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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let Υ be a
bifunction from C × C into R, such that Υ(x, x) = 0 for all x ∈ C. The Equilibrium
problem for Υ : C × C → R is to find x ∈ C such that

Υ(x, y) ≥ 0, ∀y ∈ C.

The set of solutions is denoted by EP (Υ). This problem is also often called the Ky
Fan inequality due to his contribution to this field. Such problems arise frequently in
mathematics, physics, engineering, game theory, transportation, electricity market,
economics and network. In the literature, many techniques and algorithms have been
proposed to analyze the existence and approximation of a solution to equilibrium
problem; see [1-3].

If Υ(x, y) = 〈Fx, y − x〉 for every x, y ∈ C, where F is a mapping from C into
H, then the equilibrium problem becomes the classical variational inequality problem
which is formulated as finding a point x∗ ∈ C such that

〈Fx∗, y − x∗〉 ≥ 0, ∀y ∈ C.
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The set of solutions of this problem is denoted by V I(F,C). It is well known that
variational inequalities covers many branches of mathematics; such as partial differen-
tial equations, optimal control, optimization, mathematical programming, mechanics
and finance, see [23, 19].

A subset C ⊂ H is called proximal if for each x ∈ H, there exists an element y ∈ C
such that

‖ x− y ‖= dist(x,C) = inf{‖ x− z ‖: z ∈ C}.
We denote by CB(C),K(C) and P (C) the collection of all nonempty closed bounded
subsets, nonempty compact subsets, and nonempty proximal bounded subsets of C,
respectively. The Hausdorff metric h on CB(H) is defined by

h(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(H).
Let T : H → 2H be a set-valued mapping. An element x ∈ H is said to be a fixed point
of T , if x ∈ Tx. We use Fix(T ) to denote the set of all fixed points of T . An element
x ∈ H is said to be an endpoint of a set-valued mapping T if x is a fixed point of T
and T (x) = {x}. We say that T satisfies the endpoint condition if each fixed point of
T is an endpoint of T . We also say that a family of set- valued mappings Ti, (i ∈ N)
satisfies the common endpoint condition if Ti(x) = {x} for all x ∈

⋂∞
i=1 Fix(Ti).

Definition 1.1. A set-valued mapping T : H → CB(H) is called

(i) nonexpansive if

h(Tx, Ty) ≤ ‖x− y‖, x, y ∈ H.

(ii) quasi-nonexpansive if Fix(T ) 6= ∅ and h(Tx, Tp) ≤ ‖x− p‖ for all x ∈ H and
all p ∈ Fix(T ).

The theory of set-valued mappings has applications in control theory, convex op-
timization, differential equations and economics. Fixed point theory for set-valued
mappings has been studied by many authors, see [6-8] and the references therein.

In the recent years iterative algorithms for finding a common element of the set
of solutions of equilibrium problem and the set of fixed points of nonlinear map-
pings in a real Hilbert space have been studied by many authors (see, e.g., [9-24]).
The motivation for studying such a problem is in its possible application to math-
ematical models whose constraints can be expressed as fixed-point problems and/or
equilibrium problem. This happens, in particular, in the practical problems as signal
processing, network resource allocation, image recovery; see, for instance, [25-28]. In
2007, Takahashi and Takahashi [38], introduced an iterative scheme by the viscosity
approximation method for finding a common element of the set of solutions of the
equilibrium problem and the set of fixed points of a nonexpansive mapping in the
setting of Hilbert spaces. They also studied the strong convergence of the sequences
generated by their algorithm for a solution of the equilibrium problem which is also a
fixed point of a nonexpansive mapping defined on a closed convex subset of a Hilbert
space. Motivated by fixed point techniques of Takahashi and Takahashi in [38] and an
improvement set of extragradient-type iteration methods in [24], Anh [3, 4], introduce
some new iteration algorithms for finding a common element of the solution set of



EQUILIBRIUM PROBLEMS AND SET-VALUED OPERATORS 195

equilibrium problems with a monotone and Lipschitz-type continuous bifunction and
the set of fixed points of a single valued nonexpansive mapping.

The purpose of this paper is to propose a general algorithm for finding a common
element of the set of solutions of a system of equilibrium problems and the set of
common fixed points of an infinite family of quasi-nonexpansive set-valued mappings.
We prove the strong convergence theorem of such algorithm in a real Hilbert space.
This common solution is the unique solution of a variational inequality problem and
is the optimality condition for a minimization problem. Our results generalize and
improve the results of Anh, Kim and Muu [5], Anh [3, 4], Plubtieg and Punpaeng
[33], Petrusel and Yao [32] and many others.

