ≥ 0 for all t ∈ (0, 1), then the solution u(t), t ∈ [0, 1] of
problem (2.1)-(2.2) satisfies the inequality inf

t∈[σ,1−σ]
u(t) ≥ ν1 sup

t′∈[0,1]
u(t′).

We can also formulate similar results as Lemmas 2.1-2.5 above for the boundary
value problem

(c(t)v′(t))′ − d(t)v(t) + h(t) = 0, 0 < t < 1, (2.5)

α̃v(0)− β̃c(0)v′(0) =

∫ 1

0

v(s) dK1(s), γ̃v(1) + δ̃c(1)v′(1) =

∫ 1

0

v(s) dK2(s), (2.6)

under similar assumptions as (A1) − (A5) and h ∈ C(0, 1) ∩ L1(0, 1). We denote

by ψ̃, φ̃, θ2, τ2, ∆2, g2, G2, ν2 and J2 the corresponding constants and functions for
problem (2.5)-(2.6) defined in a similar manner as ψ, φ, θ1, τ1, ∆1, g1, G1, ν1 and J1,
respectively.
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3. Main results

In this section, we shall investigate the existence of positive solutions for our prob-
lem (S)− (BC), under various assumptions on the singular functions f and g.

We present the assumptions that we shall use in the sequel.

(L1) The functions a, c ∈ C1([0, 1], (0,∞)) and b, d ∈ C([0, 1], [0,∞)).

(L2) α, β, γ, δ, α̃, β̃, γ̃, δ̃ ∈ [0,∞) with α+β > 0, γ+ δ > 0, α̃+ β̃ > 0, γ̃+ δ̃ > 0;
if b ≡ 0 then α+ γ > 0; if d ≡ 0 then α̃+ γ̃ > 0.

(L3) H1, H2, K1, K2 : [0, 1]→ R are nondecreasing functions.

(L4) τ1 −
∫ 1

0
φ(s) dH1(s) > 0, τ1 −

∫ 1

0
ψ(s) dH2(s) > 0, τ2 −

∫ 1

0
φ̃(s) dK1(s) > 0,

τ2−
∫ 1

0
ψ̃(s) dK2(s) > 0, ∆1 > 0, ∆2 > 0, where τ1, τ2, ∆1, ∆2 are defined in

Section 2.
(L5) The functions f, g ∈ C((0, 1) × R+,R+) and there exist pi ∈ C((0, 1),R+),

qi ∈ C(R+,R+), i = 1, 2, with 0 <
∫ 1

0
pi(t) dt < ∞, i = 1, 2, q1(0) = 0,

q2(0) = 0 such that

f(t, x) ≤ p1(t)q1(x), g(t, x) ≤ p2(t)q2(x), ∀ t ∈ (0, 1), x ∈ R+.

The pair of functions (u, v) ∈ (C([0, 1]) ∩ C2(0, 1))2 is a solution for our problem
(S) − (BC) if and only if (u, v) ∈ (C([0, 1]))2 is a solution for the nonlinear integral
equations

u(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds, t ∈ [0, 1],

v(t) =

∫ 1

0

G2(t, s)g(s, u(s)) ds, t ∈ [0, 1].

We consider the Banach space X = C([0, 1]) with the supremum norm ‖u‖ =
max
t∈[0,1]

|u(t)| and the cone P ⊂ X by P = {u ∈ X, u(t) ≥ 0, ∀ t ∈ [0, 1]}.

We also define the operator D : P → X by

D(u)(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds.

Lemma 3.1. Assume that (L1)-(L5) hold. Then D : P → P is completely continu-
ous.
Proof. We denote by α0 =

∫ 1

0
J1(s)p1(s) ds and β0 =

∫ 1

0
J2(s)p2(s) ds. Using (L5), we

deduce that 0 < α0 < ∞ and 0 < β0 < ∞. By Lemma 2.3, we deduce that D maps
P into P . We shall prove that D maps bounded sets into relatively compact sets.
Suppose E ⊂ P is an arbitrary bounded set. First, we prove that D(E) is a bounded
set. Because E is bounded, then there exists M1 > 0 such that ‖u‖ ≤ M1 for all
u ∈ E. By the continuity of q2, there exists M2 > 0 such that M2 = supx∈[0,M1] q2(x).

