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1. Introduction

Consider the nonlinear impulsive Dirichlet boundary value problem −u
′′(x) = λf(x, u(x)) + g(u(x)), a.e. x ∈ [0, T ],

u(0) = u(T ) = 0,
∆u′(xj) = Ij(u(xj)), j = 1, ..., p,

(IP)

where λ is a positive parameter, T > 0, f : [0, T ] × R → R is an L1-Carathéodory
function, x0 = 0 < x1 < . . . < xp < xp+1 = T , and ∆u′(xj) is defined by

∆u′(xj) = u′(x+
j )− u′(x−j ) = lim

x→x+
j

u′(x)− lim
x→x−

j

u′(x).

The following conditions will be assumed to hold throughout the remainder of this
paper:

(H1) g : R→ R is a Lipschitz continuous function with a Lipschitz constant
L ∈ (0, 4/T 2), i.e., |g(t1)− g(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ R, and g(0) = 0;

(H2) The impulsive functions Ij : R → R, j = 1, . . . , p, are continuous and satisfy
the condition

∑p
j=1(Ij(t1)− Ij(t2))(t1 − t2) ≥ 0 for all t1, t2 ∈ R;
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(H3) Ij , j = 1, ..., p, have sublinear growth, i.e., there exist constants aj > 0, bj ≥ 0,
and γj ∈ [0, 1) such that |Ij(t)| ≤ aj + bj |t|γj for every t ∈ R and j = 1, ..., p.

The theory and applications of impulsive functional differential equations are
emerging as important areas of investigation, and in some senses they have proved
to be far richer than those for non-impulsive equations. Various population models
that are characterized by the fact that sudden changes of their state depends on their
prior history can be expressed by impulsive differential equations with deviating ar-
guments. These occur in such areas as population dynamics, ecology, epidemics, etc.
In recent decades, impulsive differential equations have also become more important
in mathematical models of spacecraft control, impact mechanics, physics, chemistry,
biotechnology, economics, and inspection processes in operations research. It is now
recognized that the theory of impulsive differential equations is a natural framework
for a mathematical modeling of many natural phenomena.

The questions of the existence and multiplicity of solutions for such problems have
been studied by several authors; we refer the reader to the monographs [6, 11] and
the papers [1, 3, 4, 5, 8, 10, 15, 14, 16, 21, 23, 25, 26, 27] as examples of results of
this type. Using a result of Bonanno (see Lemma 2.1 below), we establish some new
results on the existence of nontrivial classical solutions to the problem (IP).

2. Preliminaries

For a given nonempty set X and two functionals Φ,Ψ : X → R, we define

%(r) = sup
v∈Φ−1(r,∞)

Ψ(v)− supu∈Φ−1(−∞,r] Ψ(u)

Φ(v)− r

for all r ∈ R. We also let X∗ denote the dual space of X.
Lemma 2.1. ([7, Theorem 5.3]) Let X be a real Banach space, Φ : X → R be a
sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux differ-
entiable functional whose Gâteaux derivative admits a continuous inverse on X∗, and
let Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Fix infX Φ < r < supX Φ and assume that %(r) > 0, and for
each

λ >
1

%(r)
,

the functional Iλ := Φ− λΨ is coercive. Then, for each λ > 1
%(r) , there exists u0,λ ∈

Φ−1(r,∞) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r,∞) and I ′λ(u0,λ) = 0.
Let X = H1

0 (0, T ) and H2(0, T ) = {u ∈ C1[0, T ] : u′′ ∈ L2[0, T ]}. In the space X,
consider the inner product

≺ u, v �=

∫ T

0

u′(x)v′(x)dx,

which induces the norm

‖u‖ =
(∫ T

0

|u′(x)|2dx
) 1

2

.
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It is not hard to see that

‖u‖∞ = max
t∈[0,T ]

|u(t)| ≤
√
T

2
‖u‖ for u ∈ X. (2.1)

Next, we define what we mean by a solution to our problem.
Definition 2.1. By a classical solution of the problem (IP), we mean a function
u ∈ {u(x) ∈ H1(0, T ) : u(x) ∈ H2(xj , xj+1), j = 0, 1, ..., p} such that u satisfies (IP).
Definition 2.2. A function u ∈ X is a weak solution of the problem (IP) if∫ T

0

u′(x)v′(x)dx+

p∑
j=1

Ij(u(xj))v(xj)−
∫ T

0

g(u(x))v(x)dx−λ
∫ T

0

f(x, u(x))v(x)dx = 0

for every v ∈ X.
Remark 2.1. Using an approach such as that in [3, Lemma 5], it is not difficult to
show that a weak solution of (IP) is in fact a classical solution.