2. Preliminaries

Throughout the paper, we denote by H a real Hilbert space with inner product
〈., .〉 and norm ‖.‖. Let {xn} be a sequence in H and x ∈ H. Weak convergence
of {xn} to x is denoted by xn ⇀ x, and strong convergence by xn → x. Let C be
a nonempty closed convex subset of H. The nearest point projection from H to C,
denoted PC , assigns, to each x ∈ H, the unique point PCx ∈ C with the property

‖x− PCx‖ := inf{‖x− y‖, ∀y ∈ C}.

It is known that PC is a nonexpansive mapping and for each x ∈ H

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C.

Recently, J.Garcia-Falset, E. Llorens-Fuster and T. Suzuki [18], introduced a new
generalization of the concept of a nonexpansive single valued mapping which called
condition (E). Very recently, Abkar and Eslamian [1, 2], modify the condition (E),
for set-valued mappings as follows:
Definition 2.1. A set-valued mapping T : H → CB(H) is said to satisfy condition
(E) provided that

h(Tx, Ty) ≤ µdist(x, Tx) + ‖x− y‖, x, y ∈ H,

for some µ > 0.
It is obvious that every set- valued nonexpansive mapping T : H → CB(H) satisfies

the condition (E), and every mapping T : H → CB(H) which satisfies the condition
(E) with nonempty fixed point set Fix(T ) is quasi-nonexpansive, see [2].
Lemma 2.2. ([2]) Let C be a closed convex subset of a real Hilbert space H. Let
T : C → CB(C) be a quasi-nonexpansive set-valued mapping satisfies the endpoint
condition. Then Fix(T ) is closed and convex.
Definition 2.3. Let C be a nonempty subset of a real Hilbert space H and let T :C→
CB(C) be a set-valued mapping. The mapping I −T is said to be demiclosed at zero
if for any sequence {xn} in C, the conditions xn ⇀ x∗ and limn→∞ dist(xn, Txn) = 0,
imply x∗ ∈ Fix(T ).
Lemma 2.4. ([2]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → K(C) be a set-valued mapping satisfying the condition (E). Then
I − T is demiclosed in zero.
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Definition 2.5. A bounded linear operator A on H is called strongly positive if there
exists γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, (x ∈ H).

For a nonexpansive mapping T from a nonempty subset C of H into itself a typical
problem is to minimize the quadratic function

min
x∈Fix(T )

1

2
〈Ax, x〉 − 〈x, b〉,

over the set of all fixed points Fix(T ) of T (see [28]).
Lemma 2.6. ([28]) Let A be a strongly positive linear bounded self-adjoint operator
on H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ.

For solving the equilibrium problem, we assume that the bifunction Φ : C×C → R
satisfies the following conditions:

(A1) Φ(x, x) = 0 for all x ∈ C,
(A2) Φ is monotone, i.e., Φ(x, y) + Φ(y, x) ≤ 0, for any x, y ∈ C,
(A3) Φ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

Φ(tz + (1− t)x, y) ≤ Φ(x, y),

(A4) Φ(x, .) is convex and lower semicontinuous for each x ∈ C.
Lemma 2.7. ([6]) Let C be a nonempty closed convex subset of H and let Φ be a
bifunction of C ×C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

Φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C.

Lemma 2.8. ([17]) Assume that Φ : C×C → R satisfies (A1)− (A4). For r > 0 and
x ∈ H, define a mapping Sr : H⇒ C as follows:

Srx = {z ∈ C : Φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}.

Then, the following holds:

(i) Sr is single valued;
(ii) Sr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Srx− Sry‖2 ≤ 〈Srx− Sry, x− y〉;

(iii) Fix(Sr) = EP (Φ);
(iv) EP (Φ) is closed and convex.

