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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
Let T be a maximal monotone operator with domain D(T ) and range R(T ) in H.
An important problem in the theory of maximal monotone operators is the inclusion
problem

0 ∈ Tx (1.1)

which has applications in various disciplines (see [4, 5, 7, 17, 30, 32]). A typical
example of (1.1) is the minimization problem

min
x∈H

f(x), (1.2)

where f : H → R := (−∞,∞] is a proper, lower semicontinuous, and convex function.
It is known that x̂ ∈ dom(f) solves (1.2) if and only if it is a solution to the inclusion

0 ∈ ∂f(x̂), (1.3)
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where ∂f is the subdifferential of f . It is known that ∂f is a maximal monotone
operator in H.

In his seminal paper [29], Rockafellar proposed his proximal point algorithm (PPA)
which extends Martinet’s algorithm [24] to general Hilbert spaces. Rockafellar’s PPA,
an iterative method for solving the inclusion problem (1.1), generates a sequence {xn}
according to the recursion formula:

xn + en ∈ xn+1 + λnTxn+1, (1.4)

where the initial guess x0 ∈ H is arbitrarily selected, {en} is a sequence of errors, and
{λn} is a sequence of parameters.

Rockafellar proved the following result.
Theorem 1.1. (Rockafellar [29].) Assume the solution set S of the inclusion (1.1)
is nonempty. Assume the error sequence {en} satisfies the criterion:

‖en‖ ≤ εn for all n and

∞∑
n=0

εn <∞. (1.5)

Assume in addition the parameter sequence {λn} is such that infn≥0 λn > 0. Then
the sequence {xn} generated by PPA (1.4) converges weakly to a point in S.

Since its publication in Rockafellar [29] in 1976, proximal point methods have
become active and popular in optimization and variational inequalities; see [8, 9, 10,
11, 12, 15, 16, 22, 27, 28, 31] and the references therein.

Rockafellar [29] posed a question whether the sequence {xn} generated by his PPA
(1.4) can be strongly convergent in the setting of infinite-dimensional Hilbert spaces?

A negative answer to this question was given by Güler [19] in 1991. (A similar
and relevant counterexample to the strong convergence of trajectories of contraction
semigroups was however constructed [18] as early as in 1979; see also [36]).

Recently, basing upon Hundal’s counterexample [20] to the strong convergence of
alternating projections [6] onto two intersecting closed convex subsets of an infinite-
dimensional Hilbert space, Bauschke, et al [3] constructed another counterexample to
Rockafellar’s question (see also [2] for more examples based on Hundal’s example).

Two questions are thus of interest to investigate:

(1) What conditions are sufficient to guarantee strong convergence of the sequence
{xn} generated by PPA (1.4)?

(2) How to modify Rockafellar’s PPA (1.4) so that strong convergence is guaran-
teed?

This latter question was first attacked in [33] and then in [35, 23] in an infinite-
dimensional Hilbert space. A strongly convergent modification in the setting of uni-
formly convex and uniformly smooth Banach spaces was given in [21].

It is the aim of this paper to give another strongly convergent modification of
Rockafellar’s PPA in the setting of uniformly convex Banach spaces which are not
necessarily smooth. The lack of smoothness brings us difficulties in our argument in
constructing a generalized projection in contrast to the case of uniform smoothness in
[21]. Thus another contribution of this paper is how to find appropriate generalized
projections in nonsmooth Banach spaces.
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2. Preliminaries

2.1. Uniformly convex and uniformly smooth Banach spaces. Let X be a real
Banach space with dual X∗. The modulus of convexity of X is defined as

δX(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
, ε ∈ [0, 2].

Recall that X is said to be uniformly convex if

δX(ε) > 0 for all ε ∈ (0, 2].

Hilbert spaces H and lp spaces (and Lp[a, b]) for 1 < p < ∞ are all uniformly
convex. As a matter of fact, the moduli of these spaces are

δH(ε) = 1−
√

1−
(ε

2

)2
and

δlp(ε) = δLp(ε)


= 1− p

√
1−

(
ε
2

)p
if 2 ≤ p <∞,

≥ 1−
√

1− (p− 1)
(
ε
2

)2
if 1 < p < 2.

