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Abstract. In this paper, we deal with the topological structure of a first order vector differential

inclusion defined on right half-line. Under some general growth conditions, the Rδ structure of con-

tinue solution set for Cauchy problem on compact interval is investigated. Then by the inverse limit
method, the Rδ structure is also obtained on noncompact interval. Further, using the related results

of structure, we obtain the existence and topological structure of solution set for some nonlocal prob-

lems. Subsequently a optimal dual control problem is considered and an Rδ structure of attainable
set based on the proven results is obtained.
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1. Introduction

It is well known that the topological structure for differential inclusions is associated
with processes of controlled heat transfer, describing hybrid systems with dry friction,
obstacle problems that others (see, e.g., [7], [1], [22] and references therein), and has
been studied intensively on the compact intervals, see DeBlasi and Myjak [9], Deimling
[11], Hu and Papageorgiou [18], Staicu [28], Ke et al. [20] and Zhu [30] and references
therein.

There exist various techniques for topological structure of solution sets for differ-
ential equations or differential inclusions on non-compact intervals(including infinite
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intervals), such as Andres et al. [2] for boundary value problems of differential equa-
tions and inclusions, Bakowska and Gabor [4] for differential equations and inclusions
in Fréchet spaces, and Sěda and Belohorec [27] for initial value problem of second-
order ODE with time delay. It is worthwhile to note that Gabor and Grudzka [15]
treated recently an impulsive abstract Cauchy problem governed by a semi-linear dif-
ferential inclusion involving a family of time-dependent linear operators in the linear
part. An important aspect for the study of topological structure of solution sets is
the Rδ-property on a non-compact interval. For more details on this topic,we re-
fer the reader to, e.g., Gabor [14] and O’ Regan [23] and references therein. In [3],
the Rδ-structure is firstly investigated for second-order vector asymptotic boundary
value problems, by means of the inverse limit method, on noncompact intervals. For
nonlocal conditions which including periodic, anti-periodic, mean value condition and
multi-point discrete mean condition, the situation is much more delicate and the
related results are still very rare, see Chen et al. [8]. In [8], they dealt with a nonlin-
ear delay differential inclusion of evolution type involving m-dissipative operator and
source term of multi-valued type in a Banach space, and obtained the Rδ-property
on non-compact intervals under the linear growth condition.

It is worth mentioning that the characterizations of solution sets including com-
pactness, acyclicity and Rδ are important in the study of the qualitative theory for
deterministic problems; please see [8], [3] and the references therein for more com-
ments and citations. The contribution of this paper is to study the Rδ-property of
solution sets for the nonlocal problems of a vector differential inclusion with time de-
lay on a noncompact intervals under more general growth condition. Moreover, As far
as we know, not much work has been done for this general nonlocal problem involving
vector differential inclusion where the nonlocal function is multivalued. Following
their lead, in this paper, motivated by applications of the topological structure, we
establish the Rδ-property of continuous solution sets to nonlocal problem with the
nonlocal multivalued functions. Further, as the applications of the information about
the topological structure, we get the Rδ-property of solution sets of a class of neural
networks with the discontinuous activations functions. Subsequently a dual optimal
control problem defined on the half-line is considered and the existence theorems and
Rδ-attainable set for control systems are obtained based on the information of the
topological structure.

In this paper, we firstly prove that the solution set for Cauchy problem of a vector
evolution inclusion with a closed and convex valued orient field is compact Rδ on a
compact intervals. Secondly, the Rδ-structure of solution sets on compact intervals is,
by means of the inverse limit method, extended to non-compact intervals cases. Then
we also get the similar results on the topological structure for cases of the nonlocal
multivalued function with convex or nonconvex value. Finally, some examples are
also given to illustrate the effectiveness of our results.

2. Preliminaries

In this section, we recall some geometric notions of subsets of metric spaces, in
particular, of retracts; see [16], [19] for more details.
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Let X be a Hausdorff topological space. For a nonempty set A ⊂ X, we say that
A is a retract of X, if there exists a continuous map (retraction) r : X → A such that
r |A is the identity map. It is easy to see that a retract A ⊂ X is closed.
Definition 2.1. Let X is a metric space, a closed subset A of X is said to be an
absolute retract(AR-space), if for every metric space Y and a closed set C ⊂ Y , each

continuous map f : C → A has a continuous extension, f̂ : Y → A.
Equivalently we say that the closed set A ⊆ X is an absolute retract, if every

homeomorphic image of A in any metric space Y is a retract of Y .
Definition 2.2. Y is called an absolute neighborhood retract (ANR-space) if for any
metric space H, closed subset D ⊂ H and continuous function α : D → Y , there
exists an neighborhood D ⊂ U and a continuous extension ᾱ : U → Y of α.
Proposition 2.1. (see [16]) If Y is an AR-space then it is an ANR-space. Moreover,
if X is a retract of a convex set in a Fréchet space, then it is an AR-space.

So, in particular, the spaces C(I,RN ), C1(I,RN ), are AR-spaces as well as their
convex subsets, where I ⊂ R is an arbitrary interval. Here, let C([−τ,m];RN ) be
the Banach space of all continuous functions from [−τ,m] to RN equipped with the
sup-norm

‖ · ‖m = max
t∈[−τ,m]

‖ · ‖,

where ‖ · ‖ stands for the Euclidean norm in RN . Denote by ‖ · ‖0 the norm of
C([−τ, 0], RN ).
Definition 2.3. A subset A of a metric space X is said to be contractible, if there
exist a continuous function η : [0, 1] × A → X (homotopy) and a point a ∈ A such
that for all x ∈ A we have η(0, x) = a and η(1, x) = x.
Definition 2.4. A subset D of a metric space X is said to be Rδ, if it is homeomorphic
to the intersection of a decreasing sequence {Dn}n≥1 of absolute retracts. Moreover,
if each Dn is also compact, then we say that D is a compact Rδ.

A subset D ⊆ X is compact Rδ if and only if it is the intersection of a decreasing
sequence of contractible compact metric spaces. Note that a compact Rδ set D
is nonempty, compact and connected. The following hierarchy holds for nonempty
subsets of a metric space:

compact + convex ⊂ compact AR− space ⊂ compact + contractible ⊂ Rδ − set,

and all the above inclusions are proper.
For A,B ∈ X, known in the literature as the Hausdorff metric, by

dH(A,B) = max[sup
a∈A

d(a,B), sup
b∈B

d(b, A)].