We also consider the following conditions for the bifunction Ψ : C × C → R:

(B1) Ψ(x, x) = 0 for all x ∈ C,
(B2) Ψ is pseudomonotone, i.e., Ψ(x, y) ≥ 0⇒ Ψ(y, x) ≤ 0, ∀x, y ∈ C
(B3) Ψ is Lipschitz-type continuous, i.e., there exist constants c1 > 0 and c2 > 0

such that Ψ(x, y)+Ψ(y, z) ≥ Ψ(x, z)−c1‖x−y‖2−c2‖y−z‖2, for all x, y, z ∈ C,
(B4) Ψ(x, .) be convex and subdifferentiable on C.
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Lemma 2.9. ([4]) Let C be a nonempty closed convex subset of a real Hilbert spaces
H and let Ψ be a bifunction of C ×C into R satisfying (B1)− (B4). Let {xn}, {zn},
and {wn} be sequences generated by x0 ∈ C and by{

wn = argmin{λn Ψ(xn, w) + 1
2‖w − xn‖

2 : w ∈ C},

zn = argmin{λn Ψ(wn, z) + 1
2‖z − xn‖

2 : z ∈ C}.

Let {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2}, then for each x? ∈ EP (Ψ),

‖zn−x?‖2 ≤ ‖xn−x?‖2− (1−2λn c1)‖xn−wn‖2− (1−2λn c2)‖wn−zn‖2, ∀n ≥ 0.

Lemma 2.10. ([40]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− ηn)an + ηnδn, n ≥ 0,

where {ηn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)

∞∑
n=1

ηn =∞,

(ii) lim supn→∞ δn ≤ 0 or

∞∑
n=1

|ηnδn| <∞.

Then limn→∞ an = 0.
Lemma 2.11. ([26]) Let {tn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that tni

< tni+1 for all i ∈ N. Then there exists a
nondecreasing sequence {τ(n)} ⊂ N such that τ(n)→∞ and the following properties
are satisfied by all (sufficiently large) numbers n ∈ N:

tτ(n) ≤ tτ(n)+1, tn ≤ tτ(n)+1.

In fact

τ(n) = max{k ≤ n : tk < tk+1}.
Lemma 2.12. ([10]) Let H be a Hilbert space and {xn} be a bounded sequence in H.

Then for any given {λn}∞n=1 ⊂ (0, 1) with

∞∑
n=1

λn = 1 and for any positive integer i, j

with i < j,

‖
∞∑
n=1

λnxn‖2 ≤
∞∑
n=1

λn‖xn‖2 − λiλj‖xi − xj‖2.

3. Algorithm and its convergence analysis

In this section we combine viscosity approximation method with subgradient algo-
rithm to present a general algorithm for approximating the common element of the
set of solutions of a system of Ky Fan inequalities and the set of common fixed points
of an infinite family of quasi-nonexpansive set-valued mappings.
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and Φ : C × C → R be a bifunction satisfying (A1)− (A4) and let Ψ : C × C → R be
a bifunction satisfying (B1) − (B4). Let Ti : C → CB(C), (i ∈ N) be a sequence of
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quasi-nonexpansive set-valued mappings such that I − Ti are demiclosed at 0, and Ti
satisfies the common endpoint condition. Assume that

F =

∞⋂
i=1

Fix(Ti) ∩ EP (Φ) ∩ EP (Ψ) 6= ∅.

Suppose f is a contraction of C into itself with constant b ∈ (0, 1) and A is a strongly
positive bounded linear self-adjoint operator on H with coefficient γ < 1 and 0 < γ <
γ
b . Let {xn} be sequence generated by x0 ∈ C and

un = Srnxn,

wn = argmin{λn Ψ(un, w) + 1
2‖w − un‖

2 : w ∈ C},

νn = argmin{λn Ψ(wn, u) + 1
2‖u− un‖

2 : u ∈ C},

yn = γn,0 νn +

∞∑
i=1

γn,i zn,i,

xn+1 = anγf(yn) + (I − anA)yn, ∀n ≥ 0,

(3.1)

where zn,i ∈ Tiνn. Let the sequences {an}, {rn}, {λn} and {γn,i} satisfy the following
conditions:

(i) {an} ⊂ (0, 1), limn→∞ an = 0,

∞∑
n=1

an =∞,

(ii) {rn} ⊂ (0,∞), lim infn→∞ rn > 0,

(iii) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2},

(iv)

∞∑
i=0

γn,i = 1, lim infn→∞ γn,0γn,i > 0.