We need inequality characterizations for uniform convexity.
Proposition 2.1. [34] Let X be a real Banach space. Then either of the following
two statements characterizes uniform convexity of X:

(i) for each fixed real number r > 0, there exists a strictly increasing continuous
function h : [0,∞)→ [0,∞), h(0) = 0, satisfying the property:

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)h(‖x− y‖)

for all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r, and 0 ≤ t ≤ 1;
(ii) for each fixed real number r > 0, there exists a strictly increasing continuous

function g : [0,∞)→ [0,∞), g(0) = 0, satisfying the property:

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, j〉+ g(‖y‖)

for all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r, and for j ∈ Jx.

Denote by SX the unit sphere of a Banach space X (i.e., SX = {x ∈ X : ‖x‖ = 1}).
Then we say that

• X is smooth if the

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for every x, y ∈ SX ;
• X is uniformly smooth if the limit (2.1) exists and is attained uniformly in
x, y ∈ SX .

Alternatively we can use duality map to characterize smoothness and uniform
smoothness. Recall that the (normalized) duality map J : X → X∗ is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X.



110 SOUHAIL CHEBBI, NAJLA ALTWAIJRY AND HONG-KUN XU

It is known that

Jx = ∂
1

2
‖x‖2, x ∈ X.

(Here ∂ denotes the subdifferential in the sense of convex analysis.) The following
facts are well-known.

• X is smooth if and only if J is single-valued.
• X is uniformly smooth if and only of J is norm-to-norm uniformly continuous

over bounded sets of X.

More details regarding convexity, smoothness and duality maps can be found in [13].

2.2. Generalized projections. Let X be a uniformly convex Banach space and let
C be a nonempty closed convex subset of X. It is then well-known that we can define
the metric (or nearest point) projection PC : X → C by assigning to each point x ∈ X
the unique point PCx in C which satisfies the property

‖x− PCx‖ = min
y∈C
‖x− y‖. (2.2)

It is also well-known that if X is a Hilbert space H, then PC is nonexpansive (i.e.,
‖PCx− PCy‖ ≤ ‖x− y‖ for all x, y ∈ H), which plays a crucial role in Hilbert space
techniques. However, metric projections are no longer nonexpansive in Banach spaces
with dimensions exceeding one. Instead, the so-called generalized projections seem
more prevail than metric projections. To define generalized projections, assume in
addition that X is smooth so that the duality map J is single-valued. Consequently,
we can define [1, 21] a function ϕ by

ϕ(x, y) =
1

2
‖x‖2 − 〈x, Jy〉+

1

2
‖y‖2. (2.3)

Since X is smooth and uniformly convex, ϕ(·, y) is, for each fixed y ∈ X, smooth and
(uniformly) convex. Hence the minimization problem

min
x∈C

ϕ(x, y) = min
x∈C

(
1

2
‖x‖2 − 〈x, Jy〉+

1

2
‖y‖2

)
(2.4)

is uniquely solvable. Let QCy ∈ C be its unique solution in C. Namely, QCy is the
only point in C with the property

ϕ(QCy, y) = min
x∈C

ϕ(x, y). (2.5)

Thus we have defined an operatorQC : X → C which assigns to each y ∈ X the unique
point QCy in C via (2.5). This operator QC is referred to as the generalized projection
from X onto C. It is easily seen that if X is a Hilbert space, then ϕ(x, y) = 1

2‖x−y‖
2

and the generalized projection QC is reduced to the metric projection PC as defined
in (2.2).

Observing that the minimization (2.4) is convex and differentiable with gradient
(with respect to the argument x)

∇ϕ(x, y) = Jx− Jy,

we immediately have the following characterization of QC .
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Proposition 2.2. Let z ∈ C and y ∈ X. Then z = QCy if and only if there holds
the relation:

〈x− z, Jz − Jy〉 ≥ 0, x ∈ C. (2.6)

Proof. The variational inequality (2.6) is actually the optimality condition for the
differentiable convex minimization (2.4). �

2.3. Maximal monotone operators. Let X be a real Banach space X with dual
X∗ and let J : X → X∗ be the (normalized) duality map.

Recall that a (possibly multivalued) operator T with domain D(T ) in X and range
R(T ) in X∗, respectively, is said to be monotone if

〈x− x′, ξ − ξ′〉 ≥ 0

for all x, x′ ∈ D(T ) and ξ ∈ Tx and ξ′ ∈ Tx′. In other words, the graph

G(T ) := {(x, ξ) ∈ X ×X∗ : x ∈ D(T ), ξ ∈ Tx}

is a monotone set in the product space X ×X∗.
A monotone operator is said to be maximal monotone if its graph is not contained

properly in the graph of any other monotone operator. In other words, a monotone
operator T is maximal monotone if and only if the following relation holds:

(x′, ξ′) ∈ X ×X∗, 〈x− x′, ξ − ξ′〉 ≥ 0 ∀ (x, ξ) ∈ G(T ) =⇒ (x′, ξ′) ∈ G(T ).