In what follows, we let

F (x, t) =

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ [0, T ]× R

and

G(t) = −
∫ t

0

g(ξ)dξ for all t ∈ R.

We will also need the following lemma.
Lemma 2.2. Let T : X → X∗ be the operator defined by

T (u)v =

∫ T

0

u′(x)v′(x)dx+

p∑
j=1

Ij(u(xj))v(xj)−
∫ T

0

g(u(x))v(x)dx (2.2)

for every u, v ∈ X. Then T has a continuous inverse on X∗.
Proof. Note that (H1) implies

|g(t)| ≤ L|t| for all t ∈ R. (2.3)

Then from (H3), (2.1), and (2.3), it follows that

lim
‖u‖→∞

〈T (u), u〉
‖u‖

= lim
‖u‖→∞

∫ T
0

(u′(x))2dx+
∑p
j=1 Ij(u(xj))u(xj)−

∫ T
0
g(u(x))u(x)dx

‖u‖

≥ lim
‖u‖→∞

∫ T
0

(u′(x))2dx+
∑p
j=1 Ij(u(xj))u(xj)− LT 2

4 ‖u‖
2

‖u‖

≥ lim
‖u‖→∞

(
1− LT 2

4

)
‖u‖2 −

∑p
j=1

(
aj
√
T

2 ‖u‖+ bj

(√
T

2

)γj+1

‖u‖γj+1

)
‖u‖

=∞.

Hence, the map T is coercive.
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By (H1) and (H2), we have

〈T (u)− T (v), u− v〉 ≥
(

1− LT 2

4

)
‖u− v‖2.

Hence, T is uniformly monotone. Note that T is also hemicontinuous on X. Then,
by [24, Theorem 26.A (d)], T−1 exists and is continuous on X∗. �

We will need to define the constants (see [3])

C1 =
1

2
−

p∑
j=1

bj
γj + 1

(√
T

2

)γj+1

,

C2 =
1

2
+

p∑
j=1

bj
γj + 1

(√
T

2

)γj+1

,

and

C3 =

√
T

2

p∑
j=1

aj +

p∑
j=1

bj
γj + 1

(√
T

2

)γj+1

,

and the function H : [0,∞)→ R by

H(t) =

(
C1 −

LT 2

8

)
t2 − C3t (2.4)

3. Main results

Our main result in this paper is contained in the following theorem.

Theorem 3.1. Assume that C1 − LT 2

8 > 0 and there exist four positive constants ν,

τ , η, and δ with η, δ < T/2, and τ > ν >
√
TC3

2
(
C1−LT

2

8

) such that

(C1) F (x, t) ≥ 0 for all (x, t) ∈ ([0, η] ∪ [T − δ, T ])× [0, τ ];

(C2)
∫ T

0
supt∈[−ν,ν] F (x, t)dx <

∫ T−δ
η

F (x, τ)dx;

(C3) there exist K ∈ R and κ ∈ (0, 2) such that lim sup|ξ|→∞
F (x,ξ)
|ξ|κ < K uniformly

for all x ∈ [0, T ].

Then, for each λ > λ, where

λ =

η + δ

ηδ

(
C2 + LT 2

8

)
τ2 +

√
η+δ
ηδ C3τ −

4

T

(
C1 − LT 2

8

)
ν2 + 2√

T
C3ν∫ T−δ

η
F (x, τ)dx−

∫ T
0

supt∈[−ν,ν] F (x, t)dx
,

the problem (IP) has at least one nontrivial classical solution u ∈ X such that

4

T

(
C1 −

LT 2

8

)
ν2− 2√

T
C3ν <

1

2

∫ T

0

(u′(x))2dx+

p∑
j=1

∫ u(xj)

0

Ij(t)dt+

∫ T

0

G(u(x))dx.