By using Lemma 2.4, for any u ∈ E and s ∈ [0, 1], we obtain∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ ≤
∫ 1

0

G2(s, τ)p2(τ)q2(u(τ)) dτ ≤ β0M2. (3.1)
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Because q1 is continuous, there exists M3 > 0 such that M3 = supx∈[0,β0M2] q1(x).

Therefore, from (3.1), (L5) and Lemma 2.4, we deduce

(Du)(t) ≤
∫ 1

0

G1(t, s)p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

≤M3

∫ 1

0

J1(s)p1(s) ds = α0M3, ∀ t ∈ [0, 1].

(3.2)

So, ‖Du‖ ≤ α0M3 for all u ∈ E. Therefore, D(E) is a bounded set.
In what follows, we shall prove that D(E) is equicontinuous. By using (2.5) from

Lemma 2.1, we have for all t ∈ [0, 1]

(Du)(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

=

∫ 1

0

{
g1(t, s) +

1

∆1

[
ψ(t)

(∫ 1

0

φ(τ)dH2(τ)

)
+ φ(t)

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)](∫ 1

0

g1(τ, s)dH1(τ)

)
+

1

∆1

[
ψ(t)

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
+ φ(t)

(∫ 1

0

ψ(τ)dH1(τ)

)]
×
(∫ 1

0

g1(τ, s)dH2(τ)

)}
f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

=

∫ t

0

1

τ1
φ(t)ψ(s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+

∫ 1

t

1

τ1
φ(s)ψ(t)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
ψ(t)

(∫ 1

0

φ(τ)dH2(τ)

)
+ φ(t)

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

g1(τ, s)dH1(τ)

)
f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
ψ(t)

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
+ φ(t)

(∫ 1

0

ψ(τ)dH1(τ)

)]
×
(∫ 1

0

g1(τ, s)dH2(τ)

)
f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds.
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Therefore, we obtain for any t ∈ (0, 1)

(Du)′(t) =
1

τ1
φ(t)ψ(t)f

(
t,

∫ 1

0

G2(t, τ)g(τ, u(τ)) dτ

)
+

1

τ1

∫ t

0

φ′(t)ψ(s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

− 1

τ1
φ(t)ψ(t)f

(
t,

∫ 1

0

G2(t, τ)g(τ, u(τ)) dτ

)
+

1

τ1

∫ 1

t

ψ′(t)φ(s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
ψ′(t)

(∫ 1

0

φ(τ)dH2(τ)

)
+ φ′(t)

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

g1(τ, s)dH1(τ)

)
f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
ψ′(t)

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
+ φ′(t)

(∫ 1

0

ψ(τ)dH1(τ)

)]
×
(∫ 1

0

g1(τ, s)dH2(τ)

)
f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds.

So, for any t ∈ (0, 1), we deduce

|(Du)′(t)| ≤ 1

τ1

∫ t

0

|φ′(t)ψ(s)|p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

τ1

∫ 1

t

|ψ′(t)φ(s)|p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
|ψ′(t)|

(∫ 1

0

φ(τ)dH2(τ)

)
+ |φ′(t)|

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

g1(τ, s)dH1(τ)

)
p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

+
1

∆1

∫ 1

0

[
|ψ′(t)|

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
+ |φ′(t)|

(∫ 1

0

ψ(τ)dH1(τ)

)]
×
(∫ 1

0

g1(τ, s)dH2(τ)

)
p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds.
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Hence, we obtain for any t ∈ (0, 1)

|(Du)′(t)| ≤M3

{
− 1

τ1

∫ t

0

φ′(t)ψ(s)p1(s) ds+
1

τ1

∫ 1

t

ψ′(t)φ(s)p1(s) ds

+
1

∆1

∫ 1

0

[
ψ′(t)

(∫ 1

0

φ(τ)dH2(τ)

)
− φ′(t)

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

g1(τ, s)dH1(τ)

)
p1(s) ds

+
1

∆1

∫ 1

0

[
ψ′(t)

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
− φ′(t)

(∫ 1

0

ψ(τ)dH1(τ)

)]
×
(∫ 1

0

g1(τ, s)dH2(τ)

)
p1(s) ds

}
.

