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1. Introduction and preliminaries

Banach contraction fixed point theorem is a powerful tool in nonlinear analysis,
differential equation and many others. It say that every contraction map on a complete
metric space has a unique fixed point. Recently, Kirk et al. [10] introduced cyclic
maps and obtained a fixed point theorem for such maps on a complete metric space.

By motivation of the Kirk et al. result, Eldred and Veeramani [6] introduced the
notion of cyclic contraction as follows:

Definition 1.1. Let A and B be nonempty subsets of a metric space (M,d). Suppose
that f : A ∪ B → A ∪ B is cyclic map (that is f(A) ⊂ B and f(B) ⊂ A). Then f is
said to be cyclic contraction if there exists k ∈ (0, 1) such that

d(f(x), f(y)) ≤ kd(x, y) + (1− k)D(A,B), ∀x ∈ A ∀y ∈ B,

where

D(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
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Since for a cyclic map f on A∪B, we have d(x, f(x)) ≥ D(A,B) for all x ∈ A∪B,
the existence of best proximity points for such maps have been considered by many
authors; see [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15] and references therein. However, we say
that x ∈ A ∪ B is a best proximity point for cyclic map f , if d(x, f(x)) = D(A,B).
Notice that in the case where A ∩B 6= ∅, best proximity points are fixed points.

Eldred and Veeramani [6] presented best proximity point results for cyclic con-
traction maps in uniformly convex Banach spaces and later these results have been
generalized to cyclic Meir–Keeler contractions by Di Bari et al. [4]. Suzuki et al. [14]
introduced a notion of the property UC in metric spaces and obtained best proximity
points for cyclic Meir–Keeler contractions in metric spaces with the property UC.
Here, we extend the concept of cyclic Meir–Keeler contraction for single valued maps
to set-valued maps. Then, an existence result of best proximity point for such maps
in metric spaces with the property UC is given. Our result extends the corresponding
ones in Di Bari et al. [4] and Suzuki et al. [14] to set-valued maps.

2. Main result

In this section, we prove the existence of a best proximity point for set-valued Meir–
Keeler contraction maps. We begin with the notions of cyclic Meir–Keeler contraction
and the UC property which was introduced by Suzuki et al. [14] as follows.

Definition 2.1. [14] Let (M,d) be a metric space and A and B be nonempty subsets
of M. Then a map f : A ∪B → A ∪B is said to be a cyclic Meir–Keeler contraction
if the following conditions are satisfied:

(i) f(A) ⊂ B and f(B) ⊂ A.
(ii) For every ε > 0, there exists δ > 0 such that

d(x, y) < D(A,B) + ε+ δ implies d(f(x), f(y)) < D(A,B) + ε

for all x ∈ A and y ∈ B.

Definition 2.2. [14] Let A and B be nonempty subsets of a metric space (M,d).
Then the pair (A,B) is said to satisfy the property UC if the following holds:
If {xn} and {x′n} are sequences in A and {yn} is a sequence in B such that
limn d(xn, yn) = D(A,B) and limn d(x′n, yn) = D(A,B), then limn d(xn, x

′
n) = 0.

We need the following result for establish the main result.

Theorem 2.3. (Theorem 3 of [14]) Let (M,d) be a metric space and let A and B be
nonempty subsets of M such that (A,B) satisfies the property UC. Assume that A is
complete and f : A ∪ B → A ∪ B is a cyclic Meir–Keeler contraction. Then, there
exists a unique best proximity point z in A and z is a unique fixed point of f2 in A.
Also, {f2n(x)} converges to z for every x ∈ A.