Let X and Y be arbitrary metric spaces. We say that G is a multivalued map from X
to Y (G : X → 2Y ) if, for every x ∈ X, a nonempty subset G(x) of Y is prescribed. A
multivalued map G : X → 2Y is said to be measurable if, for all y ∈ Y, the R+-valued
function x→ d(y,G(x)) is measurable.
Definition 2.5. A multivalued map G(·) is called upper semicontinuous(for short
u.s.c.) provided for every open U ⊆ Y , the set G−1(U) = {x ∈ X : G(x) ⊆ U} is
open in X.
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Proposition 2.2. A multivalued map G : X → Y is u.s.c. if and only if for every
closed set A ⊂ Y the set G−1(A) is a closed subset of X.

We associate with G its graph ΓG, the subset of X × Y , defined by

ΓG := {(x, y) ∈ X × Y | y ∈ G(x)}.

Proposition 2.3. If G : X → 2Y is u.s.c. then the graph ΓG is a closed subset of
X × Y.

The reverse relation between upper semicontinuous mappings and those with closed
graphs is expressed in the following proposition.
Proposition 2.4. Let X,Y be metric spaces and G : X → 2Y be a multivalued map
with the closed graph such that G(X) ⊂ K, where K is a compact set. Then G is
u.s.c.
Definition 2.6. A multivalued map G(·) : X → Y is called a lower semicontinuous
(l.s.c.) provided for every open U ⊆ Y , the set G−1

+ (U) = {x ∈ X : G(x) ∩ U 6= ∅} is
open in X.
Definition 2.7. A multivalued map F : X → 2Y with bounded values is called
Lipschitzian if there exists a constant L > 0 such that

dH(F (x), F (y)) ≤ Ld(x, y),

and called a contraction if the constant L ∈ [0, 1).
A multivalued map F : I × Rm → 2R

n

is called an upper-Carathéodory map if
the map F (·, x) : I → 2R

n

is measurable on every compact subinterval of I, for all
x ∈ Rm, the map F (t, ·) : Rm → 2R

n

is u.s.c., for almost all (a.a.) t ∈ I, and the
set F (t, x) is closed and convex, for all (t, x) ∈ I ×Rm. Contrary to the singlevalued
case, Fix(F ) of a contraction F is more complex. So it is an interesting problem to
study topological property. In this framework, the following two results worthy to
recall is critical to our results.
Proposition 2.5. (see [26]) Let X be a closed, convex subset of a Banach space E
and let φ : X → 2X be a contraction with compact, convex values. Then Fix(φ) is a
nonempty, compact AR-space.
Definition 2.8. A multivalued map α : Y → 2Z is called an Rδ-map where Y and
Z are both metric spaces if α is u.s.c. and α(y) is an Rδ-set for each y ∈ Y .

It is clear that every u.s.c. multivalued map with contractible values can be seen as
an Rδ-mapping. In particular, every single-valued continuous map is an Rδ-mapping.
Let ϕ : X → 2Y and ψ : Y → 2Z be two multivalued maps, then the composition
ψ ◦ ϕ : X → 2Z of ϕ and ψ is defined by

(ψ ◦ ϕ)(x) = ∪{ψ(y) : y ∈ ϕ(x)} for every x ∈ X.

Proposition 2.6. (see [16]) Let ϕ : X → 2Y and ψ : Y → 2Z are two u.s.c map with
compact values, then the composition ψ ◦ ϕ : X → 2Z is an u.s.c map with compact
values.

The following is a fixed point theorem due to Górniewicz and Lassonde [17, Corol-
lary 4.3].
Theorem 2.1. Let Y be an ANR-space. Assume that α : Y → 2Y can be factorized

as α = αN ◦ αN−1 ◦ . . . ◦ α1, where αi : Y i → 2Y
i

, i = 1, ..., N, are Rδ-mappings,
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Y i, i = 1, ..., N − 1, are ANR-spaces, and Y 0 = Y N = Y are AR-spaces. If there
exists a compact subset K ⊂ Y satisfying α(Y ) ⊂ K, then α admits a fixed point.
Proposition 2.7. (see [16]) Let ϕ : X → 2Y be an u.s.c maping with compact values
and A be a compact subset of X. Then ϕ(A) is compact.

3. Main results

3.1. Topological structure on compact intervals
In this section, we first study a topological structure of solution set governed by a

delay evolution inclusion on compact intervals. Let us consider the following problem:

ẋ+D(t)x(t) ∈ H(t, x, xt), for a.a. [0,m]

x(t) = ψ(t) for t ∈ [−τ, 0], (3.1)

where
(H1) D : [0,m] → RN×N is an integrable matrix function satisfying 〈D(t)u, u〉 ≥ 0
for a.a. t ∈ [0,m]; xt(ω) = x(t+ ω), for ω ∈ [−τ, 0], and ψ(t) ∈ C([−τ, 0];RN );

(H2) H : [0,m]×RN ×C([−τ, 0];RN )→ 2R
N

is an upper carathéodory function with
compact and convex value satisfying

dH(H(t, x1, y1), H(t, x2, y2)) ≤ µ(t)(‖x1 − x2‖+ ‖y1 − y2‖0), a.a. [0,m]

for all x1, x2 ∈ RN , and y1, y2 ∈ C([−τ, 0];RN ) where µ(t) satisfies 0 <
∫m

0
µ(t)dt < 1

3 ;

(H3) there exists an integrable function α : [0,m] → [0,+∞) with
∫m

0
α(s)ds suffi-

ciently small, and a continuous function g : R+ → R with |g(ξ)| ≤ g(η) for all |ξ| ≤ η
such that

|H(t, x, y)| ≤ α(t)(1 + g(‖x‖) + g(‖y‖0))

for all (t, x, y) ∈ I × RN × C([−τ, 0];RN );
(H4) the equation ẋ = α(t)g(x) + α(t), for t ∈ [0,m] where x(0) = η ∈ RN has an
uniformly solution for the Cauchy problem.
Remark 3.1. The assumption (H3) and (H4) on guaranteeing the property of so-
lution set of this problem (3.1) for a wide class of superlinear sources, for example,
functions g(x) = ex and g(x) = xp(p ≥ 1), is formulated. For sublinear case (for
example ln(1 + |x|)) this condition is automatically fulfilled.

We denote the solution set of (3.1) by Smψ , and shall show that Smψ is an Rδ set

in C([−τ,m];RN ). For every f ∈ L1([0,m];RN ), consider the following differential
equation:

ẋ+D(t)x(t) = f(t), a.a. for t ∈ [0,m],

x(t) = ψ(t) for t ∈ [−τ, 0]. (3.2)

If hypothesis (H1) hold, for every f ∈ L1([0,m];RN ), it is easy to check that the
differential equation (3.2) has a unique solution x ∈ C([−τ,m];RN ). So, we can
define a solution map Pm : L1([0,m];RN )→ C([−τ,m];RN ) such that x = Pm(f) for
each f ∈ L1([0,m];RN ). If f, g ∈ L1([0,m];RN ), and xf , xg are two solutions to the
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differential equation (3.2) corresponding to f and g, respectively, then one has that∫ t

0

〈ẋf (s)− ẋg(s), xf (s)− xg(s)〉ds+

∫ t

0

〈D(s)(xf (s)− xg(s)), xf (s)− xg(s)〉ds

=

∫ t

0

〈f(s)− g(s), xf (s)− xg(s)〉ds, t ∈ [0,m]. (3.3)

From (H1), we have

‖xf (t)−xg(t)‖2 ≤ ‖xf (0)−xg(0)‖2 + 2

∫ t

0

‖f(s)−g(s)‖‖xf (s)−xg(s)‖ds, t ∈ [0,m].