(3.3)
We denote

h(t) = − 1

τ1

∫ t

0

φ′(t)ψ(s)p1(s) ds+
1

τ1

∫ 1

t

ψ′(t)φ(s)p1(s) ds, t ∈ (0, 1),

µ(t) = h(t) +
1

∆1

∫ 1

0

[
ψ′(t)

(∫ 1

0

φ(τ)dH2(τ)

)
− φ′(t)

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

g1(τ, s)dH1(τ)

)
p1(s) ds+

1

∆1

∫ 1

0

[
ψ′(t)

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
− φ′(t)

(∫ 1

0

ψ(τ)dH1(τ)

)](∫ 1

0

g1(τ, s)dH2(τ)

)
p1(s) ds, t ∈ (0, 1).

For the integral of the function h, by exchanging the order of integration, we obtain

∫ 1

0

h(t) dt =
1

τ1

∫ 1

0

(∫ t

0

(−φ′(t))ψ(s)p1(s) ds

)
dt

+
1

τ1

∫ 1

0

(∫ 1

t

ψ′(t)φ(s)p1(s) ds

)
dt

=
1

τ1

∫ 1

0

(∫ 1

s

(−φ′(t))ψ(s)p1(s) dt

)
ds

+
1

τ1

∫ 1

0

(∫ s

0

ψ′(t)φ(s)p1(s) dt

)
ds

=
1

τ1

∫ 1

0

ψ(s)(φ(s)− φ(1))p1(s) ds+
1

τ1

∫ 1

0

φ(s)(ψ(s)− ψ(0))p1(s) ds

≤ 1

τ1
[ψ(1)(φ(0)− φ(1)) + φ(0)(ψ(1)− ψ(0))]

∫ 1

0

p1(s) ds

= M̃0

∫ 1

0

p1(s) ds <∞,
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where M̃0 = 1
τ1

[ψ(1)(φ(0)−φ(1))+φ(0)(ψ(1)−ψ(0))]. For the integral of the function
µ, we have∫ 1

0

µ(t) dt ≤ M̃0

∫ 1

0

p1(s) ds+
1

∆1

[(∫ 1

0

ψ′(t) dt

)(∫ 1

0

φ(τ)dH2(τ)

)
−
(∫ 1

0

φ′(t) dt

)(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)]
×
(∫ 1

0

(∫ 1

0

g1(τ, s)dH1(τ)

)
p1(s) ds

)
+

1

∆1

[(∫ 1

0

ψ′(t) dt

)(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
−
(∫ 1

0

φ′(t) dt

)
×
(∫ 1

0

ψ(τ)dH1(τ)

)](∫ 1

0

(∫ 1

0

g1(τ, s)dH2(τ)

)
p1(s) ds

)

≤ M̃0

∫ 1

0

p1(s) ds+
1

∆1

[
(ψ(1)− ψ(0))

(∫ 1

0

φ(τ)dH2(τ)

)
×
(∫ 1

0

dH1(τ)

)
+ (φ(0)− φ(1))

(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)
×
(∫ 1

0

dH1(τ)

)
+ (ψ(1)− ψ(0))

(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
×
(∫ 1

0

dH2(τ)

)
+ (φ(0)− φ(1))

(∫ 1

0

ψ(τ)dH1(τ)

)
×
(∫ 1

0

dH2(τ)

)](∫ 1

0

g1(s, s)p1(s) ds

)
≤ M̃0

∫ 1

0

p1(s) ds+
1

τ1∆1
φ(0)ψ(1)

[
(ψ(1)− ψ(0))(H1(1)−H1(0))

×
(∫ 1

0

φ(τ)dH2(τ)

)
+ (φ(0)− φ(1))(H1(1)−H1(0))

×
(
τ1 −

∫ 1

0

ψ(τ)dH2(τ)

)
+ (ψ(1)− ψ(0))(H2(1)−H2(0))

×
(
τ1 −

∫ 1

0

φ(τ)dH1(τ)

)
+ (φ(0)− φ(1))(H2(1)−H2(0))

×
(∫ 1

0

ψ(τ)dH1(τ)

)]∫ 1

0

p1(s) ds <∞.

(3.4)

We deduce that µ ∈ L1(0, 1). Thus for any given t1, t2 ∈ [0, 1] with t1 ≤ t2 and
u ∈ E, by (3.3), we obtain

|(Du)(t1)− (Du)(t2)| =
∣∣∣∣∫ t2

t1

(Du)′(t) dt

∣∣∣∣ ≤M3

∫ t2

t1

µ(t) dt. (3.5)

From (3.4), (3.5) and the absolute continuity of the integral function, we obtain
that D(E) is equicontinuous. This conclusion, together with (3.2) and Ascoli-Arzelà
theorem, yields that D(E) is relatively compact. Therefore D is a compact operator.