Let (M,d) be a metric space, CB(M) and K(M) denote the family of all nonempty
closed and bounded subsets of M and the family of all nonempty compact subsets of
M, respectively. Then, the Pompeiu-Hausdorff metric on CB(M) is given by

H(X,Y ) = max{e(X,Y ), e(Y,X)},
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where e(X,Y ) = supa∈X d(a, Y ) and d(a, Y ) = infb∈Y d(a, b). It is well known that if
(M,d) is a complete metric space, then (K(M), H) is a complete metric space.
In the first version of this paper the following proposition was proved by authors but
recently we found this result in [13, Proposition 2.3]. Although the paper [13] has
been submitted after this work but since the proof of Proposition 2.3 of [13] is similar
to the our proof, therefore, we omit its proof in the the final version.

Proposition 2.4. Let (M,d) be a metric space and A and B be nonempty subsets of
M such that the pair (A,B) satisfies the property UC. Then the pair (K(A),K(B))
also satisfies the property UC in (CB(M), H).

Now, we introduce the notion of set-valued cyclic Meir–Keeler contraction map-
pings.

Definition 2.5. Let (M,d) be a metric space and let A and B be nonempty subsets of
M. Then a set-valued map T : A∪B( A∪B is called a set-valued cyclic Meir–Keeler
contraction if the following are satisfied:

(i) T (A) ⊂ B and T (B) ⊂ A.
(ii) For every ε > 0, there exists δ > 0 such that

d(x, y) < D(A,B) + ε+ δ implies H(T (x), T (y)) < D(A,B) + ε

for all x ∈ A and y ∈ B.

In the sequel, Lim’s characterization for Meir–Keeler contractions in [11] is ex-
tended to set-valued cyclic Meir–Keeler contractions.

Definition 2.6. [11] A function ϕ from [0,∞) into itself is called an L-function if
ϕ(0) = 0, ϕ(s) > 0 for s ∈ (0,∞), and for every s ∈ (0,∞), there exists δ > 0 such
that ϕ(t) ≤ s for all t ∈ [s, s+ δ].

Lemma 2.7. [4, 11] Let Y be a nonempty set, and let h and g be functions from Y
into [0,∞). Then the following are equivalent.
(i) For each ε > 0, there exists δ > 0 such that

x ∈ Y, h(x) < ε+ δ implies g(x) < ε.

(ii) There exists a (nondecreasing, continuous) L-function ϕ, such that

x ∈ Y, h(x) > 0 implies g(x) < ϕ(f(x))

and

x ∈ Y, f(x) = 0 implies g(x) = 0.

Lemma 2.8. [4] Let ϕ be an L-function. Let {sn} be a nonincreasing sequence of
nonnegative real numbers. Suppose sn+1 < ϕ(sn) for all n ∈ N with sn > 0. Then
limn sn = 0.

According to Lemma 2.7 we deduce the following characterization of the set-valued
cyclic Meir–Keeler contraction.



214 MAJID FAKHAR, ZEINAB SOLTANI AND JAFAR ZAFARANI

Proposition 2.9. Let (M,d) be a metric space and let A and B be nonempty subsets
of M . Assume that T : A∪B( A∪B is a set-valued map. Then T is set-valued cyclic
Meir–Keeler contraction if and only if there exists a (nondecreasing, continuous) L-
function ϕ such that

d(x, y) > D(A,B) implies H(T (x), T (y)) < ϕ(d(x, y)−D(A,B)) +D(A,B)

and

d(x, y) = D(A,B) implies H(T (x), T (y)) = D(A,B)

for all x ∈ A and y ∈ B.

As a consequence of the above proposition, we have the following set-valued version
of Lemma 3 in [4].

Lemma 2.10. Let (M,d) be a metric space and let A and B be nonempty subsets of
M. Suppose that T : A ∪ B ( A ∪ B is a set-valued cyclic Meir–Keeler contraction
and ϕ is an L-function as in Proposition 2.9. Then,

(i) H(T (x), T (y)) ≤ d(x, y), ∀x ∈ A and y ∈ B.
(ii) H(T (x), T (y)) ≤ ϕ(d(x, y)−D(A,B)) +D(A,B), ∀x ∈ A and y ∈ B.

Now, we are ready to state our main result.