(3.4)
By Brezis [6, p. 157], we have

‖xf (t)− xg(t)‖ ≤ ‖xf (0)− xg(0)‖+

∫ t

0

‖f(s)− g(s)‖ds, t ∈ [0,m]. (3.5)

In order to study the topological structure of solution set for problem (3.1), we first
establish the following existence result on compact intervals.
Theorem 3.1. If hypotheses (H1)-(H4) hold, the solution set of problem (3.1) is a
nonempty, compact Rδ-set.
Proof. Let us define the Nemytskii operator N : C([−τ,m];RN ) → L1([0,m];RN )
corresponding to H as follows

N(x) = {f ∈ L1([0,m];RN ), f(t) ∈ H(t, x, xτ ), for a.a. t ∈ [0,m]}.

The closedness and decomposability of the values of N(·) are easy to check. For
the non-emptiness, note that if x ∈ C([−τ,m];RN ), by hypothesis (H3), H(t, x, xt)
possesses a measurable selection. Thus, N(x) 6= ∅, for all x ∈ C([−τ,m];RN ). For
given ψ(t) ∈ C([−τ, 0];RN ), the set Qmψ is defined by

Qmψ = {x ∈ C([−τ,m];RN ) : x(t) = ψ(t) for t ∈ [−τ, 0], and

‖x(t)‖ ≤ uψ(t) for all t ∈ [0,m]},
where uψ(t) ∈ C([0,m], R+) is the unique continuous solution of the integral equation
in the form

uψ(t) = ‖ψ‖0 +

∫ t

0

α(s)(1 + 2g(uψ(s)))ds, t ∈ [0,m]. (3.6)

Next, we will seek for solutions in Qmψ . For this, let us define a multivalued mapping
Fmψ on Qmψ by setting

Fmψ (x) := Pm ◦ (N(x)), x ∈ Qmψ .

What follow to check that for every x ∈ Qmψ , Fmψ (x) 6= ∅. To this end, we assume that

x ∈ C([−τ,m];RN ) and (xn, yn) is a step functions from [0,m] to RN×C([−τ, 0];RN )
such that

xn → x in RN with ‖xn‖ ≤ ‖x‖,
and

yn → xt in C([−τ, 0];RN ) with ‖yn‖0 ≤ ‖xt‖0
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for every t ∈ [0,m]. By (H2), we see readily that for each n, H(·, xn(·), yn(·)) admits a
measurable selection fn(·). Furthermore, from (H2), it follows that {fn} is integrably
bounded in L1([0,m];RN ). So by Dunford-Pettis theorem, and by passing to a sub-
sequence if necessary, we may assume that fn → f weakly in L1([0,m];RN ). Similar
to Theorem 3.1.2 in [29], we obtain f ∈ N(x), so N(x) 6= ∅ which means Fmψ (x) 6= ∅.
For each x ∈ C([−τ,m];RN ), therefore, Fmψ (x) ⊂ C([−τ,m];RN ) is nonempty. Also,

it is noted that {u |0−τ , u ∈ Fmψ (x)} = ψ where u |0−τ is the restriction of u on [−τ, 0].

Moreover, taking f ∈ N(x) with x ∈ Qmψ , from (H2) and (3.5), it follows that for each

t ∈ [0,m], we have

‖Pm(f)‖ ≤ ‖ψ(0)‖+

∫ t

0

‖f‖ds

≤ ‖ψ‖0 +

∫ t

0

α(s)(1 + g(‖x(s)‖) + +g(‖xt‖0))ds

≤ ‖ψ‖0 +

∫ t

0

α(s)(1 + 2g(uψ(s)))ds

= uψ(t).

Hence, we know that ‖Pm(f)‖ ≤ uψ(t) for each t ∈ [−τ,m], and then Pm(f) ∈ Qmψ .
Therefore, we obtain that Fmψ (x) ⊂ Qmψ for every x ∈ Qmψ .

Obviously, the solutions set of problem (3.1) is equal to the set of fixed-points of the
operator Fmψ . Next, we shall show that the Fix(Fmψ (x)) is, by means of Proposition
2.5, a nonempty, convex and compact. The following two claims are given to complete
the proof.
Claim 1. For each x ∈ Qmψ , the map Fmψ (x) has convex value.

If v1, v2 ∈ Fmψ (x), then there exists integrable selections f1(·), f2(·) of

H(·, x(·), xt(·)) such that, v1 = Pm(f1), v2 = Pm(f2), i.e.

v̇1 +D(t)v1 = f1(t), v̇2 +D(t)v2 = f2(t), for a.a. t ∈ [0,m].

For any λ ∈ [0, 1], then we have

λv̇1 + (1− λ)v̇2 +D(t)(λv1 + (1− λ)v2) = λf1(t) + (1− λ)f2(t).

Since the multi-valued map N(x) has convex value, then

λf1(t) + (1− λ)f2(t) ∈ N(x), for a.a. t ∈ [0,m].

Therefore,

λv1 + (1− λ)v2 = Pm(λf1(t) + (1− λ)f2(t)) ∈ Pm ◦N(x),

i.e.
λv1 + (1− λ)v2 ∈ Fmψ (x),

which implies the map Fmψ (x) has convex value, as claimed.

Claim 2. For each x ∈ Qmψ , the map Fmψ (x) has compact value.

Let x ∈ C([−τ,m];RN ) be arbitrary and from Claim 1, we see that Fmψ (x) ⊆ Qmψ ⊂
C([−τ,m];RN ). Then the set Fmψ (x) is bounded and equicontinuous. Therefore,

the set Fmψ (x) is relatively compact due to the well-known Arzelá-Ascoli Lemma.
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The closedness of Fmψ (x) follows from the fact that, according to [29], Fmψ can be

expressed as the closed graph composition of operators Pm ◦ N(x) , where Pm :
L1([0,m];RN )→ C([−τ,m];RN ), and N : C([−τ,m];RN )→ L1([0,m];RN ). Hence,
Fmψ (x) has compact value.