(3.1)
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Proof. Define the functionals Φ, Ψ : X → R by

Φ(u) =
1

2

∫ T

0

(u′(x))2dx+

p∑
j=1

∫ u(xj)

0

Ij(t)dt+

∫ T

0

G(u(x))dx (3.2)

and

Ψ(u) =

∫ T

0

F (x, u(x))dx. (3.3)

It is well known that Ψ is a Gâteaux differentiable functional, is sequentially weakly
lower semicontinuous, and its Gâteaux derivative at u ∈ X is the functional Ψ′(u) ∈
X∗ defined by

Ψ′(u)(v) =

∫ T

0

f(x, u(x))v(x)dx for every v ∈ X.

To show that Ψ′ : X → X∗ is a compact operator, let un → u ∈ X weakly in X
as n → ∞. Then, un → u strongly in C([0, T ]). Since f(x, ·) is continuous in R for
every x ∈ [0, T ], we have f(x, un) → f(x, u) strongly as n → ∞. By the Lebesgue
dominated convergence theorem, we see that Ψ′(un) → Ψ′(u) strongly. Thus, Ψ′

is strongly continuous on X, which implies that Ψ′ is a compact operator by [24,
Proposition 26.2].

We also know that Φ is Gâteaux differentiable with Gâteaux derivative at u ∈ X
being the functional Φ′(u) ∈ X∗ given by

Φ′(u)(v) =

∫ T

0

u′(x)v′(x)dx+

p∑
j=1

Ij(u(xj))v(xj)−
∫ T

0

g(u(x))v(x)dx for every v ∈ X.

Lemma 2.2 implies that Φ′ has a continuous inverse on X∗. Since Φ′ is monotonic, Φ
is sequentially weakly lower semicontinuous (see [24, Proposition 25.20]).

Since ‖u‖γj+1 ≤ ‖u‖2 for every ‖u‖ ≥ 1 and ‖u‖γj+1 ≤ ‖u‖ for every ‖u‖ < 1, we
have that ‖u‖γj+1 ≤ ‖u‖+ ‖u‖2 for all u ∈ X. From (H3) and (2.1) we then obtain∣∣∣∣∣∣

p∑
j=1

∫ u(xj)

0

Ij(x)dx

∣∣∣∣∣∣ ≤
p∑
j=1

∣∣∣∣∣
∫ u(xj)

0

Ij(x)dx

∣∣∣∣∣
≤

p∑
j=1

(
aj |u(xj)|+

bj
γj + 1

|u(xj)|γj+1
)

≤
p∑
j=1

aj√T
2
||u||+ bj

γj + 1

(√
T

2

)γj+1

||u||γj+1

 .(3.4)

Thus, from (2.1), (3.4), and (2.3), for u ∈ X we see that(
C1 −

LT 2

8

)
‖u‖2 − C3‖u‖ ≤ Φ(u) ≤

(
C2 +

LT 2

8

)
‖u‖2 + C3‖u‖. (3.5)
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Now η, δ ∈ (0, T/2) implies 1
η + 1

δ >
4
T , so from (C2) and the fact that C2 ≥ C1,

we see that 1
λ
> 0. Choose r = 4

T

(
C1 − LT 2

8

)
ν2 − 2√

T
C3ν and let w be defined by

w(x) =


τ
ηx, x ∈ [0, η],

τ, x ∈ [η, T − δ],
τ
δ (T − x), x ∈ [T − δ, T ].

(3.6)

It is clear that w ∈ X and

‖w‖ =

√
η + δ

ηδ
τ. (3.7)

Since C1 − LT 2

8 > 0 and C3 > 0, we have H(t) ≤ 0 for t ∈
[
0, C3

C1−LT
2

8

]
, H(t)

is strictly increasing on

[
C3

2(C1−LT
2

8 )
,∞
)

, and H(t) ≥ 0 on

[
C3

C1−LT
2

8

,∞
)

. Since

τ > ν >
√
TC3

2
(
C1−LT

2

8

) > 0, we have

√
η + δ

ηδ
τ >

√
η + δ

ηδ
ν >

2√
T
ν >

C3

C1 − LT 2

8

.