Theorem 2.11. Let (M,d) be a metric space and let A and B be nonempty subsets
of M such that (A,B) satisfies the property UC. Assume that A is complete and
T : A ∪ B ( A ∪ B is a set-valued cyclic Meir–Keeler contraction such that T (X)
is compact for any X ∈ K(A) ∪ K(B). Then T has a best proximity point x in A.
Furthermore, if y ∈ T (x) and d(x, y) = D(A,B), then y is a best proximity point in
B and x is a fixed point of T 2.

Proof. Let F : K(A) ∪ K(B) → K(A) ∪ K(B) be defined by F (X) = T (X) for all
X ∈ K(A)∪K(B). By our assumption F is well defined. Since T is cyclic, F is cyclic.
From Proposition 2.4, the pair (K(A),K(B)) has the property UC. Now, we show
that F is a Meir–Keeler contraction. Since T is set-valued Meir–Keeler contraction,
then for any ε > 0, there exists δ > 0 such that

d(x, y) < ε+ δ +D(A,B)⇒ H(T (x), T (y)) < ε+D(A,B), x ∈ A, y ∈ B. (2.1)

Let X ∈ K(A) and Y ∈ K(B) be such that H(X,Y ) < δ+ε+D(A,B). We show that

H(F (X), F (Y )) < ε+D(A,B).

If H(X,Y ) < δ + ε + D(A,B), then e(X,Y ) < δ + ε + D(A,B). Therefore, if z is
an arbitrary point in X, then d(z, Y ) < δ + ε + D(A,B). Since Y is compact, there
exists w ∈ Y such that d(z, w) = d(z, Y ) and so d(z, w) < δ + ε + D(A,B). Hence,
by (2.1) we have H(T (z), T (w)) < ε+D(A,B). Thus, e(T (z), T (w)) < ε+D(A,B).
It follows that e(T (z), T (X)) < ε+D(A,B). Since z ∈ X is an arbitrary point, then
e(T (Y ), T (X)) < ε+D(A,B). Also, e(Y,X) ≤ H(X,Y ) < δ+ε+D(A,B). Therefore,
by the same argument as the above we deduce that e(T (X), T (Y )) < ε + D(A,B).
Hence, H(T (Y ), T (X)) < ε+D(A,B). Thus, H(X,Y ) < ε+ δ +D(A,B) implies

H(F (X), F (Y )) < ε+D(A,B), X ∈ K(A), Y ∈ K(B).
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Hence, F is Meir–Keeler contraction with respect to Pompeiu-Hausdorff metric.
Therefore, by Theorem 2.3, there exists a unique point E ∈ K(A) such that
H(E,F (E)) = D(A,B) and F 2(E) = E. But T is set-valued cyclic Meir–Keeler con-
traction. So by Lemma 2.10, there exists a (nondecreasing, continuous) L-function ϕ
such that

(i) H(T (x), T (y)) ≤ d(x, y), ∀x ∈ A and y ∈ B.
(ii) H(T (x), T (y)) ≤ ϕ(d(x, y)−D(A,B)) +D(A,B), ∀x ∈ A and y ∈ B.

Let x0 ∈ E. If d(x0, y) = D(A,B) for some y ∈ T (x0), then d(x0, T (x0)) = D(A,B).
Therefore, x0 is a best proximity point in A. Suppose that x1 ∈ T (x0) and d(x0, x1) >
D(A,B), then by Proposition 2.9

H(T (x1), T (x0)) < ϕ(d(x1, x0)−D(A,B)) +D(A,B).

Since d(x1, T (x1) ≤ H(T (x0), T (x1)) and T (x1) is compact, there exists x2 ∈ T (x1)
such that

d(x2, x1) ≤ H(T (x1), T (x0)) < ϕ(d(x1, x0)−D(A,B)) +D(A,B).

If d(x2, x1) = D(A,B), then

D(A,B) ≤ d(x2, T (x2)) ≤ H(T (x1), T (x2)) ≤ d(x1, x2) = D(A,B).