Then, the sequence {xn} converges strongly to x? ∈ F which solves the variational
inequality:

〈(A− γf)x?, x− x?〉 ≥ 0, ∀x ∈ F . (3.2)

Proof. First we note that PF (I − A + γf) is a contraction of C into itself. By the
Banach contraction principle there exists a unique element x? ∈ C such that x? =
PF (I −A+ γf)x?. Next we show that {xn} is bounded. From firmly nonexpansivity
of the mapping Srn (Lemma 2.8) and using x? = Srnx

?, we obtain that

‖un − x?‖2 = ‖Srnxn − Srnx?‖ ≤ ‖xn − x?‖2 − ‖un − xn‖2. (3.3)

Utilizing Lemma 2.9, we have

‖νn − x?‖2 ≤ ‖un − x?‖2 − (1− 2λn c1)‖un − wn‖2 − (1− 2λn c2)‖wn − νn‖2. (3.4)
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Since Ti are quasi-nonexpansive and satisfies the common endpoint condition, from
the convexity of ‖.‖2 we have

‖yn − x?‖2 =‖γn,0 νn +

∞∑
i=1

γn,i zn,i − x?‖2

≤γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i‖zn,i − x?‖2

=γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i dist(zn,i, Tix
?)2

≤γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i h(Tiνn, Tix
?)2

≤γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i‖νn − x?‖2

=‖νn − x?‖2

(3.5)

Using inequalities (3.3),(3.4) and (3.5) we obtain that

‖yn − x?‖ ≤ ‖xn − x?‖.

Since lim
n→∞

an = 0, we can assume that an ∈ (0, ‖A‖−1) for all n ≥ 0. By Lemma 2.6

we have ‖I − anA‖ ≤ 1− anγ. This implies that

‖xn+1 − x?‖ = ‖an(γfyn −Ax?) + (I − anA)(yn − x?)‖
≤ an‖γfyn −Ax?‖+ ‖I − anA‖‖yn − x?‖
≤ anγ‖fyn − fx?‖+ an‖γfx? −Ax?‖+ (1− anγ)‖yn − x?‖
≤ anγb‖yn − x?‖+ an‖γfx? −Ax?‖+ (1− anγ)‖yn − x?‖
≤ (1− an(γ − γb))‖xn − x?‖+ an‖γfx? −Ax?‖.

By induction, we have

‖xn − x?‖ ≤ max{‖x0 − x?‖,
1

γ − γb
‖γfx? −Ax?‖},

for all n ∈ N. This implies that {xn} is bounded and we also obtain that {un}, {yn}
and {f(yn)} are bounded. Next, we show that

lim
n→∞

dist(νn, Tiνn) = 0.
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Indeed, by using Lemma 2.12 and inequalities (3.3) and (3.4) we have

‖yn − x?‖2 =‖γn,0 νn +

∞∑
i=1

γn,i zn,i − x?‖2

≤γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i‖zn,i − x?‖2

−
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

=γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i dist(zn,i, Tix
?)2

−
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

≤γn,0‖νn − x?‖2 +

∞∑
i=1

γn,i h(Tiνn, Tix
?)2

−
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

≤γn,0‖νn − x?‖2 +
∞∑
i=1

γn,i‖νn − x?‖2

−
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

=‖νn − x?‖2 −
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

≤‖xn − x?‖2 − ‖un − xn‖2 −
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2

− (1− 2λn c1)‖un − wn‖2 − (1− 2λn c2)‖wn − νn‖2.

(3.6)

This implies that

‖xn+1 − x?‖2 = ‖an(γfyn −Ax?) + (I − anA)(yn − x?)‖2

≤ a2n‖γfyn −Ax?‖2 + (1− anγ)2‖yn − x?‖2

+ 2an(1− anγ)‖γfyn −Ax?‖‖yn − x?‖
≤ a2n‖γfyn −Ax?‖2 + (1− anγ)2‖xn − x?‖2

+ 2an(1− anγ)‖γfyn −Ax?‖‖xn − x?‖

− (1− anγ)2
∞∑
i=1

γn,0γn,i‖νn − zn,i‖2 − (1− anγ)2‖un − xn‖2

− (1− anγ)2(1− 2λn c1)‖un − wn‖2

− (1− anγ)2(1− 2λn c2)‖wn − νn‖2. (3.7)
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So, we have

∞∑
i=1

(1− anγ)2γn,0γn,i‖νn − zn,i‖2 ≤‖xn − x?‖2 − ‖xn+1 − x?‖2

+ 2an(1− anγ)‖γfyn −Ax?‖‖xn − x?‖

+a2n‖γfyn −Ax?‖2.