Hence, from (3.7), we see that ‖w‖ > C3

C1−LT
2

8

, which, together with the fact that

H(t) is strictly increasing on

[
C3

C1−LT
2

8

,∞
)

, implies

H(‖w‖) > H

(
2√
T
ν

)
> H

(
C3

C1 − LT 2

8

)
= 0.

Thus, r = H
(

2√
T
ν
)

, and so(
C1 −

LT 2

8

)
‖w‖2 − C3‖w‖ > r > 0. (3.8)

Since H(t) is strictly increasing on

[
C3

C1−LT
2

8

,∞
)

, 2√
T
ν > C3

C1−LT
2

8

, and

r = H
(

2√
T
ν
)

, we see that[
C3

C1 − LT 2

8

,
2√
T
ν

]
⊆ {t ∈ [0,∞) : H(t) ≤ r} (3.9)

and (
2√
T
ν, ∞

)
∩ {t ∈ [0,∞) : H(t) ≤ r} = ∅. (3.10)
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Recalling that H(t) ≤ 0 for t ∈
[
0, C3

C1−LT
2

8

]
, we have

[
0,

C3

C1 − LT 2

8

]
⊆ {t ∈ [0,∞) : H(t) ≤ r}. (3.11)

From (3.9)–(3.11), we have

{t ∈ [0,∞) : H(t) ≤ r} =

[
0,

2√
T
ν

]
. (3.12)

For any u ∈ Φ−1(−∞, r], from (3.5), we observe that

H(‖u‖) ≤ Φ(u) ≤ r.

Hence, using (3.12), we have ‖u‖ ≤ 2ν√
T

. Then, in view of (2.1), we see that

Φ−1(−∞, r] ⊆ {u ∈ X : ||u||∞ ≤ ν} .

Thus,

sup
u∈Φ−1(−∞,r]

Ψ(u) = sup
u∈Φ−1(−∞,r]

∫ T

0

F (x, u(x))dx ≤
∫ T

0

sup
t∈[−ν,ν]

F (x, t)dx.

Since 0 ≤ w(x) ≤ τ for each x ∈ [0, T ], condition (C1) implies∫ η

0

F (x,w(x))dx+

∫ T

T−δ
F (x,w(x))dx ≥ 0. (3.13)

Therefore,

%(r) ≥
Ψ(w)− supu∈Φ−1(−∞,r] Ψ(u)

Φ(w)− r

≥
Ψ(w)−

∫ T
0

supt∈[−ν,ν ]F (x, t)dx

Φ(w)− r

≥
∫ T−δ
η

F (x, τ)dx−
∫ T

0
supt∈[−ν,ν] F (x, t)dx

η + δ

ηδ
(C2 + LT 2

8 )τ2 +
√

η+δ
ηδ C3τ −

4

T
(C1 − LT 2

8 )ν2 + 2√
T
C3ν

=
1

λ
> 0.

From (C3), there exists a constant E > 0 such that

F (x, t) ≤ Ktκ + E for (x, t) ∈ [0, T ]× R.

Thus, for u ∈ X, we have

F (x, u(x)) ≤ K|u(x)|κ + E for x ∈ [0, T ]. (3.14)
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For any fixed λ > λ, from (2.1), (3.2), (3.3), and (3.14), it follows that

Φ(u)− λΨ(u) =
1

2

∫ T

0

(u′(x))2dx+

p∑
j=1

∫ u(xj)

0

Ij(t)dt+

∫ T

0

G(u(x))dx

− λ
∫ T

0

F (x, u(x))dx

≥
(

1

2
− LT 2

8

)
‖u‖2 −

p∑
j=1

aj√T
2
‖u‖+ bj

(√
T

2

)γj+1

‖u‖γj+1


− λKT

(√
T

2

)κ
‖u‖κ − λET.