We show now that the operator D is continuous. Suppose that up, u ∈ E for p ∈ N
and ‖up − u‖ → 0, as p → ∞. Then there exists M4 > 0 such that ‖up‖ ≤ M4
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and ‖u‖ ≤ M4. From the first part of this proof we know that {Dup, p ∈ N} is
relatively compact. We shall prove that ‖Dup −Du‖ → 0, as p→∞. If we suppose
that this is not true, then there exists ε0 > 0 and a subsequence (upk)k ⊂ (uk)k
such that ‖Dupk −Du‖ ≥ ε0, k = 1, 2, . . .. Since {Dupk , k = 1, 2, . . .} is relatively
compact, there exists a subsequence of (Dupk)k which converges in P to some u∗ ∈ P .
Without loss of generality, we assume that (Dupk)k itself converges to u∗, that is,
lim
k→∞

‖Dupk − u∗‖ = 0. From the above relation, we deduce that (Dupk)(t) → u∗(t),

as k →∞ for all t ∈ [0, 1]. By (L5) and Lemma 2.4, we obtain

G2(s, τ)g(τ, upk(τ)) ≤ J2(τ)p2(τ)q2(upk(τ)) ≤M5J2(τ)p2(τ),

for all s, τ ∈ [0, 1], where M5 = sup
x∈[0,M4]

q2(x) <∞. Therefore we obtain

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, upk(τ)) dτ

)
≤ J1(s)p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, upk(τ)) dτ

)
≤M6J1(s)p1(s),

(3.6)

where M6 = sup
x∈[0,β0M5]

q1(x).

By (L5), (3.6) and the Lebesgue’s Dominated Convergence Theorem, we obtain

u∗(t) = lim
k→∞

(Dupk)(t) = (Du)(t), ∀ t ∈ [0, 1],

that is, u∗ = Du. This relation contradicts the inequality ‖Dupk − u∗‖ ≥ ε0, k =
1, 2, . . .. Therefore, D is continuous in u, and in general on P . Lemma 3.1 is com-
pletely proved. �

For σ ∈ (0, 1/2) we define the cone

P0 = {u ∈ X, u(t) ≥ 0, ∀ t ∈ [0, 1], inf
t∈[σ,1−σ]

u(t) ≥ ν‖u‖} ⊂ P,

where ν = min{ν1, ν2}, and ν1 and ν2 are defined in Section 2 (Lemma 2.2). Under
the assumptions (L1) − (L5), we have D(P ) ⊂ P0. Indeed, for u ∈ P , let v = D(u).
By Lemma 2.5, we have inft∈[σ,1−σ] v(t) ≥ ν1‖v‖ ≥ ν‖v‖, that is v ∈ P0.
Theorem 3.2. Assume that (L1) − (L5) hold. If the functions f and g also satisfy
the conditions
(L6) There exist r1, r2 ∈ (0,∞) with r1r2 ≥ 1 such that

i) qs10 = lim sup
x→0+

q1(x)

xr1
∈ [0,∞); ii) qs20 = lim sup

x→0+

q2(x)

xr2
= 0,

(L7) There exist l1, l2 ∈ (0,∞) with l1l2 ≥ 1 and σ ∈ (0, 1/2) such that

i) f i∞ = lim inf
x→∞

inf
t∈[σ,1−σ]

f(t, x)

xl1
∈ (0,∞]; ii) gi∞ = lim inf

x→∞
inf

t∈[σ,1−σ]

g(t, x)

xl2
=∞,

then problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Proof. We consider the cone P0 with σ given in (L7). From (L6) i) and (L5), we
deduce that there exists C1 > 0 such that

q1(x) ≤ C1x
r1 , ∀x ∈ [0, 1]. (3.7)
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From (L6) ii) and (L5), for C2 = min
{

(1/(C1α0β
r1
0 ))

1/r1 , 1/β0

}
> 0 with α0, β0

defined in the proof of Lemma 3.1, we conclude that there exists δ1 ∈ (0, 1) such that

q2(x) ≤ C2x
r2 , ∀x ∈ [0, δ1]. (3.8)

From (3.8), (L5) and Lemma 2.4, for any u ∈ ∂Bδ1 ∩ P0 and s ∈ [0, 1], we obtain∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ ≤ C2

∫ 1

0

J2(τ)p2(τ) dτ · ‖u‖r2 = C2β0δ
r2
1 ≤ δ

r2
1 < 1.