A typical example of maximal monotone operators is the subdifferential ∂f of a proper
lower-semicontinuous convex function f : X → R.

Let λ > 0 and let JTλ (or simply Jλ if no confusions arise) be the resolvent of T ;
that is,

JTλ = (J + λT )−1.

It is known that a monotone operator T : D(T ) ⊂ X → X∗ is maximal monotone
if and only if the range of the operator J + rT is the whole space X∗; that is,
R(J + rT ) = X∗ for any r > 0. In other words, if T is maximal monotone, then the
resolvent JTλ is single-valued and defined over the entire space X∗.

Let S denote the set of zeros of a maximal monotone operator T ; that is,

S = T−10 = {x ∈ D(T ) : 0 ∈ Tx}.

Note that if X is smooth, then

S = Fix(JTλ J) := {x ∈ X : JTλ Jx = x}.

If X is a Hilbert space, the resolvent JTλ is nonexpansive:

‖JTλ x− JTλ y‖ ≤ ‖x− y‖, x, y ∈ X.

Moreover, we can equivalently rewrite Rockafellar’s PPA (1.4) as

xn+1 = JTλn(xn + en) = (I + λnT )−1(xn + en), n = 0, 1, · · · . (2.7)

Throughout the rest of this paper, we will use the notation:

• ‘xn ⇀ x’ means that the sequence xn is weakly convergent to x;
• ‘xn → x’ means that the sequence xn is strongly convergent to x;
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• ωw(xn) = {x : x is the weak limit of a subsequence of {xn}} is the weak ω-
limit set of the sequence {xn}.

3. Existing strong convergent modifications

Since Rockafellar’s PPA (1.4) (or (2.7)) does not have strong convergence in general
in an infinite-dimensional Hilbert space, effort has been made to modify PPA (2.7) so
as to have strong convergence. Three strong convergent modifications of PPA (2.7)
are available in literature.

3.1. Solodov and Svaiter’s modification via metric projections. Additional
projections applied to PPA (2.7) can force strong convergence. This is the idea of
Solodov and Svaiter [33]. (Their idea can also be adapted to build up other strongly
convergent iterative algorithms for nonlinear operator equations (see [25, 26].) Define
a sequence {xn} by the following modified proximal point algorithm (mPPA).

x0 ∈ H,
yn = (I + λnT )−1xn,
vn = 1

λn
(xn − yn),

Vn = {z ∈ H : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PVn∩Wn

x0.

(3.1)

Theorem 3.1. [33] Let H be a real Hilbert space. Let {xn} be defined by mPPA
(3.1). Assume that the parameter sequence {λn} is bounded below from zero. Then
{xn} converges strongly to PSx0, the metric projection of x0 onto the solution set S.

3.2. Modification via additional contractions: the contraction-proximal
point algorithm. Since the resolvents which define Rockafellar’s PPA (2.7) are non-
expansive, appropriate convex combinations of these resolvents with contractions turn
out to be contractive, which can lead to strong convergence. This is the idea in the
papers [35, 23]. More precisely, we define a sequence {xn} by the following so-called
contraction-proximal point algorithm:

xn+1 = αnu+ (1− αn)JTλn(xn) + en, n ≥ 0, (3.2)

where for each n, αn ∈ (0, 1), λn > 0 and en is an error.
Theorem 3.2. [35, 23] Let {xn} be generated by the contraction-proximal point
algorithm (3.2). Assume that

(a) limn αn = 0;
(b)

∑
n αn =∞;

(c) either
∑
n |αn − αn+1| <∞ or limn αn/αn+1 = 1;

(d) 0 < λ̄ ≤ λn ≤ λ̃ (∀n);
(e)

∑
n |λn+1 − λn| <∞;

(f)
∑
n ‖en‖ <∞.

Then {xn} converges strongly to PSu, the metric projection of u onto the solution
set S.
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3.3. Kamimura and Takahashi’s modification in uniformly convex and uni-
formly smooth Banach spaces. Let X be a uniformly convex and uniformly
smooth Banach space and let T : X → X∗ be a maximal monotone operator such that
the solution set S = T−1(0) = {x ∈ D(T ) : 0 ∈ Tx} 6= ∅. Kamimura and Takahashi
[21] introduced a modified PPA which generates a sequence {xn} by the algorithm:

x0 ∈ X,
0 = vn + 1

rn
(Jyn − Jxn), vn ∈ Tyn,

Vn = {z ∈ X : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ X : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = QVn∩Wn

x0.

