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point theorem [8, Question on page 18].

Key Words and Phrases: Partial order, Brézis-Browder order principle, fixed point.
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In 2014 Kirk and Shahzad [8, Chapter 2] surveyed the relation between well-known
results that are Ekeland’s variational principle [5], [6] and Caristi’s fixed point theorem
[3, Theorem (2.1)’], [4, Theorem 1]. Recall that a function f : X −→ R is called lower
semi-continuous at x0 if lim inf

x→x0

f(x) ≥ f(x0) and is called upper semi-continuous at

x0 if lim sup
x→x0

f(x) ≤ f(x0); f is called lower semi-continuous (upper semi-continuous)

if f is lower semi-continuous (upper semi-continuous) at every x ∈ X, respectively.
Theorem 1.1. ([5]) Let (X, d) be a complete metric space, ϕ : X −→ [0,∞) be lower
semi-continuous and � be a partial order on X defined as follows: for all x, y ∈ X,

x � y if and only if d(x, y) ≤ ϕ(x)− ϕ(y).

Then (X,�) has a maximal element.
Theorem 1.2. ([4], Theorem 1) Let (X, d) be a complete metric space, the function
ϕ : X −→ [0,∞) be lower semi-continuous and the map f : X −→ X be such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) for all x ∈ X.
Then f has a fixed point.

Many authors in nonlinear analysis claimed that Theorem 1.1 and Theorem 1.2
are equivalent, see [8, pages 7-8]. However to a logician these two results are not
equivalent since the proof Theorem 1.2 implying Theorem 1.1 invokes the Axiom of
Choice [8, page 8]. In fact, Brunner [2] has shown that any proof of Theorem 1.1
requires at least the basic axioms of Zermemo-Fraenkel plus a form of the Axiom of
Choice called the Axiom of Dependent Choice, whereas Manka [10] has shown that
Theorem 1.2 holds within Zermemo-Fraenkel. So from a purely logical point of view
the two theorems are not equivalent. Recall that the Axiom of Dependent Choice
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is strictly weaker than the Axiom of Choice but strictly stronger than the Axiom of
Countable Choice [8, page 8].

In 1976 Brézis and Browder [1, Theorem 1] derived Theorem 1.1 from an order
principle which requires only Zermemo-Fraenkel and the Axiom of Choice. They then
derived Theorem 1.2 from Theorem 1.1. However in 1990 Goebel and Kirk [7, Proof
of Caristi’s theorem on page 13] have shown that Theorem 1.2 can be derived directly
from Brézis-Browder order principle without recourse to Theorem 1.1.

Recall that there were many generalizations of Theorem 1.2 in the literature. At
the same time, many of them except for Zhang-Jiang’s fixed point theorem [11, The-
orem 2.1] turn out to be consequences of Theorem 1.2, see [8, Chapter 2].
Theorem 1.3. ([1], Theorem 1) Let (X,�) be a partially ordered set, the function
ψ : X −→ R and S(x) = {y ∈ X : x � y} for each x ∈ X satisfying the following.

(1) x � y and x 6= y implies ψ(x) < ψ(y).
(2) For any increasing sequence {xn} in X such that ψ(xn) ≤ C < ∞ for all n

there exists some y ∈ X such that xn � y for all n.
(3) For each x ∈ X, ψ(S(x)) is bounded above.

Then for each x ∈ X there exists x∗ ∈ S(x) such that x∗ is a maximal element of
(X,�), that is, S(x∗) = {x∗}.
Definition 1.4. ([11], page 524) Let Γ denote the collection of all functions γ :
[0,∞) −→ [0,∞) satisfying the following.

(1) γ is sub-additive, that is, γ(s+ t) ≤ γ(s) + γ(t) for all s, t ∈ [0,∞).
(2) γ is increasing and continuous.
(3) γ−1(0) = 0.

Let A denote the collection of all functions η : [0,∞) −→ [0,∞) satisfying there exist
ε0 > 0 and γ ∈ Γ such that if η(t) ≤ ε0 then η(t) ≥ γ(t). Let F denote the collection
of all functions F : R −→ R satisfying the following.

(1) F is increasing and upper semi-continuous.
(2) F (0) = 0 and F−1([0,∞)) ⊂ [0,∞).
(3) F (t) + F (s) ≤ F (t+ s) for all s, t ∈ [0,∞).