(3.8)

From inequality (3.7) we have also the following inequality:

(1− anγ)2‖xn − un‖2 ≤‖xn − x?‖2 − ‖xn+1 − x?‖2

+ 2an(1− anγ)‖γfyn −Ax?‖‖xn − x?‖

+a2n‖γfyn −Ax?‖2.
(3.9)

In order to prove that xn → x? as n→∞, we consider two possible cases.
Case 1. Assume that {‖xn − x?‖} is a monotone sequence. Since ‖xn − x?‖ is
bounded we have ‖xn − x?‖ is convergent. Since limn→∞ an = 0 and {f(yn)} and
{xn} are bounded, we have

lim
n→∞

(1− anγ)2γn,0γn,i‖νn − zn,i‖2 = 0.

From limn→∞ an = 0, we can assume that for some c ∈ (0, 1), 0 < c < (1−anγ)2. By
assumption that lim infn γn,0γn,i > 0, we get that

lim
n→∞

‖νn − zn,i‖ = 0. (3.10)

Using similar argument, from inequalities (3.7) and (3.9) we obtain that

lim
n→∞

‖un − wn‖ = lim
n→∞

‖wn − νn‖ = lim
n→∞

‖xn − un‖ = 0. (3.11)

This implies that

lim
n→∞

‖un − νn‖ = 0. (3.12)

By our assumption that zn,i ∈ Tiνn, we have

lim
n→∞

dist(νn, Tiνn) ≤ lim
n→∞

‖νn − zn,i‖ = 0. (3.13)

Next, we show that lim supn→∞〈(A−γf)x?, x?−xn〉 ≤ 0, where x? = PF (I−A+γf)x?

is a unique solution of the variational inequality (3.2). We can choose a subsequence
{xni} of {xn} such that

lim
i→∞

(〈A− γf)x?, x? − xni〉 = lim sup
n→∞

(〈A− γf)x?, x? − xn〉.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges

weakly to x∗. Without loss of generality, we can assume that xni ⇀ x∗. Since
limn→∞ ‖xn − un‖ = 0, we have uni

⇀ x∗. We show that x∗ ∈ F . For proving this,
first we show that x∗ ∈ EP (Ψ). Since Ψ(x, .) is convex on C for each x ∈ C, we see
that

wn = argmin{λn Ψ(un, y) +
1

2
‖y − un‖2 : y ∈ C}
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if and only if

0 ∈ ∂2(λn Ψ(un, y) +
1

2
‖y − un‖2)(wn) +NC(wn),

where NC(wn) is the (outward) normal cone of C at wn ∈ C. This follows that

0 = λnv + wn − un + zn

where v ∈ ∂2Ψ(un, wn) and zn ∈ NC(wn). By the definition of the normal cone NC
we have

〈wn − un, y − wn〉 ≥ λn〈v, wn − y〉, ∀y ∈ C. (3.14)

Since Ψ(un, .) is subdifferentiable on C, by the well-known Moreau-Rockafellar theo-
rem [29], there exists v ∈ ∂2Ψ(un, wn) such that

Ψ(un, y)−Ψ(un, wn) ≥ 〈v, y − wn〉, ∀y ∈ C.
Combining this with (3.14), we have

λn(Ψ(un, y)−Ψ(un, wn)) ≥ 〈wn − un, wn − y〉, ∀y ∈ C.
Hence

Ψ(uni
, y)−Ψ(uni

, wni
) ≥ 1

λni

〈wni
− uni

, wni
− y〉, ∀y ∈ C.

Since limn→∞ ‖un − wn‖ = 0, we have that wni
⇀ x∗. Now by continuity of Ψ and

assumption that {λn} ⊂ [a, b] ⊂ (0, 1
L ) we have

Ψ(x∗, y) ≥ 0, ∀y ∈ C.
This implies that x∗ ∈ EP (Ψ). Let us show x∗ ∈ EP (Φ). Since un = Srnxn we have

Φ(un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0 ∀y ∈ C.

From (A2), we have
1

rn
〈y − un, un − xn〉 ≥ Φ(y, un),

therefore

〈y − uni
,
uni
− xni

rni

〉 ≥ Φ(y, uni
).

Since
uni
− xni

rni

→ 0

and uni
⇀ x∗, from (A4) we have

Φ(y, x∗) ≤ 0, ∀y ∈ C.
For t ∈ (0, 1] and y ∈ C, let yt = ty + (1− t)x∗. Since y, x∗ ∈ C, and C is convex we
have yt ∈ C and hence Φ(yt, x

∗) ≤ 0. So, from (A1) and (A4) we have

0 = Φ(yt, yt) ≤ tΦ(yt, y) + (1− t)Φ(yt, x
∗) ≤ tΦ(yt, y),

which gives Φ(yt, y) ≥ 0. From (A3) we have 0 ≤ Φ(x∗, y),∀y ∈ C and hence
x∗ ∈ EP (Φ). From the demiclosedness of Ti − I and using inequality (3.13) we get
that x∗ ∈

⋂∞
i=1 Fix(Ti). Thus x∗ ∈ F . Since x? = PF (I − A+ γf)x? and x∗ ∈ F , it

follows that
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lim supn→∞〈(A− γf)x?, x? − xn〉 = limi→∞〈(A− γf)x?, x? − xni〉

= 〈(A− γf)x?, x? − x∗〉 ≤ 0.