What follow to show that the operator Fmψ is a contraction. In fact, for any

x, y ∈ C([−τ,m];RN ), there exist vx ∈ Fmψ (x), vy ∈ Fmψ (y) and integrable selections

fx(·) ∈ H(t, x, xt) and fy(·) ∈ H(t, y, yt) such that

dH(Fmψ (x), Fmψ (y)) = ‖vx − vy‖C (3.7)

≤ ‖vx(0)− vy(0)‖+

∫ m

0

‖fx(s)− fy(s)‖ds

≤ 2

∫ m

0

µ(s)ds‖x− y‖C .

Since ω := 2
∫m

0
µ(s)ds < 1, then the operator Fmψ is a desired contraction with a

Lipschitz constant ω ∈ [0, 1). Finally, since Fmψ is a contraction with compact and

convex values, due to Proposition 2.5, the set Fix(Fmψ ) is a nonempty, compact AR-

space, i.e. the solution set of problem (3.1) is a compact Rδ set, which completes the
proof.
Remark 3.1.
(H3)1 there exist (x0, y0) ∈ RN × C([−τ, 0];RN ) and a constant C0 ≥ 0 such that

|H(t, x0, y0)| ≤ C0γ(t) for a.a. t ∈ [0,m],

where r satisfies
∫m

0
γ(s)ds < 1

2 .
From hypotheses (H2),(H3)1, we can infer that there exists a constant

M = ‖x0‖+ ‖y0‖0
such that

|H(t, x, y)| ≤ γ(t)(M + C0 + ‖x‖+ ‖y‖0)

for each (x, y) ∈ RN ×C([−τ, 0];RN ). So let g(s) = s, then the assumption (H2) and
(H3)1 satisfies (H3). Thus, if hypotheses (H1),(H2) and (H3)1 holds, the solution set
of the problem (3.1) is a compact Rδ-set.
Remark 3.2. If H is a lower carathéodory function with closed value, by the Bressan-
Colombo continuous selection theorem (see [5]), the differential inclusion (3.1) is re-
duced to the single value differential equation, so the existence results of solutions
can be established for this case from the information of topological structure.

As an application of the previous results, we present some examples.
Example 3.1. Let us consider the following second order differential inclusion of the
form

ẍ(t) +A(t)ẋ ∈ F (t, ẋ, ẋt) for t ∈ [0,m],

x(t) = ψ1(t), ẋ(t) = ψ2(t), for t ∈ [−τ, 0]

where
(F1) A : [0,m]→ RN×N is a integrable matrix function such that

〈A(t)u, u〉 ≥ a(t)‖u‖
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for a.a. t ∈ [0,m] and suitable function a ∈ L1([0,m];R+), and ψ1(t), ψ2(t) ∈
C([−τ, 0];RN );

(F2) F : [0,m]×RN ×C([−τ, 0];RN )→ 2R
N

is an upper carathéodory function with
compact convex value such that for all v1 ∈ F (t, y1, z1), v2 ∈ F (t, y2, z2)

‖v1 − v2‖ ≤ α(t)(‖y1 − y2‖+ ‖z1 − z2‖), for a.a. t ∈ [0,m]

with
∫m

0
α(t)dt < 1

2 and for all y1, y2 ∈ RN , z1, z2 ∈ C([−τ, 0];RN );

(F3) there exists an integrable function β : [0,m] → [0,+∞) with
∫m

0
β(s)ds suffi-

ciently small such that

|H(t, x, y)| ≤ β(t)(1 + exp‖x‖+ exp‖y‖0)

for all (t, x, y) ∈ I ×RN × C([−τ, 0];RN ).
Let v = ẋ, then we define the map B : C([−τ,m];RN ) → C1([−τ,m];RN ) by

B(v) = ψ1(0)+
∫ t

0
v(s)ds, for t ∈ [0,m], and B(v)(t) = ψ1(t) for t ∈ [−τ, 0). Obviously,

the map B is a linear continuous map. Hence, the second order differential inclusion
is equivalent to the following first order differential inclusion:

v̇(t) +A(t)v ∈ F (t, v, vt) for t ∈ [0,m], (3.8)

v(t) = ψ2(t), for t ∈ [−τ, 0].

In order to guarantee a prior boundedness of solution set, we only need to show that

the equation u(t) = ‖ψ2‖0 +
∫ t

0
β(s)(1 + 2eu(s))ds for a.a. t ∈ [0,m] has only one

solution. Thus, we have

2eu

1 + 2eu
=

2eu(0)

1 + 2eu(0)
e
∫ t
0
β(s)ds,

which implies it has a uniformly solution if
∫ t

0
β(s)ds < 1+ 1

2e‖ψ2‖0 . It is easy to check
that F satisfies all conditions of Theorem 3.1. Therefore, since B is a linear continuous
map from C([−τ,m];RN ) to C1([−τ,m];RN ), by Theorem 3.1, the solution set of
problem (3.3) is a Rδ compact set in C1([−τ,m];RN ).
Example 3.2. Inspired by [12], we consider a class of neural networks described by
the system of differential equations

ẋ = −Ax(t) +Bg(x) +Bτg(x(t− τ)) + I for a.a. t ∈ [0,m] (3.9)

x(t) = ψ(t) for t ∈ [−τ, 0]

where x = (x1, x2, . . . , xN )T ∈ RN is the vector of neuron state;
A = diag(a1, a2, . . . , aN ) is an N × N constant diagonal matrix where ai > 0, i =
1, 2, . . . , N, are the neuron self-inhibitions;
B = (bij) and Bτ = (bτij) areN×N constant positive definite matrices which represent
the neuron interconnection matrix and the delayed neuron interconnection matrix,
respectively; and τ > 0 is the constant delay in the neuron response. Moreover,
g(x) = (g1(x1), g2(x2), . . . , gN (xN ))T : RN → RN is a map where gi(i = 1, 2, . . . , N),
represents the neuron input-output activation and I(t) = (I1, I2, . . . , IN )T ∈ RN

is the vector of constant neuron inputs. Let λmax denote the largest eigenvalue of
B = (bij) and Bτ = (bτij).
We suppose that the activations belong to the following set of discontinuous functions.
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Assumption 1. gi ∈ G, for any i = 1, 2, . . . , N , where G denotes the class of functions
from R to R which are monotone nondecreasing and have at most a finite number of
jump discontinuities in every compact interval.