(3.9)
By using (3.7)-(3.9) and (L5), for any u ∈ ∂Bδ1 ∩ P0 and t ∈ [0, 1], we deduce

(Du)(t) ≤ C1

∫ 1

0

G1(t, s)p1(s)

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)r1
ds

≤ C1

∫ 1

0

G1(t, s)p1(s)

(
C2

∫ 1

0

G2(s, τ)p2(τ)(u(τ))r2 dτ

)r1
ds

≤ C1

(∫ 1

0

J1(s)p1(s) ds

)(
C2

∫ 1

0

J2(τ)p2(τ) dτ

)r1
‖u‖r1r2 ≤ ‖u‖.

Therefore

‖Du‖ ≤ ‖u‖, ∀u ∈ ∂Bδ1 ∩ P0. (3.10)

From (L7) i), we conclude that there exist C3 > 0 and x1 > 0 such that

f(t, x) ≥ C3x
l1 , ∀x ≥ x1, ∀ t ∈ [σ, 1− σ]. (3.11)

We consider now C4 = max
{

(ν2ν
l2θ2)−1, (C3ν1ν

l1
2 ν

l1l2θ1θ
l1
2 )−1/l1

}
> 0, where

θ1 =

∫ 1−σ

σ

J1(s)ds > 0 and θ2 =

∫ 1−σ

σ

J2(s) ds > 0.

From (L7) ii), we deduce that there exists x2 ≥ 1 such that

g(t, x) ≥ C4x
l2 , ∀x ≥ x2, ∀ t ∈ [σ, 1− σ]. (3.12)

We choose R0 = max{x1, x2} and R > max
{
R0/ν,R

1/l2
0

}
. Then for any u ∈ ∂BR ∩

P0, we have inf
t∈[σ,1−σ]

u(t) ≥ ν‖u‖ = νR > R0.

By using (3.11) and (3.12), for any u ∈ ∂BR ∩ P0 and s ∈ [σ, 1− σ], we obtain∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ ≥ ν2C4

∫ 1−σ

σ

J2(τ)(u(τ))l2 dτ

≥ ν2C4ν
l2

∫ 1−σ

σ

J2(τ) dτ · ‖u‖l2 ≥ ‖u‖l2 = Rl2 > R0.
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Then for any u ∈ ∂BR ∩ P0 and t ∈ [σ, 1− σ], we have

(Du)(t) ≥
∫ 1−σ

σ

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

≥ C3

∫ 1−σ

σ

G1(t, s)

(
ν2

∫ 1−σ

σ

J2(τ)C4(u(τ))l2 dτ

)l1
ds

≥ C3C
l1
4 ν

l1
2

∫ 1−σ

σ

G1(t, s)νl1l2‖u‖l1l2
(∫ 1−σ

σ

J2(τ) dτ

)l1
ds

≥ C3C
l1
4 ν

l1
2 ν1ν

l1l2

(∫ 1−σ

σ

J1(s) ds

)(∫ 1−σ

σ

J2(τ) dτ

)l1
‖u‖l1l2 ≥ ‖u‖.

Therefore we obtain

‖Du‖ ≥ ‖u‖, ∀u ∈ ∂BR ∩ P0. (3.13)

By (3.10), (3.13), Lemma 3.1 and Theorem 1.1 i), we conclude that D has a fixed
point u1 ∈ (B̄R \Bδ1) ∩ P0, that is δ1 ≤ ‖u1‖ ≤ R. Let

v1(t) =

∫ 1

0

G2(t, s)g(s, u1(s)) ds.