We note that in every Hilbert space H

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

From this and ( 3.1) we have

‖xn+1 − x?‖2 ≤‖(I − anA)(yn − x?)‖2 + 2an〈γfyn −Ax?, xn+1 − x?〉

≤ (1− anγ)2‖yn − x?‖2 + 2anγ〈fyn − fx?, xn+1 − x?〉

+ 2an〈γfx? −Ax?, xn+1 − x?〉

≤ (1− anγ)2‖xn − x?‖2 + 2anbγ‖xn − x?‖‖xn+1 − x?‖

+ 2an〈γfx? −Ax?, xn+1 − x?〉

≤ (1− anγ)2‖xn − x?‖2 + anbγ(‖xn − x?‖2 + ‖xn+1 − x?‖2)

+ 2an〈γfx? −Ax?, xn+1 − x?〉

= ((1− anγ)2 + anbγ)‖xn − x?‖2 + anγb‖xn+1 − x?‖2

+ 2an〈γfx? −Ax?, xn+1 − x?〉.

This implies that

‖xn+1 − x?‖2 ≤ 1−2anγ+(anγ)
2+anγb

1−anγb ‖xn − x?‖2 + 2an
1−anγb 〈γfx

? −Ax?, xn+1 − x?〉

= (1− 2(γ−γb)an
1−anγb )‖xn − x?‖2 + (anγ)

2

1−anγb‖xn − x
?‖2

+ 2an
1−anγb 〈γfx

? −Ax?, xn+1 − x?〉

≤ (1− 2(γ−γb)an
1−anγb )‖xn − x?‖2

+ 2(γ−γb)an
1−anγb ( (anγ

2)M
2(γ−γb) + 1

γ−γb )〈γfx
? −Ax?, xn+1 − x?〉

= (1− σn)‖xn − x?‖2 + σnηn,

where M = sup{‖xn − x?‖2 : n ≥ 0}, σn = 2(γ−γb)an
1−anγb and

ηn =
(anγ

2)M

2(γ − γb)
+

1

γ − γb
〈γfx? −Ax?, xn+1 − x?〉.

It is easy to see that σn → 0,

∞∑
n=1

σn =∞ and lim supn→∞ ηn ≤ 0. Hence, by Lemma

2.10 the sequence {xn} converges strongly to x?.
Case 2. Assume that {‖xn − x?‖} is not a monotone sequence. Then, we can define
an integer sequence {τ(n)} for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ∈ N; k ≤ n : ‖xk − x?‖ < ‖xk+1 − x?‖}.
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Clearly, τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and for all
n ≥ n0,

‖xτ(n) − x?‖ < ‖xτ(n)+1 − x?‖.

From (7) we obtain limn→∞ dist(ντ(n), Tiντ(n)) = 0, and limn→∞ ‖uτ(n)−xτ(n)‖ = 0.
Following an argument similar to that in Case 1 we have

‖xτ(n)+1 − x?‖2 ≤ (1− στ(n))‖xτ(n) − x?‖2 + στ(n)ητ(n),

where στ(n) → 0,

∞∑
n=1

στ(n) = ∞ and lim supn→∞ ητ(n) ≤ 0. Hence, by Lemma 2.10,

we obtain limn→∞ ‖xτ(n)−x?‖ = 0 and limn→∞ ‖xτ(n)+1−x?‖ = 0. Thus by Lemma
2.11 we have

0 ≤ ‖xn − x?‖ ≤ max{‖xτ(n) − x?‖, ‖xn − x?‖} ≤ ‖xτ(n)+1 − x?‖.

Therefore {xn} converges strongly to x? = PF (I − A + γf)x?, which complete the
proof.