Then in order to obtain solutions, we need replace the original single-valued prob-
lem by a multivalued one in which we have filled the gaps at the discontinuity points.
We note that if g satisfies Assumption 1, then any gi(i = 1, 2, . . . , N), possesses only
isolated jump discontinuities where gi is not necessary defined. Hence, for all x ∈ RN ,
we set

Φ[g(x)] =
(
[ḡ1(x1), ĝ1(x1)], [ḡ2(x2), ĝ2(x2)], . . . , [ḡN (xN ), ĝN (xN )]

)
where ḡi(xi) ≤ lim infε→xi gi(ε), ĝi(xi) ≥ lim supε→xi gi(ε). Thus the differential
equations (3.12) become the following differential inclusions:

ẋ ∈ −Ag(x) +BΦ[g(x)] +BτΦ[g(xτ )] + I for a.a t ∈ [0,m]. (3.10)

By [12], the inclusion has at least a solution in the sense of Filippov, which is partic-
ularly useful in the engineering applications. Since it can be proved that solutions in
the sense of Filippov are good approximation of solutions obtained with the neuron
activations being Lipschitz functions, it is necessary to know the property of solutions
set. In order to get the topological structure of problem (3.12), we will strengthen
the condition on g.

(F6)1) For any s ∈ R, s → ḡi(s) and s → ĝi(s)(i = 1, 2, . . . , n) are Lipschitz
continuous where the Lipschitz constant satisfies 0 < L < 1

2λmax
;

2) there exist β ∈ L∞([0,m]) such that

|gi(x)| ≤ β|x|.
On the basis of the hypothesis (H6), we can define the mapping Fi(t, ·) : C[0,m]→

2L
1[0,m] as

Fi(t, x) = {v ∈ L1[0,m] : ḡi(x) ≤ v(t) ≤ ĝi(x)}.
If the hypothesis (F6) holds, we will claim that Fi(t, ·) : R→ 2R is continuous for

every fixed t ∈ [0,m].
For every u1, u2 ∈ R, every fixed t ∈ [0,m], let f1 ∈ Fi(t, u1), then

dR(f1, Fi(t, u2)) = inf
f2∈F (t,u2)

|f1(t)− f2(t)|

= dR(f1(t), [ḡi(u2(t)), ĝi(u2(t))]).

So

sup
f1∈Fi(t,u1)

dR(f1, Fi(t, u2)) ≤ max{|ḡi(u2(t))− ḡi(u1(t))|, |ĝi(u2(t))− ĝi(u1(t))|}

≤ |ḡi(u2(t))− ḡi(u1(t))|+ |ĝi(u2(t))− ĝi(u1(t))|.(3.11)

Similarly, the above inequalities also hold for supf2∈F (t,u2)dR(f2, Fi(t, u1)). So

dH(Fi(t, u1), Fi(t, u2)) ≤ |ḡi(u2(t))− ḡi(u1(t))|+ |ĝi(u2(t))− ĝi(u1(t))|
≤ 2L|u2(t)− u1(t)|. (3.12)

From (F6)(1), the last sign of equality holds. So, for every x1, x2 ∈ RN ,
dH(Φ[g(x1)],Φ[g(x2)]) ≤ 2L‖x1(t)− x2(t)‖. (3.13)
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Letting H(x, xτ ) = BΦ[g(x)] + BτΦ[g(xτ )] + I, we have H(x, xτ ) : RN × RN → RN

for a.a. t ∈ [0,m]. From (3.16), it is easy to check that

dH(H(s1, w1), H(s2, w2)) ≤ 2Lλmax(‖s1(t)− s2(t)‖+ ‖w1 − w2‖)

for all (s1, w1), (s2, w2) ∈ RN ×RN which implies the assumption (H2) holds on H.
Rewrite problem (3.12) in the following equivalent evolution inclusion form:

ẋ+Ax ∈ H(t, x, xτ ) for a.a. [0,m]

x(t) = ψ(t) for t ∈ [−τ, 0]. (3.14)

Thus, by Theorem 3.1, the solution set of problem (3.12) is a compact Rδ set in
C([−τ,m];RN ).

4. Inverse limit method and the topological structure
on noncompact intervals

To study the Cauchy problem (3.1) defined on the right half-line, we shall use the
inverse limit method. Let us recall some notions of the inverse system, for details see
e.g. [14], [13]. We mean a inverse system S = {Xα, π

β
α,Σ}, where Σ is a set directed

by the relation ≤, Xα is, for all α ∈ Σ, a metric space and πβα : Xβ → Xα is a
continuous function, for all α, β ∈ Σ with α ≤ β. Moreover, for each α ≤ β ≤ γ,

παα = idXα and π
β
α ◦ π

γ
β = πγα.

Let lim← S denote the limit of inverse system S, is defined by

lim
←
S = {((xα) ∈

∏
α∈Σ

Xα|πβα(xβ) = xα, for all α ≤ β}.

If we denote by πα : lim← S → Xα the restriction of the projection pα : Πα∈ΣXα →
Xα onto α−th axis, then it is obtained that πα = πβαπβ , for all α ≤ β.

Let S = {Xα, π
β
α,Σ} and S′ = {Xα′ , π

β′

α′ ,Σ
′} be two multivalued inverse systems.

A family {σ, ϕσ(α′)} is a multivalued mapping of S to S′ consisting of a monotone

function σ : Σ′ → Σ and multivalued mappings ϕσ(α′) : Xσ(α′) → 2X
′
α with the

property

πβ
′

α′ ◦ ϕσ(β′) = ϕσ(α′) ◦ π
σ(β′)
σ(α′)

for all α′ ≤ β′. Mapping {σ, ϕσ(α′)} induces a limit mapping ϕ : lim← S → 2lim← S′

satisfying, for all α′ ∈ Σ′,

πα′ϕ = ϕσ(α′)πσ(α′).

For more details about the inverse limit method, see, e.g., [4], [14]. Now we sum-
marize some useful properties of limits of inverse system.
Proposition 4.1. (see [3], [14], [24]) Let S = {Xm, π

p
m,N} and S′ = {Ym, πpm,N} be

two (multivalued) inverse systems satisfying Xm ⊂ Ym. If ϕ : lim← S → lim← S′ is
a limit map induced by a mapping {id, ϕm}, where ϕm : Xm → Ym, and if Fix(ϕm)
are, for all m ∈ N , Rδ -sets, then the fixed-point set Fix(ϕ) of ϕ is an Rδ-set, too.
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Proposition 4.2. (see [21, Proposition 2.3]) Let S = {Xm, π
p
m,N} be an inverse

system. If for each m ∈ N, Xm is nonempty and compact(resp. relatively compact),
then the limit lim← S is also nonempty and compact(resp. relatively compact).

Next, we take some examples for the inverse system needed later. For each p,m ∈
N+ with p ≥ m, consider a projection πpm : C([0, p];RN )→ C([0,m];RN ), defined by

πpm(u) = u|m0 , u ∈ C([0, p];RN ).

It is readily checked that {C([0,m];RN ), πpm,N+} is an inverse system and its limit

is isometrically homeomorphic to Ĉ([0,∞);RN ), so for convenience we set

Ĉ([0,∞);RN ) = lim
←
{C([0,m];RN ), πpm,N+}.

