Fixed Point Theory, 19(2018), No. 1, 167-178 DOI 10.24193/fpt-ro.2018.1.12 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

PROJECTIONS ONTO CONES IN BANACH SPACES

A. DOMOKOS* AND M.M. MARSH**

*Department of Mathematics and Statistics California State University at Sacramento 6000 J Street, Sacramento, CA, 95819, USA E-mail: domokos@csus.edu

**Department of Mathematics and Statistics California State University at Sacramento 6000 J Street, Sacramento, CA, 95819, USA E-mail: mmarsh@csus.edu

Abstract. We propose to find algebraic characterizations of the metric projections onto closed, convex cones in reflexive, locally uniformly convex Banach spaces with locally uniformly convex dual.

Key Words and Phrases: Banach space, closed convex cone, metric projection. 2010 Mathematics Subject Classification: 41A65, 46C50, 52A27.

Acknowledgment. The authors would like to thank the referee for his/her comments, which helped improve the presentation of the results in the paper.

References

- K. Deimling, Nonlinear Functional Analysis, Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1985.
- [2] F. Deutch, Existence of best approximations, J. Approx. Theory, 28(1980), 132-154.
- [3] J. Diestel, Geometry of Banach Spaces Selected Topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin, Heidelberg, New-York, 1975.
- [4] S.S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004.
- S. Fitzpatrick, R.R. Phelps, Differentiability of the metric projection in Hilbert spaces, Trans. Amer. Math. Soc., 270(1982), 483-501.
- [6] J.R. Giles, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129(1967), 436-446.
- [7] J.M. Ingram, M.M. Marsh, Projections onto convex cones in Hilbert spaces, J. Approx. Theory, 64(1991), no. 3, 343-350.
- [8] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61(1947), 265-292.
- [9] A.G. Kartsatos, A note on the duality mapping of a locally uniformly Banach space, Nonlinear Anal., 71(2009), 5509-5512.
- [10] R. Larsen, Functional Analysis, Marcel Dekker, 1973.
- [11] G. Lumer, Semi-inner product spaces, Trans. Amer. Math. Soc., 100(1961), 29-43.
- [12] S.Z. Németh, A duality between the metric projection onto a convex cone and the metric projection onto its dual in Hilbert spaces, Nonlinear Anal., 97(2014), 1-3.

167

A. DOMOKOS AND M.M. MARSH

- [13] A.B. Németh, S.Z. Németh, Lattice-like operations and isotone projection sets, Linear Algebra Appl., 439(2013), 2815-2828.
- [14] J.-P. Penot, R. Ratsimahalo, Characterizations of metric projections in Banach spaces and applications, Abstr. Appl. Anal., 3(1998), no. 1-2, 85-103.
- [15] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag Berlin, Heidelberg, 1970.
- [16] I. Singer, The Theory of Best Approximation and Functional Analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, # 13. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1974.
- [17] Z. Xiyin, The normalized duality mappings in Banach spaces, Nonlinear Anal., 24 (1995), 989-995.

Received: May 25, 2016; Accepted: August 12, 2016.

168

PROJECTIONS ONTO CONES