Hence, x2 is a best proximity point in A. Otherwise, by the same argument as the
above, there exists x3 ∈ T (x2) such that

d(x3, x2) ≤ H(T (x2), T (x1)) < ϕ(d(x2, x1)−D(A,B)) +D(A,B).

By continuing in this way, either T has a best proximity point in A or there is a
sequence {xn} in E ∪ T (E) such that xn+1 ∈ T (xn), x2n ∈ E, x2n+1 ∈ T (E) and

d(xn+1, xn) ≤ H(T (xn), T (xn−1)) < ϕ(d(xn, xn−1)−D(A,B)) +D(A,B), (2.2)

for each n ∈ N. Define a sequence {sn} in (0,∞) by sn = d(xn, xn+1)−D(A,B). Then,
by inequality (2.2), {sn} is nonincreasing sequence and sn+1 < ϕ(sn). Therefore, from
Lemma 2.8, we have limn sn = 0. Hence,

lim
n
d(xn, xn+1) = D(A,B). (2.3)

On the other hand E is compact and x2n ∈ E, then there exists a subsequence {x2nk
}

of {x2n} such that

lim
k
x2nk

= x ∈ E. (2.4)

Since

D(A,B) ≤ d(x, x2nk−1) ≤ d(x, x2nk
) + d(x2nk

, x2nk−1),

then from (2.3) and (2.4) we deduce

lim
k
d(x, x2nk−1) = D(A,B). (2.5)

Since

D(A,B) ≤ d(x2nk
, T (x)) ≤ H(T (x2nk−1), T (x)) < d(x2nk−1, x) ∀k ∈ N,
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then from (2.4) and (2.5), we have d(x, T (x)) = D(A,B). Therefore, T has a best
proximity point in A. Let y ∈ T (x) and d(x, y) = D(A,B), then

D(A,B) ≤ d(y, T (y)) ≤ H(T (x), T (y)) ≤ d(x, y) = D(A,B).

Therefore, d(y, T (y)) = D(A,B). Hence, y is a best proximity point of T in B.
Since T (y) ⊂ T 2(x), then D(A,B) ≤ d(y, T 2(x)) ≤ d(y, T (y)) = D(A,B) and but
d(y, T 2(x)) = D(A,B). Since T 2(x) is compact, there exists z ∈ T 2(x) such that
d(z, y) = D(A,B). As the pair (A,B) satisfies the property UC, then d(x, z) = 0.
Hence, x = z ∈ T 2(x), i.e., x is a fixed point of T 2. �

As a consequence of the above theorem, the following fixed point result can be
obtained.

Corollary 2.12. Let (M,d) be a metric space and let A and B be nonempty subsets
of M such that A is complete and A ∩ B 6= ∅. Assume that T : A ∪ B ( A ∪ B
is a set-valued cyclic Meir–Keeler contraction such that T (X) is compact for any
X ∈ K(A) ∪ K(B). Then, T has a fixed point in A ∩B

Proof. Since A∩B 6= ∅, then D(A,B) = 0 and so the pair (A,B) satisfies the property
UC. Therefore, by the above theorem T has a best proximity point x in A. Hence,
d(x, T (x)) = D(A,B) = 0. Therefore, x is a fixed point of T. Thus, x ∈ T (x) ⊂ B
and so x ∈ A ∩B. �

Notice that the hypothesis of Theorem 2.11 does not guarantee the uniqueness of
the best proximity point. The following example justifies our claim.

Example 2.13. Let M = R with Euclidean metric, A = [0, 1] and B = [ 13 , 2]. Assume

that T (x) = {x+1
3 , 13}, for each x ∈ A ∪B. Then

H(T (x), T (y)) =
1

3
|x− y| < 1

2
|x− y|

for each x, y ∈ A ∪ B. Therefore, T is a cyclic continuous map so it is cyclic Meir–
Keeler contraction. Moreover, x = 1

3 and x = 1
2 are best proximity points of T

in A.
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