Let Lloc([0,∞);RN ) be the separated locally convex space consisting of all locally
Bocher integrable functions from R+ to RN endowed with a family of seminorms
{‖ · ‖m1 , m ∈ N+}, defined by

‖u‖m1 =

∫ m

0

‖u(s)‖ds, m ∈ N+.

Similarly, we also obtain that {L1([0,m];RN ), π′
p
m,N+} is an inverse system where

p ≥ m and
π′
p
m(f) = f |m0 , f ∈ L1([0, p];RN ).

Moreover, it is clear that

Lloc([0,∞), RN ) = lim
←
{L1([0,m], RN ), π′

p
m,N+}.

Assume that {C([0,m];RN ), πpm,N+} and {L1([0,m];RN ), π′
p
m,N+} are the inverse

systems. It follows that the family {id, Pm} is a map from {L([0,m];RN ), π′
p
m,N+}

into {C([0,m];RN ), πpm,N+}. Indeed, it is easy to infer that

πpm(Pm(f)) = Pm(π′
p
m(f)) for all f ∈ L([0, p];RN ) and m ≤ p.

So the family {id, Pm} induces a limit mapping P∞ : Lloc([0,∞);RN ) →
Ĉ([0,∞);RN ) such that P∞ |m0 = Pm(f |m0 ) for each f ∈ Lloc([0,∞);RN ) and
m ∈ N+.

Let Γ(ψ) denote the set of all continuous-solutions to the problem (3.1) on [−τ,∞)
for each ψ(t) ∈ C([−τ, 0];RN ). We are in the position to present our main result for
problem (3.1) on the noncompact intervals in this section.
Theorem 4.1. If hypotheses (H1)-(H4) are satisfied, then Γ(ψ) is an Rδ−set for
each ψ ∈ C([−τ, 0];RN ).

Proof. For each x ∈ Qmψ , let Fmψ : Qmψ → 2Q
m
ψ be a multivalued map defined by

Fmψ (x) = Pm ◦ (N(x))

(the operator N is defined as in Theorem 3.1), where

Qmψ ={x∈C([−τ,m];RN ) : x(t)=ψ(t), fort ∈ [−τ, 0] and ‖x‖ ≤ uψ(t) for t ∈ [0,m]}.
Obviously, Fix(Fmψ ) is the solution set of problem (3.1). From Theorem 3.1, Fix(Fmψ )

is an Rδ-set. Moreover, note that {Qmψ , πpm,N+} is an inverse system, and then

Q∞ψ ={u ∈ Ĉ([−τ,∞), RN ), u(t)=ψ(t), for t ∈ [−τ, 0], and ‖u‖ ≤ xψ(t) for t ∈ R+}
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= lim
←
{Qmψ , πpm,N+}.

In order to apply Proposition 4.1, what follows to show that the family {id, Fmψ } is a

map of the inverse system {Qmψ , πpm,N+} into itself. Let p,m ∈ N+ with p ≥ m and

u ∈ Qpψ, we claim that

N(u |m−τ ) |m0 = {f |m0 : f ∈ N(u) |p0}.
The case p = m is obvious, for the case p > m, it is easy to check that

{f |m0 , f ∈ N(u) |p0} ⊂ N(u |m−τ ) |m0 .

It remains to show the reverse inclusion. For f ∈ N(u |m−τ ) |m0 and g ∈ N(u) |p0, we
set

f̂ = f(t)χ[0,m](t) + g(t)χ(m,p](t) for a.a. t ∈ [0, p].

where χ(t) is the characteristic function. Obviously, it is easy to see that f̂ ∈ N(u) |p0,
which implies N(u |m−τ ) |m0 ⊂ {f |m0 : f ∈ N(u) |p0} as desired. Therefore, the map
{Fmψ }∞m=1 induces the limit mapping F∞ψ : Q∞ψ → Q∞ψ . The fixed-point set of the

mapping F∞ψ is the solution set of problem (3.1) defined on the right half. Since
FixFmψ is an Rδ set for every m ∈ N+, according to Proposition 4.1, the set FixF∞ψ
is an Rδ set, as claimed, which completes the proof.

5. The nonlocal problem on noncompact intervals

In this section, we are concerned with the existence and topological structure of
continuous solutions to the following problem:

ẋ+D(t)x(t) ∈ H(t, x, xt), for a.a. I,

x(t) ∈ ϕ(x) for t ∈ [−τ, 0], (5.1)

where I := [0,∞). To present our main result,we also need the following conditions.

(H5) ϕ : Ĉ([−τ,∞);RN ) → C([−τ, 0];RN ) is u.s.c. with convex and compact value
such and satisfies

(i) |ϕ(x)| = {‖v‖0 : v ∈ ϕ(x)} ≤ ‖ψ‖0 for each

x ∈ ∆u := {x ∈ Ĉ([−τ,∞), RN ), ‖x‖ ≤ uψ(t) for all t ∈ I, and
‖x‖ ≤ uψ(0) = ‖ψ‖0 for all t ∈ [−τ, 0]}

where ψ(t) ∈ C([−τ, 0];RN ), uψ(t) is the unique solution of (3.4).

(ii) If Θ ⊆ ∆u is relatively compact in Ĉ([−τ,∞);RN ), ϕ(Θ) is relatively compact
in C([−τ, 0];RN ).
Theorem 5.1. If hypotheses (H1)-(H5) hold, the problem (5.1) has at least one
solution.
Proof. For given ψ(t) ∈ C([−τ, 0];RN ), let λ1 = ‖ψ‖0, what follows to denote

Λλ1
:= {ν ∈ C([−τ, 0];RN ) : ‖ν‖0 ≤ λ1}.

Keeping some notions in Theorem 3.1 and Theorem 4.1, let us define the multi-valued

mapping Γ : Λλ1 → 2Ĉ([−τ,∞),RN ) by Γ(ψ1) = FixF∞ψ1
for each ψ1 ∈ Λλ1 , then we

will show that Γ is an Rδ-map.
Claim 1. Γ(ψ1) is an Rδ-map for each ψ1 ∈ Λλ1

.
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As proved in Theorem 4.1, Γ(ψ1) is an Rδ-set for each ψ1 ∈ Λλ1 . By Definition 2.8,
it suffices to show the upper semi-continuity of Γ. Let Qα be a nonempty and closed

subset of Ĉ(J ;RN ) where J := [−τ,∞). By Proposition 2.2, it suffices to prove that

Γ−1(Qα) = {ψ ∈ C([−τ, 0];RN ) : Γ(ψ) ∩Qα 6= ∅}

is closed. Let {ψn}n≥1 ⊆ Γ−1(Qα) and assume ψn → ψ in Λλ1 . Let xn ∈ Γ(ψn)∩Qα
for n ≥ 1, then by the a prior estimation of solution in Theorem 3.1, we have {xn}n≥1

is uniformly bounded in Ĉ(J ;RN ). Due to the well known Arzelá-Ascoli theorem, we
obtain that there exist a subsequence, without of generality, we assume that xn → x
in Qα. From Theorem 3.1 in [25], we have

ẋ+D(t)x ∈ convlim{ẋn +D(t)xn}n≥1 ⊆ convlimN(xn) ⊆ N(x) for a.a. t ∈ I,

which means x ∈ Γ(ψ). Hence, x ∈ Γ(ψ) ∩ Qα i.e. Γ−1(Qα) is closed in Ĉ(J ;RN ).
This completes the proof of u.s.c of Γ. Therefore, Γ : Λr1 → 2∆u is an Rδ- mapping.
Claim 2. The composition operator Γ ◦ ϕ : ∆u → ∆u is also an Rδ-mapping.