Theorem 1.5. ([11], Theorem 2.1) Let (X, d) be a complete metric space, ϕ : X −→ R
be lower semi-continuous and bounded below, and f : X −→ X be a map such that

η(d(x, f(x))) ≤ F (ϕ(x)− ϕ(f(x))) (1.1)

for some η ∈ A, some F ∈ F and all x ∈ X. Then f has a fixed point.
In 2001 Kirk and Saliga [9] weakened the notion of a lower semi-continuous function

to the notion of a lower semi-continuous from above function and given a straightfor-
ward modification of Theorem 1.2 as follows.
Definition 1.6. ([9], page 2767) A function ϕ : X −→ R is called lower semi-
continuous from above if for each x ∈ X, lim

n→∞
xn = x, {ϕ(xn)} is decreasing, and

lim
n→∞

ϕ(xn) = r implies ϕ(x) ≤ r.
Theorem 1.7. ([9], Theorem 2.1) Let (X, d) be a complete metric space, ϕ : X −→ R
be lower semi-continuous from above and bounded below, and f : X −→ X be a map
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such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) for all x ∈ X.
Then f has a fixed point.

To prove Theorem 1.7 the authors of [9] used Theorem 1.3.
The proof of Theorem 1.7 was represented by Kirk and Shahzad [8, Proof of The-

orem 2.3 on page 9]. Kirk and Shahzad also posed the following question on the
relation between Theorem 1.3 and Theorem 1.5.
Question 1.8. ([8], Question on page 18) Is it possible to derive Theorem 1.5 from
Theorem 1.3?

In this paper we show that it is possible to derive Theorem 1.5 from Theorem 1.3.
Then the answer to Question 8 is positive. The main result of the paper is as follows.
Theorem 1.9. Theorem 1.5 is a consequence of Theorem 1.3.
Proof. Let ϕ0 = inf{ϕ(x) : x ∈ X}. Since F is upper semi-continuous on [0,∞), we
get

lim sup
t→0+

F (t) ≤ F (0) = 0.

Then for ε0 in the definition of A there exists δ > 0 such that F (t) < ε0 for 0 ≤ t ≤ δ.
Denote

Xδ = {x ∈ X : ϕ(x) ≤ ϕ0 + δ}.
Since ϕ0 = inf{ϕ(x) : x ∈ X}, we get Xδ 6= ∅, and since ϕ is lower semi-continuous,
we get Xδ is closed. Therefore (Xδ, d) is a complete metric space.

We next define a relation � on Xδ as follows: for all x, y ∈ Xδ,

x � y if and only if γ(d(x, y)) ≤ F (ϕ(x)− ϕ(y)).

We will prove that (Xδ,�) is a partially ordered set. Indeed, for all x, y, z ∈ Xδ, we
find that

γ(d(x, x)) = γ(0) = 0 = F (0) = F (ϕ(x)− ϕ(x)).

Therefore γ(d(x, x)) = F (ϕ(x)− ϕ(x)). This proves that x � x.
If x � y and y � x then

γ(d(x, y)) ≤ F (ϕ(x)− ϕ(y)) and γ(d(y, x)) ≤ F (ϕ(y)− ϕ(x)).

Since d(x, y) ≥ 0 and γ is increasing, we get

γ(d(x, y)) ≥ γ(0) = 0 and γ(d(y, x)) ≥ γ(0) = 0.

Then

F (ϕ(x)− ϕ(y)) ≥ 0 and F (ϕ(y)− ϕ(x)) ≥ 0.

Since F−1[0,∞) ⊂ [0,∞), we have ϕ(x) − ϕ(y) ≥ 0 and ϕ(y) − ϕ(x) ≥ 0. Then
ϕ(x) = ϕ(y). So

0 ≤ γ(d(x, y)) ≤ F (ϕ(x)− ϕ(y)) = F (0) = 0.

It implies that d(x, y) = 0. Then x = y.
If x � y and y � z then

γ(d(x, y)) ≤ F (ϕ(x)− ϕ(y)) and γ(d(y, z)) ≤ F (ϕ(y)− ϕ(z)).
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Since d(x, y) ≥ 0 and γ is increasing, we get

γ(d(x, y)) ≥ γ(0) = 0 and γ(d(y, z)) ≥ γ(0) = 0.

Then

F (ϕ(x)− ϕ(y)) ≥ 0 and F (ϕ(y)− ϕ(z)) ≥ 0.

Since F−1[0,∞) ⊂ [0,∞), we have ϕ(x) − ϕ(y) ≥ 0 and ϕ(y) − ϕ(z) ≥ 0. From
properties of γ and F we find that

γ(d(x, z)) ≤ γ(d(x, y) + d(y, z))

≤ γ(d(x, y)) + γ(d(y, z))

≤ F (ϕ(x)− ϕ(y)) + F (ϕ(y)− ϕ(z))

≤ F (ϕ(x)− ϕ(y) + ϕ(y)− ϕ(z))

= F (ϕ(x)− ϕ(z)).