Then (u1, v1) ∈ P0 × P0 is a positive solution of (S) − (BC). In addition ‖v1‖ > 0.
Indeed, if we suppose that v1(t) = 0 for all t ∈ [0, 1], then by using (L5) we have
f(s, v1(s)) = f(s, 0) = 0 for all s ∈ [0, 1]. This implies u1(t) = 0 for all t ∈ [0, 1],
which contradicts ‖u1‖ > 0. The proof of Theorem 3.2 is completed. �
Theorem 3.3 Assume that (L1) − (L5) hold. If the functions f and g also satisfy
the conditions
(L8) There exist α1, α2 ∈ (0,∞) with α1α2 ≤ 1 such that

i) qs1∞ = lim sup
x→∞

q1(x)

xα1
∈ [0,∞); ii) qs2∞ = lim sup

x→∞

q2(x)

xα2
= 0,

(L9) There exist β1, β2 ∈ (0,∞) with β1β2 ≤ 1 and σ ∈ (0, 1/2) such that

i) f i0 = lim inf
x→0+

inf
t∈[σ,1−σ]

f(t, x)

xβ1
∈ (0,∞]; ii) gi0 = lim inf

x→0+
inf

t∈[σ,1−σ]

g(t, x)

xβ2
=∞,

then problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Proof. We consider the cone P0 with σ given in (L9). By (L8) i) we deduce that there
exist C5 > 0 and C6 > 0 such that

q1(x) ≤ C5x
α1 + C6, ∀x ∈ [0,∞). (3.14)

From (L8) ii), for ε0 > 0, ε0 < (2α1C5α0β
α1
0 )
−1/α1 , we conclude that there exists

C7 > 0 such that

q2(x) ≤ ε0xα2 + C7, ∀x ∈ [0,∞). (3.15)
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By using (3.14), (3.15) and (L5), for any u ∈ P0, we obtain

(Du)(t) ≤
∫ 1

0

G1(t, s)p1(s)q1

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds

≤ C5

∫ 1

0

G1(t, s)p1(s)

(∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)α1

ds

+C6

∫ 1

0

J1(s)p1(s) ds

≤ C5

∫ 1

0

J1(s)p1(s) ds

(∫ 1

0

J2(τ)p2(τ) dτ

)α1

(ε0‖u‖α2 + C7)
α1 + α0C6

≤ C52α1εα1
0 α0β

α1
0 ‖u‖α1α2 + C52α1α0β

α1
0 Cα1

7 + α0C6, ∀ t ∈ [0, 1].

By definition of ε0, we can choose sufficiently large R1 > 0 such that

‖Du‖ ≤ ‖u‖, ∀u ∈ ∂BR1
∩ P0. (3.16)

From (L9) i), we deduce that there exist positive constants C8 > 0 and x3 > 0
such that f(t, x) ≥ C8x

β1 , for all x ∈ [0, x3] and t ∈ [σ, 1 − σ]. From (L9) ii), for

ε1 =
(
C8ν1ν

β1

2 νβ1β2θ1θ
β1

2

)−1/β1

> 0, we conclude that there exists x4 > 0 such that

g(t, x) ≥ ε1xβ2 for all x ∈ [0, x4] and t ∈ [σ, 1− σ].
We consider x5 = min{x3, x4}. So we obtain

f(t, x) ≥ C8x
β1 , g(t, x) ≥ ε1xβ2 , ∀ (t, x) ∈ [σ, 1− σ]× [0, x5]. (3.17)

From assumption q2(0) = 0 and the continuity of q2, we deduce that there exists
sufficiently small ε2 ∈ (0,min{x5, 1}) such that q2(x) ≤ β−10 x5 for all x ∈ [0, ε2].

Therefore for any u ∈ ∂Bε2 ∩ P0 and s ∈ [0, 1], we have∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ ≤ β−10 x5

∫ 1

0

J2(τ)p2(τ) dτ = x5. (3.18)

By (3.17), (3.18), Lemma 2.4 and Lemma 2.5, for any t ∈ [σ, 1− σ], we obtain

(Du)(t) ≥ C8

∫ 1−σ

σ

G1(t, s)

(∫ 1−σ

σ

G2(s, τ)g(τ, u(τ)) dτ

)β1

ds

≥ C8ν1

∫ 1−σ

σ

J1(s)

[
(ε1ν2)β1

(∫ 1−σ

σ

J2(τ)(u(τ))β2 dτ

)β1
]
ds

≥ C8ν1ν
β1

2 εβ1

1 ν
β1β2θ1θ

β1

2 ‖u‖β1β2 ≥ ‖u‖.