(3.3)

Note: Since T is maximal monotone, R(J + rT ) = X∗ for all r > 0. In particular,
Jxn ∈ R(J+rnT ) for rn > 0. Thus, there is yn ∈ D(T ) such that Jxn ∈ Jyn+rnTyn.
Set vn := 1

rn
(Jxn − Jyn). Then vn ∈ Tyn and 0 = vn + 1

rn
(Jyn − Jxn).

Theorem 3.3. [21] Let X be a uniformly convex and uniformly smooth Banach
space. Assume lim infn→∞ rn > 0. Then the sequence {xn} generated by mPPA (3.3)
converges strongly to the generalized projection QSx0 of x0 onto the solution set S.

4. A new strongly convergent modification of PPA

In this section we present a new strongly convergent modification of Rockafellar’s
PPA (1.4) in the setting of uniformly convex Banach spaces which are not necessarily
smooth. As opposed to Kamimura and Takahashi’s modification (3.3), the difficulty
lies in how to define a generalized projection QC without smoothness of the underlying
Banach space X.

4.1. Generalized projections in nonsmooth Banach spaces. Let X be a real
Banach space and C be a nonempty closed convex subset of X. In this subsection
we define a generalized projection QC . Towards this we let J : X → X∗ be the
normalized duality map. Since we do not assume smoothness of X, J is possibly
multivalued. Consequently, we cannot use (2.3) to define the function ϕ, minimizing
which defines the generalized projection QC in the smooth case. To overcome possible
difficulties arising from nonsmoothness of X (i.e., multivaluedness of J), we introduce
a function τ(x, y) by

τ(x, y) = max{〈x,−j〉 : j ∈ Jy} = max{〈x, j〉 : j ∈ J(−y)}, x, y ∈ X. (4.1)

(i.e., τ(x, y) is the support function at x to the weakly compact convex set J(−y).)
It is clear that τ(x, y) is reduced to the pairing −〈x, Jy〉 if Jy is a singleton.

We then define a function ψ(x, y) on X ×X by

ψ(x, y) =
1

2
‖x‖2 + τ(x, y) +

1

2
‖y‖2, x, y ∈ X (4.2)

(We also write ψy(x) = ψ(x, y) whenever needed.)
Note that if X is smooth, then Jy is a singleton and ψ becomes

ψ(x, y) =
1

2
‖x‖2 − 〈x, Jy〉+

1

2
‖y‖2

which is the previous function ϕ(x, y) defined in (2.3).
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Some properties of τ are available immediately.
Lemma 4.1. Let X be a Banach space and let y ∈ X. Then τ(·, y) : X → R satisfies
the properties:

(i) • τ(x+ x′, y) ≤ τ(x, y) + τ(x′, y) for all x, x′ ∈ X;
• τ(λx, y) = λτ(x, y) for all x ∈ X and λ ≥ 0.
In particular, τ(·, y) is convex.

(ii) τ(·, y) is Lipschitz continuous:

|τ(x, y)− τ(x′, y)| ≤ ‖y‖‖x− x′‖, x, x′ ∈ X.
(iii) ∂xτ(x, y) = −J∗xy, where ∂xτ(x, y) is the subdifferential of τ with respect to

x, and

J∗xy = {j∗ ∈ Jy : τ(x, y) = 〈x,−j∗〉} (4.3)

which is closed convex.

Proof. Property (i) follows trivially. To see property (ii), select j ∈ Jy such that
τ(x, y) = 〈x,−j〉. We then have

τ(x, y) = 〈x− x′,−j〉+ 〈x′,−j〉
≤ ‖y‖‖x− x′‖+ τ(x′, y).

Similarly by interchanging x and x′ we get τ(x′, y) ≤ ‖y‖‖x − x′‖ + τ(x, y), and (ii)
is thus proved.

Finally, property (iii) follows from a more general result (cf. [5, 14]) which states
that if K∗ is a weak∗-compact convex subset of X∗ and h is the support function to
K∗ defined by

h(x) = max{〈x, x∗〉 : x∗ ∈ K∗}, x ∈ X,
then the subdifferential of h is given by

∂h(x) = {x∗ ∈ K∗ : h(x) = 〈x, x∗〉}.
Setting K∗ = −Jy yields (4.3). �

Some properties of ψ are included in the following proposition.
Proposition 4.2. Let X be a real Banach space (not necessarily smooth).