From (H5), we know that ϕ : ∆u → 2Λr1 is u.s.c. with compact and convex value.
So from the hierarchy for nonempty subsets of a metric space

compact + convex ⊂ Rδ set,

we have that for every u ∈ ∆u, ϕ(u) is Rδ-set, so ϕ is also an Rδ-map. Next, we
claim that Γ(Λr1) ⊂ ∆u. From the fact that ϕ : ∆u → 2Λr1 , we have ϕ(∆u) ⊆ Λr1 .
Note that Γ(Λr1) ⊆ ∆u, therefore, Γ(ϕ(∆u)) ⊆ ∆u. Then the following composition
is well-defined: Γψ ◦ ϕ : ∆u → ∆u. By Proposition 2.6, Γψ ◦ ϕ is a Rδ-map from ∆u

to ∆u.
Claim 3. FixΓ ◦ ϕ 6= ∅.

What follows to find solutions in ∆u. To this end, let us show that the multivalued
mapping Γψ ◦ ϕ has a fixed point in ∆u. It is noted that ∆u and Λr1 being convex

subset of Ĉ(J ;RN ) and C([−τ, 0];RN ) respectively, are AR-spaces. Next, we shall

show that the set ∆u is relatively compact in Ĉ(J ;RN ). Let m ∈ N and Λr be defined
by (4.1) with r instead of r1. It is noted that

Γ(Λr)|m−τ ⊂ {x ∈ C([−τ,m];RN ), x(t) = P (f)(t), ‖x‖ ≤ ur(t),

for a.a. t ∈ [−τ,m], f ∈ N(Q∞ψ ) |m0 }.
So, we can find that Γ(Λr)|m−τ is relatively compact in C([−τ,m];RN ). Now, noticing
Γ(Λr) |m−τ⊂ ∆r |m−τ , it follows that ∆u|m−τ is relatively compact. For the arbitrariness

of m and by Proposition 4.2, we obtain that ∆u is relatively compact in C(J ;RN ).
Hence, due to (H5), ϕ(∆u) is relatively compact in C([−τ, 0];RN ) by the arbitrariness
of m > 0. Let Λ = convϕ(∆u), and Λ is compact in C([−τ, 0];RN ). Since Γ is u.s.c.
with compact and convex values, by Proposition 2.6, we obtain the compactness of
Γ(Λ), so we conclude from the result Γ ◦ (ϕ(∆u)) ⊂ Γ(Λ).

Since Γ ◦ ϕ is a Rδ-mapping, therefore, thanks to Theorem 2.1, we conclude that
there exists a fixed point of Γ ◦ ϕ in ∆u. Moreover, it is readily checked that x(t) ∈
Γ ◦ ϕ(x) and max{‖x(t)‖, ‖xt‖0} ⊂ ∆u for each t ∈ R+, which implies that x is a
continuous solution of the nonlocal problem (5.1). The proof is completed.
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To study the topological structure of solution set in problem (5.1), we need more
conditions on multifunction ϕ.
(H6) For all x1, x2 ∈ C(J ;RN ), and all v1 ∈ ϕ(x1), v2 ∈ ϕ(x2), then

‖v1 − v2‖0 ≤ L‖x1 − x2‖C ,
where 0 < L < 1

3 .
Theorem 5.2. If hypotheses (H1)-(H6) hold, the solution set of problem (5.1) is an
Rδ-set.
Proof. The proof is similar to that of Theorem 5.1, we only show the differences here.
From the above proof, we know that the composition operator Γ ◦ϕ is a Rδ mapping
from ∆u to ∆u. We next show that the multivalued mapping

Fix(Γ ◦ ϕ) |m−τ= {x ∈ C([−τ,m];RN ) : x ∈ Γ ◦ ϕ(x) |m−τ}
is an Rδ set, or equivalently show that the map Γ ◦ ϕ |m−τ is a contraction. In fact,

for any u, v ∈ C([−τ,m];RN ), there exist xu ∈ Γ ◦ ϕ(u) |m−τ , xv ∈ Γ ◦ ϕ(v) |m−τ which
means that there exists xu(t) = ψu(t) ∈ ϕ(u), xv(t) = ψv(t) ∈ ϕ(v) for t ∈ [−τ, 0]
and integrable selections fu(·) ∈ H(t, u, ut) and fv(·) ∈ H(t, u, ut) such that

d(Γ ◦ ϕ(u),Γ ◦ ϕ(v)) = ‖xu − xv‖C (5.2)

≤ ‖ψu(t)− ψv(t)‖0 +

∫ m

0

‖fu(s)− fv(s)‖ds

≤ (L+ 2

∫ m

0

µ(s)ds)‖x− y‖C .

Since 0 < ω := (L + 2
∫m

0
µ(s)ds) < 1, then the operator Γ ◦ ϕ |m−τ is a desired

contraction with a Lipschitz constant ω ∈ [0, 1). Finally, since Γ◦ϕ |m−τ is a contraction
with compact and convex values, the set Fix(Γ ◦ ϕ) |m−τ is, according to Proposition
2.5, a nonempty, compact AR-space which completes the proof that Fix(Γ ◦ ϕ) |m−τ
is an Rδ set. By Proposition 4.1, the fixed-point set Fix(Γ ◦ ϕ) of Γ ◦ ϕ is an Rδ-set,
too.

Next, we will prove that the solution set of problem (5.1) may be also an Rδ set if
the multivalued nonlinearity ϕ is nonconvex-valued. We need the following hypothesis
for the problem (5.1).