Then, in view of the fact that γj ∈ [0, 1) and κ ∈ (0, 2), we see that

lim
||u||→+∞

(Φ(u)− λΨ(u)) =∞,

i.e., Φ− λΨ is coercive.
All the conditions of Lemma 2.1 hold, so for each λ > λ, Φ − λΨ admits at least

one local minimum u satisfying (3.1). Finally, taking into account Remark 2.1 and
the fact that the weak solutions of the problem (IP) are exactly the critical points of
the functional Φ− λΨ, completes the proof of the theorem. �
Remark 3.1. The role of condition (C3) is to guarantee that Φ−λΨ is coercive. By
examining the proof of Theorem 3.1, we see that Φ−λΨ is still coercive if we replace
(C3) with the condition

(C4) lim sup|ξ|→∞
F (x,ξ)
|ξ|2 ≤ 0 uniformly for all x ∈ [0, T ].

As an application of Theorem 3.1, we give an existence result for the case where
the function f is separable. Let α ∈ L1([0, T ]) be such that α(x) ≥ 0 a.e. x ∈ [0, T ],
α 6≡ 0, and let h : R → R be a nonnegative continuous function such that h(0) 6= 0.
Let

H(t) =

∫ t

0

h(ξ)dξ for all t ∈ R.

Corollary 3.1. Assume that C1 − LT 2

8 > 0 and there exist four positive constants ν,

τ , η, and δ with η, δ < T/2, and τ > ν >
√
TC3

2
(
C1−LT

2

8

) such that:

(C5) ‖α‖L1([0,T ])H(ν) < ‖α‖L1([η,T−δ])H(τ);

(C6) there exist K ∈ R and κ ∈ (0, 2) such that lim sup|ξ|→∞
H(ξ)
|ξ|κ < K.

Then, for each λ > λ′, where

λ′ =

η + δ

ηδ

(
C2 + LT 2

8

)
τ2 +

√
η+δ
ηδ C3τ −

4

T

(
C1 − LT 2

8

)
ν2 + 2√

T
C3ν

‖α‖L1([η,T−δ])H(τ)− ‖α‖L1([0,T ])H(ν)
,
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the problem 
−u′′(x) = λα(x)h(u(x)) + g(u(x)), a.e. x ∈ [0, T ],

∆u′(xj) = Ij(u(xj)), j = 1, 2, ..., p,

u(0) = u(T ) = 0,

(3.15)

has at least one nontrivial classical solution u ∈ X satisfying (3.1).
Remark 3.2. As noted in Remark 3.1, Corollary 3.1 is still true if we replace (C6)
with the condition

(C7) lim sup|ξ|→∞
H(ξ)
|ξ|2 = 0.

We conclude with an example satisfying the hypotheses of Corollary 3.1.
Example 3.1. Consider the problem

−u′′(x) = 2λx
(

5
3u

2/3 + 1
)

+ 1
8u, a.e. x ∈ [0, 4],

u(0) = u(4) = 0,

∆u′(x1) = arctanu(x1), ∆u′(x2) = arctanu(x2), 0 < x1 < x2 < 4.

(3.16)

We claim that there exists λ∗ > 0 such that, for each λ > λ∗, the problem (3.16)
has at least one nontrivial classical solution.

In fact, with T = 4, p = 2, α(x) = 2x, h(t) = 5
3 t

2/3 + 1, g(t) = 1
8 t, and I1(t) =

I2(t) = arctan t, we see that problem (3.16) is of the form of the problem (3.15) and
the covering assumptions (H1)–(H3) are satisfied. In particular, in (H1), we can take
L = 1

8 , and in (H3), we can choose a1 = a2 = π
2 and b1 = b2 = γ1 = γ2 = 0. Clearly,

we have C1 − LT 2

8 = 1
4 > 0.

Moreover, if we let ν = 27, τ = 64, η = δ = 1, K = 1, and κ = 11
6 , then it is

easy to check that the conditions (C5) and (C6) hold. Thus, all the assumptions of
Corollary 3.1 are satisfied and so our claim holds.
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