Now, we intent to remove the common endpoint condition. For this work, let
T : C → P (C) be a set- valued mapping, we consider

PT (x) = {y ∈ Tx : ‖x− y‖ = dist(x, Tx)}, x ∈ C.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let Ti : C → CB(C), (i ∈ N) be a sequence of set- valued mappings such that PTi are
quasi-nonexpansive and I − PTi

are demiclosed in 0. Let Φ, Ψ, f , A and F be as in
Theorem 3.1. Let {xn} be sequence generated by x0 ∈ C and by

un = Srnxn,

wn = argmin{λn Ψ(un, w) + 1
2‖w − un‖

2 : w ∈ C},

νn = argmin{λn Ψ(wn, u) + 1
2‖u− un‖

2 : u ∈ C},

yn = γn,0 νn +

∞∑
i=1

γn,i zn,i,

xn+1 = anγf(yn) + (I − anA)yn, ∀n ≥ 0,

(3.15)

where zn,i ∈ PTiνn. Let the sequences {an}, {rn}, {λn} and {γn,i} satisfy the condi-
tions of Theorem 3.1. Then, the sequence {xn} converges strongly to x? ∈ F which
solves the variational inequality (3.2).
Proof. Let p ∈ F , then PTi

(p) = {p}, (i ∈ N). Now by substituting PTi
instead of Ti,

and similar argument as in the proof of Theorem 3.1, the desired result holds.
Remark 3.3. Theorem 3.1 and Theorem 3.2 generalize the result of Anh [3] from a
single valued nonexpansive mapping to an infinite family of quasi-nonexpansive set-
valued mappings. We also weaken or remove some control conditions on parameters.
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4. Application

In this section, we consider the particular equilibrium problem corresponding to
the function Ψ defined, for every x, y ∈ C by Ψ(x, y) = 〈F (x), y−x〉, with F : C → H.
Doing so, we obtain the classical variational inequality:

Find z ∈ C such that 〈F (z), y − z〉 ≥ 0, ∀y ∈ C.

The set of solutions of this problem is denoted by V I(F,C).
Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and Φ : C × C → R be a bifunction satisfying (A1) − (A4) and let F : C → H be a
monotone and L- Lipschitz continuous operator on C. Let Ti : C → K(C), (i ∈ N)
be a sequence of set-valued mappings satisfying the condition (E) and the common
endpoint condition. Assume that F =

⋂∞
i=1 Fix(Ti)∩EP (Φ)∩V I(F,C) 6= ∅. Suppose

f is a contraction of C into itself with constant b ∈ (0, 1) and A is a strongly positive

bounded linear self-adjoint operator on H with coefficient γ < 1 and 0 < γ < γ
b . Let

{xn} be sequence generated by x0 ∈ C and

un = Srnxn,

wn = PC(un − λnF (un)),

νn = PC(un − λnF (wn)),

yn = γn,0 νn +

∞∑
i=1

γn,i zn,i,

xn+1 = anγf(yn) + (I − anA)yn, ∀n ≥ 0,

(4.1)

where zn,i ∈ Tiνn. Let the sequences {an}, {rn}, {λn} and {γn,i} satisfy the conditions
of Theorem 3.1. Then, the sequence {xn} converges strongly to x? ∈ F which solves
the variational inequality (3.2).
Proof. Putting Ψ(x, y) = 〈F (x), y − x〉, we have that

wn = argmin{λn Ψ(un, w) +
1

2
‖w − un‖2 : w ∈ C} = PC(un − λnF (un)).

Since F is a L-Lipshchitz continuous on C, we have

Ψ(x, y) + Ψ(y, z)−Ψ(x, z) = 〈F (x)− F (y), y − z〉, x, y, z ∈ C.

Therefore

|〈F (x)− F (y), y − z〉| ≤ L‖x− y‖‖y − z‖ ≤ L

2
(‖x− y‖2 + ‖y − z‖2),

hence Ψ satisfies Lischiptz-type continuous condition with c1 = c2 = L
2 . Since Ti

satisfying the condition (E), we have Ti are quasi-nonexpansive. From Lemma 2.5
we have that Ti − I are demiclosed at 0. Now, applying Theorem 3.1, we obtain the
desired result.
Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space Hand
let F be a function from C to H such that F is monotone and L-Lipschitz continuous
on C. Let Ti : C → K(C), (i ∈ N) be a sequence of set-valued mappings satisfying
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the condition (E) and the common endpoint condition. Assume that

F =

∞⋂
i=1

Fix(Ti) ∩ V I(F,C) 6= ∅.