Therefore

‖Du‖ ≥ ‖u‖, ∀u ∈ ∂Bε2 ∩ P0. (3.19)

By (3.16), (3.19), Lemma 3.1 and Theorem 1.1 ii), we deduce that D has at least
one fixed point u2 ∈ (B̄R1 \ Bε2) ∩ P0. Then our problem (S) − (BC) has at least

one positive solution (u2, v2) ∈ P0 × P0 where v2(t) =
∫ 1

0
G2(t, s)g(s, u2(s)) ds. This

completes the proof of Theorem 3.3. �
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4. Examples

In this section, we shall present two examples which illustrate our main results.
Example 4.1. Let

f(t, x) =
xa

tγ1(1− t)δ1
, g(t, x) =

xb

tγ2(1− t)δ2
, ∀ t ∈ (0, 1), x ∈ [0,∞),

with a, b > 1 and γ1, δ1, γ2, δ2 ∈ (0, 1). Here f(t, x) = p1(t)q1(x) and g(t, x) =
p2(t)q2(x), where

p1(t) =
1

tγ1(1− t)δ1
, p2(t) =

1

tγ2(1− t)δ2
, q1(x) = xa, q2(x) = xb.

We have 0 <
∫ 1

0
p1(s) ds <∞, 0 <

∫ 1

0
p2(s) ds <∞.

In (L6), for r1 < a, r2 < b and r1r2 ≥ 1, we have

lim sup
x→0+

q1(x)

xr1
= lim
x→0+

xa−r1 = 0, lim sup
x→0+

q2(x)

xr2
= lim
x→0+

xb−r2 = 0.

In (L7), for l1 < a, l2 < b, l1l2 ≥ 1 and σ ∈
(
0, 12
)
, we have

lim inf
x→∞

inf
t∈[σ,1−σ]

f(t, x)

xl1
= lim inf

x→∞
inf

t∈[σ,1−σ]

xa−l1

tγ1(1− t)δ1

=

(
max

{
γγ11 δδ11

(γ1 + δ1)γ1+δ1
, σγ1(1− σ)δ1 , σδ1(1− σ)γ1

})−1
· lim
x→∞

xa−l1 =∞.

In a similar manner, we have lim inf
x→∞

inf
t∈[σ,1−σ]

g(t, x)

xl2
=∞.

For example, if a = 2, b = 3/2, r1 = 1, r2 = 4/3, l1 = 3/2, l2 = 1, the above
conditions are satisfied. Under the assumptions (L1) − (L4), by Theorem 3.2, we
deduce that problem (S)− (BC) has at least one positive solution.
Example 4.2. Let

f(t, x) =
xa(2 + cosx)

tγ1
, g(t, x) =

xb(1 + sinx)

(1− t)δ1
, ∀ t ∈ (0, 1), x ∈ [0,∞),

with a, b ∈ (0, 1) and γ1, δ1 ∈ (0, 1). Here f(t, x) = p1(t)q1(x) and g(t, x) =
p2(t)q2(x), where

p1(t) =
1

tγ1
, p2(t) =

1

(1− t)δ1
, q1(x) = xa(2 + cosx), q2(x) = xb(1 + sinx).

We have 0 <
∫ 1

0
p1(s) ds <∞, 0 <

∫ 1

0
p2(s) ds <∞.

In (L8), for α1 = a, α2 > b and α1α2 ≤ 1, we have

lim sup
x→∞

q1(x)

xα1
= lim sup

x→∞

xa(2 + cosx)

xα1
= 3, lim sup

x→∞

q2(x)

xα2
= lim sup

x→∞

xb(1 + sinx)

xα2
= 0.
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In (L9), for β1 = a, β2 > b, β1β2 ≤ 1 and σ ∈
(
0, 12
)
, we have

lim inf
x→0+

inf
t∈[σ,1−σ]

f(t, x)

xβ1
= lim inf

x→0+
inf

t∈[σ,1−σ]

xa(2 + cosx)

tγ1xβ1
=

3

(1− σ)γ1
> 0,

lim inf
x→0+

inf
t∈[σ,1−σ]

g(t, x)

xβ2
=lim inf

x→0+
inf

t∈[σ,1−σ]

xb(1 + sinx)

(1− t)δ1xβ2
=

1

(1− σ)δ1
lim
x→0+

xb−β2 =∞.

For example, if a = 1/3, b = 1/2, α1 = 1/3, α2 = 1, β1 = 1/3, β2 = 1, the above
conditions are satisfied. Under the assumptions (L1) − (L4), by Theorem 3.3, we
deduce that problem (S)− (BC) has at least one positive solution.
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