(i) There holds the relation

1

2
(‖x‖ − ‖y‖)2 ≤ ψ(x, y) ≤ 1

2
(‖x‖+ ‖y‖)2, x, y ∈ X.

(ii) For any fixed y ∈ X, ψ(x, y) is continuous and convex in x.
(iii) Given y ∈ X, the subdifferential (with respect to the first argument) of ψy at

x is

∂ψy(x) = Jx− J∗xy,
where J∗xy is given in (4.3).

(iv) If X is strictly convex, then, for each y ∈ X, ψy is strictly convex.
(v) If X is uniformly convex and {xn} and {yn} are bounded sequences in X,

then there holds the relation:

yn − xn → 0 ⇐⇒ ψ(xn, yn)→ 0.
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(vi) If X is uniformly convex, then ψ is locally uniformly convex in x. That is,
for any convex bounded subset K of X, there holds the inequality

ψy(tx+ (1− t)x′) ≤ tψy(x) + (1− t)ψy(x′)− t(1− t)h(‖x− x′‖) (4.4)

for all t ∈ (0, 1) and x, y ∈ K, where h : R+ → R+ is a strictly increasing
continuous function with h(0) = 0 (and independent of y).

Proof. (i) This easily follows from the fact that |τ(x, y)| ≤ ‖x‖ · ‖y‖.
(ii) This is trivial since τ(·, y) is continuous and convex.
(iii) By Lemma 4.1(iii), we have

∂ψy(x) = ∂
1

2
‖x‖2 + ∂τ(x, y) = Jx− J∗xy.

(iv) If X is strictly convex, ‖ · ‖2 is strictly convex, so is ψy(·) for τ(·, y) is convex.
(v) Assume now X is uniformly convex. Assume ψ(xn, yn)→ 0. Let r > 0 be such

that the closed ball Br = {u ∈ X : ‖u‖ ≤ r} contains all the points of {xn}, {yn} and
{xn − yn}. Applying Proposition 2.1(ii), we obtain, for each jn ∈ J(yn),

‖xn‖2 = ‖yn + (xn − yn)‖2

≥ ‖yn‖2 + 2〈xn − yn, jn〉+ g(‖xn − yn‖)
= −‖yn‖2 + 2〈xn, jn〉+ g(‖xn − yn‖).

It then follows from the definition of ψ that

g(‖xn − yn‖) ≤ ‖xn‖+ 2τ(xn,−jn) + ‖yn‖2 ≤ 2ψ(xn, yn)→ 0.

Therefore ‖xn − yn‖ → 0.
Conversely assume ‖xn − yn‖ → 0. That ψ(xn, yn) → 0 now follows from the

following computations:

2ψ(xn, yn) = ‖xn‖2 + 2τ(xn, yn) + ‖yn‖2

= ‖xn‖2 − 2〈xn, jn〉+ ‖yn‖2 for some jn ∈ J(yn)

= ‖xn‖2 − ‖yn‖2 − 2〈xn − yn, jn〉
≤ (‖xn‖ − ‖yn‖)(‖xn‖+ ‖yn‖) + 2‖xn − yn‖‖yn‖
≤ 4r‖xn − yn‖ → 0.

(vi) Take r > 0 so that Br ⊃ K. Since X is uniformly convex, we can apply
Proposition 2.1(i) to get, for x, x′ ∈ K,
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ψy(tx+ (1− t)x′) =
1

2
‖tx+ (1− t)x′‖2 + τ(tx+ (1− t)x′, y) +

1

2
‖y‖2

≤ 1

2
(t‖x‖2 + (1− t)‖x′‖2 − t(1− t)h(‖x− x′‖))

+tτ(x, y) + (1− t)τ(x′, y) +
1

2
‖y‖2

= t

(
1

2
‖x‖2 + τ(x, y) +

1

2
‖y‖2

)
+(1− t)

(
1

2
‖x′‖2 + τ(x′, y) +

1

2
‖y‖2

)
−1

2
t(1− t)h(‖x− x′‖)

= tψy(x) + (1− t)ψy(x′)− t(1− t)h̃(‖x− x′‖),

where h̃ = (1/2)h. �

If X is a reflexive strictly convex Banach space, then, for any given y ∈ X, ψy
is a strictly convex continuous function; moreover, it is also coercive: ψy(x) → ∞
whenever ‖x‖ → ∞. Therefore, if C is a nonempty closed convex subset of X, then
there exists a unique point z ∈ C with the property:

ψ(z, y) = min{ψ(x, y) : x ∈ C}. (4.5)

This leads to the following definition.
Definition 4.3. Let X be a reflexive strictly convex Banach space and let C be a
nonempty closed convex subset of X. Define a map QC : X → C by setting QCy = z,
where z ∈ C is the unique point in C that solves the minimization (4.5). Hence, QCy
is the only point in C satisfying the property

ψ(QCy, y) = min{ψ(x, y) : x ∈ C}, y ∈ X.
This operator QC is referred to as the generalized projection from X onto C.
Lemma 4.4. Let X be a Banach space and C be a weakly compact convex subset of
X. Let g be a continuous convex function on C. Given z ∈ C. Then z is a minimizer
of g over C, i.e.,

g(z) = min{g(x) : x ∈ C} (4.6)

if and only if the following optimality condition holds:

max
ξ∈∂g(z)

〈v − z, ξ〉 ≥ 0, ∀v ∈ C. (4.7)

Proof. Denote by g′+(z;u) the (right) directional derivative at z along direction u.
Namely,

g′+(z;u) = lim
t↓0

g(z + tu)− g(z)

t
.

Note that (cf. [14])

g′+(z;u) = max
ξ∈∂g(z)

〈u, ξ〉.



PROXIMAL POINT ALGORITHM 117

Since g is convex, (4.6) holds if and only if, for any v ∈ C,

0 ≤ lim
t↓0

g(z + t(v − z))− g(z)

t

= g′+(z; v − z)
= max

ξ∈∂g(z)
〈v − z, ξ〉.

�

A characterization for the generalized projection QCy is now ready as follows.
Proposition 4.5. Let X be a real reflexive strictly convex Banach space and C be a
closed convex subset of X. Given y ∈ X and z ∈ C. Then z = QCy if and only if
there holds the optimality condition:

max
ξ∈Jz−J∗z y

〈v − z, ξ〉 ≥ 0, ∀v ∈ C. (4.8)

Proof. Fix y ∈ X. Since the subdifferential of ψy(z) = 1
2‖z‖

2 + τ(z, y) + 1
2‖y‖

2 is

given by ∂ψy(z) = ∂ 1
2‖z‖

2 + ∂τ(z, y) = Jz − J∗z y, we can apply Lemma 4.1 to get
that z = QCy if and only if there holds, for every v ∈ C,

0 ≤ max
ξ∈∂ψy(z)

〈v − z, ξ〉

= max
ξ∈Jz−J∗z y

〈v − z, ξ〉.

This is (4.8). �

The lemma below gives us convenience when proving strong convergence of se-
quences in a uniformly convex Banach space.
Lemma 4.6. Let X be a real uniformly convex Banach space and K be a nonempty
closed convex subset of X. Let {xn} be a bounded sequence in X and u ∈ X. Let
q = QKu be the generalized projection of u onto K. Assume that {xn} satisfies the
conditions

(i) ωw(xn) ⊂ K and
(ii) ψ(xn, u) ≤ ψ(q, u) for all n.

Then xn → q.

Proof. Since X is reflexive and {xn} is bounded, ωw(xn) is nonempty. Noticing the
weak lower semi-continuity of ψ(·, u), we derive from condition (ii) that

ψ(v, u) ≤ ψ(q, u) ∀v ∈ ωw(xn).

However, since ωw(xn) ⊂ K and q = QKu, we must have v = q for all v ∈ ωw(xn)
since q is the unique minimizer of ψ(·, u) over K. Thus ωw(xn) = {q} and xn ⇀ q.

To see xn → q, we observe that the inequality ψ(xn, u) ≤ ψ(q, u) in condition (ii)
is actually equivalent to the following one

‖xn‖2 ≤ ‖q‖2 + 2[τ(q, u)− τ(xn, u)]. (4.9)
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Since τ(·, u) is weakly lower semicontinuous, the fact that xn ⇀ q implies that
τ(q, u) ≤ lim infn→∞ τ(xn, u). It then follows from (4.9) that

lim sup
n→∞

‖xn‖2 ≤ ‖q‖2 + 2[τ(q, u)− lim inf
n→∞

τ(xn, u)]

≤ ‖q‖2.

Consequently, ‖xn‖ → ‖q‖, and the uniform convexity of X implies that xn → q. �

4.2. The algorithm and its convergence. Throughout this subsection, X is a real
uniformly convex Banach space and T is a maximal monotone operator with domain
D(T ) in X and range R(T ) in X∗, respectively. Assume S := T−1(0) 6= ∅.