Therefore γ(d(x, z)) ≤ F (ϕ(x)− ϕ(z)). This proves that x � z.
Now for each x ∈ Xδ, let S(x) = {y ∈ Xδ : x � y} and let ψ(x) = −ϕ(x) for all

x ∈ Xδ. We will show that show that all assumptions of Theorem 1.3 are satisfied for
(Xδ,�) and ψ.

Indeed, if x � y then γ(d(x, y)) ≤ F (ϕ(x) − ϕ(y)). As the above we find that
ϕ(x) − ϕ(y) ≥ 0. Then ϕ(x) ≥ ϕ(y) and thus ψ(x) ≤ ψ(y). Moreover, if x 6= y then
ψ(x) < ψ(y). We also find that ψ(S(x)) is bounded above since ϕ is bounded below.

Let {xn} be an increasing sequence in (Xδ,�) and ψ(xn) ≤ C < ∞ for all n.
Then {ψ(xn)} is an increasing sequence in R. It implies that {ϕ(xn)} is a decreasing
sequence in R. Since ϕ is bounded below, there exists lim

n→∞
ϕ(xn) = r ∈ R. Since

{xn} is increasing, for each n < m we have xn � xm. Then

γ(d(xn, xm)) ≤ F (ϕ(xn)− ϕ(xm)).

Notice that γ is increasing continuous and F is upper semi-continuous. Moreover, if
n < m then ϕ(xn) − ϕ(xm) ≥ 0 and lim

n→∞
(ϕ(xn) − ϕ(xm)) = r − r = 0. Then for

n < m we have

0 ≤ γ(lim sup
n→∞

d(xn, xm))

= lim sup
n→∞

γ(d(xn, xm))

≤ lim sup
n→∞

F (ϕ(xn)− ϕ(xm))

≤ F (0)

= 0.

Therefore lim sup
n→∞

d(xn, xm) = 0 for n < m. It implies that lim
n,m→∞

d(xn, xm) = 0 and

hence {xn} is a Cauchy sequence in (Xδ, d). Since (Xδ, d) is complete, there exists
lim
n→∞

xn = y ∈ Xδ. Since ϕ is lower semi-continuous and lim
n→∞

ϕ(xn) = r, we have
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ϕ(y) ≤ r. So we have

γ(d(xn, y)) = γ( lim
m→∞

d(xn, xm))

= lim
m→∞

γ(d(xn, xm))

≤ lim
m→∞

F (ϕ(xn)− ϕ(xm))

≤ F (ϕ(xn)− r)
≤ F (ϕ(xn)− ϕ(y)).

Therefore γ(d(xn, y)) ≤ F (ϕ(xn)− ϕ(y)). This proves that xn � y for all n.
The above arguments show that all assumptions of Theorem 1.3 are satisfied for

(Xδ,�) and ψ. So (Xδ,�) has a maximal element x∗.
We will prove that x∗ is a fixed point of f . Indeed, by (1.1) we have

η(d(x∗, f(x∗))) ≤ F (ϕ(x∗)− ϕ(f(x∗))). (1.2)

Since 0 ≤ η(d(x∗, f(x∗))), 0 ≤ F (ϕ(x∗)− ϕ(f(x∗))). Since F−1([0,∞)) ⊂ [0,∞), we
get ϕ(x∗)− ϕ(f(x∗)) ≥ 0, that is,

ϕ(f(x∗)) ≤ ϕ(x∗). (1.3)

Since x∗ ∈ Xδ, we get

ϕ(x∗) ≤ ϕ0 + δ. (1.4)

By definition of ϕ0 and (1.3), (1.4) we have ϕ0 ≤ ϕ(f(x∗)) ≤ ϕ(x∗) ≤ ϕ0 + δ. This
implies that f(x∗) ∈ Xδ and 0 ≤ ϕ(x∗)− ϕ(f(x∗)) ≤ δ. By the selection of δ we get

F (ϕ(x∗)− ϕ(f(x∗))) ≤ ε0. (1.5)

From (1.2) and (1.5) we obtain η(d(x∗, f(x∗))) ≤ ε0. Since η ∈ A, we have

γ(d(x∗, f(x∗))) ≤ η(d(x∗, f(x∗))). (1.6)

It follows from (1.2) and (1.6) that

γ(d(x∗, f(x∗))) ≤ F (ϕ(x∗)− ϕ(f(x∗))). (1.7)

Note that we have shown f(x∗) ∈ Xδ. So from (1.7) we conclude that x∗ � f(x∗).
However, x∗ is the maximal element of (Xδ,�), so f(x∗) = x∗. Then x∗ is a fixed
point of f .

Acknowledgment. The author is greatly indebted to anonymous reviewers for their
helpful comments, especially in proving the maximal element x∗ of (Xδ,�) is a fixed
point of f .
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