Suppose f is a contraction of C into itself with constant b ∈ (0, 1). Let {xn} be
sequence generated by x0 ∈ C and

un = PC(xn − λnF (xn)),

νn = PC(xn − λnF (un)),

yn = γn,0 νn +

∞∑
i=1

γn,i zn,i,

xn+1 = anf(yn) + (1− an)yn, ∀n ≥ 0,

(4.2)

where zn,i ∈ Tiνn. Let the sequences {an}, {λn} and {γn,i} satisfy the conditions of
Theorem 3.1. Then, the sequence {xn} converges strongly to x? ∈ F which solves the
variational inequality:

〈(I − f)x?, x− x?〉 ≥ 0, ∀x ∈ F .

Proof. Putting Φ = 0, A = I and γ = 1 in Theorem 3.1 we obtain the desired result.
As an application of our main result we have the following strong convergence

theorem for an infinite family of set valued mappings, which is new, even in the case
of single valued mappings.
Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and Let Ti : C → CB(C), (i ∈ N) be a sequence of quasi-nonexpansive set-valued
mappings such that I − Ti are demiclosed at 0, and Ti satisfies the common endpoint
condition. Assume that F =

⋂∞
i=1 Fix(Ti) 6= ∅. Suppose f is a contraction of C into

itself with constant b ∈ (0, 1) and A is a strongly positive bounded linear self-adjoint

operator on H with coefficient γ < 1 and 0 < γ < γ
b . Let {xn} and {yn} be sequences

generated by x0 ∈ C andyn = γn,0 xn +

∞∑
i=1

γn,i zn,i,

xn+1 = PC(anγf(yn) + (I − anA)yn), ∀n ≥ 0,

(4.3)

where zn,i ∈ Tixn. Let the sequences {an} and {γn,i} satisfy the conditions of Theorem
3.1. Then, the sequence {xn} converges strongly to x? ∈ F which solves the variational
inequality (3.2).
Remark 4.4. Theorem 4.1 and Theorem 4.2 generalize the results of Anh [3], Anh,
Kim and Muu [5] and Petrusel and Yao [32] from a single valued nonexpansive map-
ping to an infinite family of set-valued mappings satisfying the condition (E). We
also weaken or remove some control conditions on parameters.
Remark 4.5. Theorem 4.3 generalize and improve the result of Dhompongsa,
Inthakon and Takahashi, [12]. Indeed, in [12], the authors presented an iterative
process to obtain a weak convergence theorem for a generalized nonexpansive single
valued mapping and a nonspreading mapping in Hilbert spaces (we note these class of
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mappings are quasi-nonexpansive). But in this paper we obtain a strong convergence
theorem for an infinite family of set-valued quasi-nonexpansive mappings.

4.1. Numerical example. Now, we supply an example to illustrate the main result
of this paper.
Example 4.6. We consider the nonempty closed convex subset C = [0, 2] of the
Hilbert space R. Define a family of mappings Ti as follows:

T1(x) = [
x

3
, x], T2(x) =

{
[0, x5 ], x 6= 2

[1, 32 ] x = 2,
Ti(x) = [0,

i− 2

i− 1
x], i = 3, 4, 5, . . .

It is easy to see that T1 is nonexpansive, T2 satisfy the condition (E) and Ti, i =
3, 4, 5, . . . are nonexpansive. We define a bifunction Φ as follows:{

Φ : C × C → R
Φ(x, y) = y2 + xy − 2x2.

It is easy to see that Φ satisfies the conditions (A1) − (A4). If we put rn = 1, then
un = Srnxn = xn

3rn+1 = xn

4 , (for details, see [36]).

Put γn,0 = γn,1 = γn,2 = 1
5 , γn,i = 12

5π2
1

(i−2)2 , (i = 3, 4, 5, . . .) and an = 1
n . (We

note that

∞∑
i=1

1

i2
=
π2

6
). Then these sequences satisfy conditions of Theorem 3.1. We

put f(x) = x
2 , γ = 1,A = I and F = 0. Taking x0 = 3

2 and zn,1 = x, zn,2 = x
5 and

zn,i = i−2
i−1x, (i = 3, 4, 5, . . .), we have the following algorithm:

un = Srnxn = xn

3rn+1 = xn

4 ,

yn = un

5 + un

5 + un

25 + 12
5π2un = 11π2+60

100π2 xn,

xn+1 = yn
2n + n−1

n yn = ( 2n−1
2n )( 11π2+60

100π2 )xn

We observe that xn is convergent to zero. We note that

F =

∞⋂
i=1

Fix(Ti) ∩ EP (Φ) = {0}.
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