(H7) ϕ : Ĉ(J ;RN ) → C([−τ, 0];RN ) is l.s.c. with closed value satisfying (H5)(i)(ii),
and H satisfies the following property: for all t ∈ I, (x, xt) ∈ RN × C([−τ, 0], RN ),
there exists a constant r > 0, such that

〈x, f〉 < 0,

where f ∈ H(t, x, xt) in case of ‖x‖ > r.
Theorem 5.3. If hypotheses (H1)-(H4) and (H6),(H7) holds, the solutions set of
problem (5.1) is an Rδ-set.
Proof. We first show the problem (5.1) has at least one solution. The proof is similar

to Theorem 5.1. Firstly, the multivalued map ϕ : Ĉ(J ;RN ) → C([−τ, 0];RN ) has
nonempty closed, decomposability values in C([−τ, 0];RN ) and is l.s.c.. We apply the
Bressan-Colombo continuous selection theorem (see [5]) and obtain a continuous map

g : Ĉ(J ;RN ) → C([−τ, 0];RN ) satisfying g(x) ∈ ϕ(x). To finish our proof, we need
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to solve the fixed point problem: x ∈ Γ ◦ g(x).
We next show that the single continuous g also satisfies the assumption (H5)(i)(ii).
Obviously, (H5)(i) holds on g. Because of the continuity of function g, we have that,
for each subset Θ ⊆ ∆r where ∆r is defined as in Theorem 5.1 with r instead of u(t),

if Θ is relatively compact in Ĉ(J ;RN ), g(Θ) is relatively compact in C([−τ, 0];RN ).
Thus we obtain that g : ∆r → Λr is an Rδ-map. By Theorem 5.1, we obtain that Γ
is an Rδ-map from Λr to ∆r. Next, we claim that Γ(Λr) ⊂ ∆r. In fact, if this is not
the case, then we can assume that there exist ψ ∈ Λr, u ∈ Γ(ψ) and t0 > 0 such that
‖u(t0)‖ > r. Therefore, we can find k ∈ (0, t0] such that ‖u(t)‖ ≥ r on t ∈ [t0− k, t0],
and ‖u(t0 − k)‖ = r. Since u is continuous and ‖u(0)‖ ≤ r, we have∫ t0

t0−k
〈u̇, u〉ds+

∫ t0

t0−k
〈D(t)u, u〉ds =

∫ t0

t0−k
〈f, u〉ds

where f ∈ H(t, u, ut). By (H1) and (H7), it follows that r < ‖u(t0)‖ ≤ ‖u(t0−k)‖ = r,
which is a contradiction. Next we shall show that Γ ◦ g : ∆r → ∆r has a fixed point,
which means the problem (5.1) has at least one solution. As in Theorem 5.1, letting
Λ = convg(∆r), we can see that Λ is compact in C([−τ, 0];RN ). Since Γ is u.s.c. with
compact values, we obtain the compactness of Γ(Λ). Therefore, we conclude from the
result Γ ◦ (g(∆r)) ⊂ Γ(Λ) and Theorem 2.1 that there exists a fixed point u of Γ ◦ g
in ∆r, which implies that there exists a solution of the nonlocal problem (5.1).

For the topological structure of problem (5.1), under the assumption (H6), we can
obtain that the solution set of problem (5.1) is an Rδ-set. The following process of
proof is similar that of Theorem 5.2 omitted here. The proof is completed.
Remark 5.1. Through the proof of the above theorem, we know that under some
conditions the differential inclusion problems can reduce to single differential equa-
tion problems by the continuous selection theorem. Thus, under the appropriate
conditions, Theorem 5.2 still holds if ϕ is a single continuous function.

6. Applications

As samples of applications, we present an example of a time delay boundary
control system defined on right half-line, with a priori feedback. Let T = [0,∞),
ż = (ż1, ż2, . . . , żN ). We consider the following control system:

ż(t) +A(t)z(t) = g(t, z(t), zt)u1(t), for a.a. t ∈ T
z(t) = u2(t) for t ∈ [−τ, 0], (6.1)

u1(t) ∈ U1(t, z(t)), u2(t) ∈ U2(t, z(t)) for a.a. t ∈ T,

where A : T → RN×N is a integrable positive semi-definite matrix, g(t, z, s) : T ×
RN × C([−τ, 0];RN )→ R is a Carathéodory function, zt = z(t+ θ), θ ∈ [−τ, 0], and

U1(t, z), U2(t, z)→ 2R
N

are two multivalued maps.
The hypotheses on the data (6.1) are the following:

(H8) g : T × RN × C([−τ, 0];RN ) → R is a carathéodory function such that for
almost all t ∈ T, x, y ∈ RN and s1, s2 ∈ C([−τ, 0];RN ),

‖g(t, x, s1)− g(t, y, s2)‖ ≤ η(t)(‖x− y‖+ ‖s1 − s2‖0),
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where η(t) ∈ L1
+(T ), with ‖η‖L1 < 1

3 .

(H9) U1 : T ×RN → RN and U2 : C([−τ,∞), RN )→ C([−τ, 0];RN ) are two upper
Carathéodory functions with compact convex values and satisfies:
(i) for each subset Θ is relatively compact in C([−τ,∞);RN ), U2(Θ) is rela-
tively com- pact in C([−τ, 0];RN );
(ii) for every t ∈ T and all s ∈ RN , v ∈ C([−τ, 0];RN ), |U1(t, s)| ≤
α, |U2(v)| ≤ ‖ψ‖, where 0 ≤ α < 1, ψ(t) ∈ C([−τ, 0];RN ).

Let ϕ : Ĉ([−τ,∞);RN )→ C([−τ, 0];RN ) be a multifuction defined by

ϕ(z) = {v ∈ C([−τ, 0];RN ) : v(t) = u(t), u(t) ∈ U2(z(t))}.
Using hypotheses (H9), it is straightforward to check that ϕ satisfies hypotheses (H5).
Also, we define G : T ×RN × C([−τ, 0];RN )→ RN as

G(t, x, xt) = {v ∈ RN : v = g(t, z(t), zt)u1(t), u1(t) ∈ U1(t, z(t)), a.a. t ∈ T}.
Using hypotheses (H8), we check that G satisfies hypotheses (H2) and (H3). Rewrite
problem (6.1) in the following equivalent evolution inclusion form:

ż +A(t)z ∈ G(t, z, zt), for a.a. t ∈ T,
z(t) ∈ ϕ(z) for t ∈ [−τ, 0]. (6.2)

We can apply Theorem 5.1 on problem (6.1) and obtain:
Theorem 6.1. If the hypothesis (H8) and (H9) holds, then the control problem (6.1)
has at least one solution.

If we strengthen our hypothesis on the continuity of U2(z), we can also obtain that
the attainable set is an Rδ-set for the control problem (6.1) .
(H10) For all s1, s2 ∈ C(T ;RN ) and all v1 ∈ U2(s1), v2 ∈ U2(s2),

‖v1 − v2‖0 ≤ γ‖s1 − s2‖C ,
where 0 < γ < 1

3 . By (H10), we can apply Theorem 5.2 and obtain the following
theorem:
Theorem 6.2. If the hypothesis (H8)-(H10) hold, then the attainable set of problem
(6.1) is an Rδ set in C(T ;RN ).
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