We now introduce our algorithm which generates a sequence {xn} in the following
manner.

(i) The initial guess x0 ∈ X is arbitrary.
(ii) Once xn has been defined, define two half spaces Wn and Hn by

Wn =

z ∈ X : max
ξ0∈J∗xnx0
ξn∈Jxn

〈xn − z, ξ0 − ξn〉 ≥ 0

 (4.10)

and

Hn = {z ∈ X : 〈z − yn, vn〉 ≤ 0}, (4.11)

where (yn, vn) satisfies vn ∈ Tyn. Then define xn+1 as the generalized pro-
jection of x0 onto the intersection of Wn and Hn. That is,

xn+1 = QWn∩Hnx0. (4.12)

Observe thatHn is well-defined. Indeed, since T is maximal monotone, R(J+rT ) =
X∗ for all r > 0. In particular, Jxn ⊂ R(J + rnT ) wherever rn > 0. Thus, for any
ξn ∈ Jxn, there is yn ∈ D(T ) such that ξn ∈ Jyn + rnTyn. Take ηn ∈ Jyn such that

vn :=
1

rn
(ξn − ηn) ∈ Tyn. (4.13)

With this pair of (vn, yn) we can define Hn.
Lemma 4.7. For each n ≥ 0, T−10 ⊂Wn ∩Hn.

Proof. That Hn ⊃ T−10 is easily seen. Indeed, for x ∈ T−10, 0 ∈ Tx. The mono-
tonicity of T then implies 〈yn − x, vn〉 ≥ 0. This shows that x ∈ Hn. To prove that
Wn ⊃ T−10, we apply induction on n ≥ 0.

For n = 0, we have (noting J∗x0
x0 = Jx0)

W0 =

z ∈ X : max
ξ0∈Jx0
ξ′0∈Jx0

〈x0 − z, ξ0 − ξ′0〉 ≥ 0

 = X ⊃ T−10.

Assume now Wn ⊃ T−10 and we next prove that Wn+1 ⊃ T−10. Note that we now
have Wn ∩Hn ⊃ T−10 and thus xn+1 is well-defined as the generalized projection of
x0 onto Wn ∩Hn; namely, xn+1 is given by (4.12).
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Therefore, by Proposition 4.1, we have

max
ξ0∈J∗xn+1

x0

ξn+1∈Jxn+1

〈xn+1 − v, ξ0 − ξn+1〉 ≥ 0, v ∈Wn ∩Hn. (4.14)

However T−10 ⊂ Wn ∩ Hn, we see that (4.14) holds in particular for all v ∈ T−10.
Now Wn+1 ⊃ T−10 follows from the definition (4.10) of Wn+1. �

Lemma 4.8. The sequence {xn} is bounded.

Proof. Take z ∈ T−10 ⊂Wn. It follows that

max
ξ0∈J∗xnx0
ξn∈Jxn

〈xn − z, ξ0 − ξn〉 ≥ 0.

This implies that

‖xn‖2 ≤ max
ξ0∈J∗xnx0
ξn∈Jxn

(〈xn, ξ0〉+ 〈z, ξn − ξ0〉)

≤ max
ξ0∈J∗xnx0
ξn∈Jxn

(‖xn‖‖ξ0‖+ ‖z‖‖ξn‖+ ‖z‖‖ξ0‖)

≤ ‖xn‖(‖x0‖+ ‖z‖) + ‖x0‖‖z‖.

This immediately implies the boundedness of {xn}. �

Lemma 4.9. The sequence {ψ(xn, x0)} is increasing and limn→∞ ψ(xn, x0) exists.

Proof. By definition of Wn, it is immediately clear that xn = QWn
x0. Hence,

ψ(xn, x0) ≤ ψ(x, x0), x ∈Wn.

In particular, since xn+1 = QWn∩Hn ∈Wn ∩Hn ⊂Wn, we get

ψ(xn, x0) ≤ ψ(xn+1, x0).

Moreover, since {ψ(xn, x0)} is bounded by Lemma 4.2, limn→∞ ψ(xn, x0) exists. �

Lemma 4.10. The sequence {xn} is asymptotically regular; namely, limn→∞ ‖xn+1−
xn‖ = 0.

Proof. By Proposition 4.1(vi), we see that the function ψx0 is locally uniformly convex
in the sense that for any bounded set K, there exists a continuous strictly increasing
function h : R+ → R+, h(0) = 0, such that

ψx0(λu+ (1− λ)v) ≤ λψx0(u) + (1− λ)ψx0(v)− λ(1− λ)h(‖u− v‖) (4.15)

for all λ ∈ (0, 1) and u, v ∈ K. Since {xn} is bounded, we may assume that {xn} ⊂ K.
Noting that xn is the minimizer of ψx0

on Wn and xn+1 ∈Wn, we derive from (4.15)
that

ψx0
(xn) ≤ ψx0

(
xn + xn+1

2

)
≤ 1

2
ψx0

(xn) +
1

2
ψx0

(xn+1)− 1

4
h(‖xn − xn+1‖).
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It turns out by Lemma 4.2 that

h(‖xn − xn+1‖) ≤ 2[ψx0(xn+1)− ψx0(xn)]→ 0.

This implies that ‖xn − xn+1‖ → 0. �

Now we are in a position to state and prove the strong convergence of our modified
PPA (4.10)-(4.12).
Theorem 4.11. Suppose X is a uniformly convex Banach space. Let T be a maximal
monotone operator in X such that S := T−10 is nonempty, and let {xn} be the
sequence generated by the modified PPA (4.10)-(4.12). Assume that the sequence
{rn} of parameters tends to infinity as n→∞. Then {xn} converges in norm to the
generalized projection QSx0 of x0 onto the solution set S.

Proof. In the definition of vn, we chose ξn ∈ Jxn in such a way that

max
ξ∈Jxn

〈yn,−ξ〉 = 〈yn,−ξn〉.

Recall ηn ∈ Jyn which is the subdifferential of the convex function 1
2‖y‖

2 at y = yn.
We can therefore use the subdifferential inequality to get

‖QHnxn‖2 ≥ ‖yn‖2 + 2〈QHnxn − yn, ηn〉.

It follows that

2[ψ(QHnxn, xn)− ψ(yn, xn)]

= ‖QHnxn‖2 + 2τ(QHnxn, xn) + ‖xn‖2 − ‖yn‖2 − 2τ(yn, xn)− ‖xn‖2

= ‖QHnxn‖2 − ‖yn‖2 + 2[τ(QHnxn, xn)− 2τ(yn, xn)]

= ‖QHnxn‖2 − ‖yn‖2 + 2

[
max

ξ∈J(−xn)
〈QHnxn, ξ〉 − max

ξ∈J(−xn)
〈yn, ξ〉

]
≥ 2〈QHnxn − yn, ηn〉+ 2

[
max
ξ∈Jxn

〈QHnxn,−ξ〉+ 〈yn, ξn〉
]

≥ 2〈QHnxn − yn, ηn〉+ 2[〈QHnxn,−ξn〉 − 〈yn,−ξn〉]
= 2〈QHnxn − yn, ηn − ξn〉
= 2rn〈yn −QHnxn, vn〉
≥ 0 since QHnxn ∈ Hn and by (4.11).

Hence

ψ(QHnxn, xn) ≥ ψ(yn, xn). (4.16)

Noticing that xn+1 ∈ Hn, we get from (4.16)

ψ(yn, xn) ≤ ψ(QHnxn, xn) ≤ ψ(xn+1, xn)→ 0.

It turns out from Proposition 4.1(v) that

‖yn − xn‖ → 0. (4.17)

We will use Lemma 4.1 to prove the strong convergence of {xn}. To achieve this,
we first prove that ωw(xn) ⊂ S = T−10. So assume x̂ ∈ ωw(xn) and xni ⇀ x̂, where
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{xni} is a subsequence of {xn}. Let ηn ∈ Jyn satisfy (4.13). Since ‖ξn‖ = ‖xn‖ and
‖ηn‖ = ‖yn‖ are bounded, we get vn → 0 in norm as rn →∞. Now from the relation

vnj ∈ Tynj
and the fact that ynj ⇀ x̂ due to (4.17), the maximal monotonicity of T ensures that

0 ∈ T x̂. Namely, x̂ ∈ T−10 = S. Therefore, ωw(xn) ⊂ S.
We observe that condition (ii) of Lemma 4.1 holds, with K = S, u = x0 and

q = QSx0. As a matter of fact, since xn+1 = QWn∩Hnx0, we have

ψ(xn+1, x0) = ψ(QWn∩Hnx0, x0) = min
z∈Wn∩Hn

ψ(z, x0) ≤ ψ(q, x0).

Therefore, an application of Lemma 4.1 yields xn → QSx0. �
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