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1. Introduction

Fractional calculus is a field of mathematical analysis, which deals with the inves-
tigation and applications of integrals and derivatives of an arbitrary order. In fact,
fractional calculus has numerous applications in various disciplines of science, engi-
neering, economy, and other fields; see for instance, the monographs of Kilbas et al.
[7], Podlubny [15], and Samko et al.[16] are commonly cited for the theory of frac-
tional derivatives and integral and applications to differential equations of fractional
order.

Recently, boundary value problems of fractional-order differential equations have
been extensively investigated and a variety of results on the topic has been established.
A great deal of work on fractional boundary value problems involves local/nonlocal
boundary conditions. Much attention has been focused on the study of the existence
and multiplicity of solutions or positive solutions for boundary value problems. For
more details, we refer the reader to [2], [3], [4], [5], [6], [12], [14] and the references
therein. However, to our knowledge, it is rare for work to be done on solutions
of fractional differential equations on the half-line (see [1], [8], [9], [10], [11], [13],
[17], [18], [19]). For example, Su and Zhang in [17] studied the following fractional
boundary value problem{

Dα
0+u(t) = f(t, u(t), Dα−1

0+ u(t)), t ∈ J := [0,+∞),

u(0) = 0, Dα−1
0+ u(+∞) = u∞, u∞ ∈ R,
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where 1 < α ≤ 2, f ∈ C[J × R × R,R], Dα
0+ and Dα−1

0+ are the standard Riemann-

Liouville fractional derivatives and Dα−1
0+ u(∞) := limt→+∞Dα−1

0+ u(t).
In [8], Liang and Zhang considered the existence of three positive solutions for the

following m-point fractional boundary value problem on an infinite interval{
Dα

0+u(t) + a(t)f(u(t)) = 0, 0 < t < +∞,
u(0) = u′(0) = 0, Dα−1u(+∞) =

∑m−2
i=1 βiu(ξi),

where 2 < α < 3, Dα
0+ is the standard Riemann-Liouville fractional derivative,

0 < ξ1 < ξ2 < ... < ξm−2 < +∞, βi ≥ 0 (i = 1, 2, ...,m− 2) satisfying

0 <

m−2∑
i=1

βiξ
α−1
i < Γ(α).

The method involves applications of a fixed point theorem due to Leggett-Williams.
In [11], Liu and Jia investigated the following nonlocal boundary value problem for

fractional differential equation of the form
cDα

0+ [p(t)u′(t)] + q(t)f(t, u(t)) = 0, t > 0,
p(0)u′(0) = 0,
limt→∞ u(t) =

∫∞
0
g(s)u(s)ds,

where cDα
0+ is the standard Caputo fractional derivative, 0 < α < 1 is a constant,

f , g, p and q are given functions. Applying the fixed point theory and the upper
and lower solutions method, a new result on the existence of at least three distinct
nonnegative solutions under some conditions was established.

In [1], Agarwal et al. discussed the existence of solutions for the boundary value
problems (BVP for short) for fractional order differential equations of the form{

Dαy(t) = f(t, y(t)), for each t ∈ J := [0,+∞), 1 < α ≤ 2,
y(0) = 0, y is bounded on [0,+∞),

where Dα is the Riemann-Liouville fractional derivative, f : J×R→ R is a given func-
tion. Results are based on the nonlinear alternative of Leray-Schauder type combined
with the diagonalization method.

In this paper, we are concerned with the following boundary value problem{
Dα

0+x(t) + f(t, x(t)) = 0, t ∈ (0,+∞),
limt→0 t

2−αx(t) = limt→∞Dα−1
0+ x(t) =

∫∞
0
g(s)x(s)ds,

(1.1)

where 1 < α < 2, Dα
0+ is the standard Riemann-Liouville fractional derivative of order

α.
We assume that the following conditions hold:

(H1) f ∈ C[(0,+∞)× [0,+∞), [0,+∞)], f may be singular at t = 0 and f(t, 0) 6≡ 0
on any subinterval of (0,+∞);

(H2) g ∈ L1([0,+∞)) and∫ ∞
0

g(s)[
sα−1

Γ(α)
+ sα−2]ds < 1.
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Our goal is to establish the existence results of unbounded (positive) solutions for
the fractional boundary value problem on the half-line. By applying the monotone
iterative technique, the existence of positive solutions under some conditions was es-
tablished and successive iterative schemes for approximating solutions were obtained.
Here, we do not require the existence of lower and upper solutions.

2. Preliminaries

In this section, we give some basic definitions and lemmas which are useful for the
presentation of our main result.
Definition 2.1. [7, 15] The Riemann Liouville fractional integral of order α ∈ R+

for a function f : (0,∞)→ R is defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right hand side is pointwise defined on (0,+∞).
Definition 2.2. [7, 15] The Riemann-Liouville fractional derivative of order α > 0
for a function f : (0,∞)→ R is defined by

Dα
0+f(t) =

( d
dt

)n
In−α0+ f(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side is defined pointwise.
Lemma 2.3. [7] The equality Dγ

0+I
γ
0+f(t) = f(t) with γ > 0 holds for f ∈ L1(0, 1).

Lemma 2.4. [7] Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional
differential equation

Dα
0+u = 0

has a unique solution u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, . . . , n,

where n is the smallest integer greater than or equal to α.
Lemma 2.5. [7] Let u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α
(α > 0) that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 1, . . . , n, where n is the smallest integer greater than or equal to
α.
Lemma 2.6. [7] Let α > 0 then

(i) If µ > −1, µ 6= α− i with i = 1, 2, ..., [α] + 1, t > 0 then

Dα
0+tµ =

Γ(µ+ 1)

Γ(µ− α+ 1)
tµ−α.

(ii) For i = 1, 2, ..., [α] + 1, we have Dα
0+tα−i = 0.

Let C(0,+∞) be the set of all continuous functions on (0,+∞). Choose σ > −1 and

X = {x ∈ C(0,+∞) :
t2−α

1 + tσ+2
x(t) is bounded on (0,+∞)}.
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For x ∈ X, define the norm by

||x|| = sup
t∈(0,+∞)

t2−α

1 + tσ+2
|x(t)|.

It is easy to show that X is a real Banach space. Also we define the cone P ⊂ X as
follows:

P = {x ∈ X : x(t) ≥ 0, t ∈ (0,+∞)}.
For the sake of convenience, let us set

L =
1

ψΓ(α)

(
1 +

∫ ∞
0

tα−1g(t)dt
)
, N =

2LΓ(σ1 + 1)

kσ1+1
,

ψ = 1−
∫ ∞

0

g(s)
(sα−1

Γ(α)
+ sα−2

)
ds.

Lemma 2.7. Suppose that h : (0,+∞)→ R is a given function satisfying that there
exist numbers k,M > 0 and σ > −1 with |h(t)| ≤Mtσe−kt. Then x ∈ X is a solution
of the problem{

Dα
0+x(t) + h(t) = 0, t ∈ (0,+∞),

limt→0 t
2−αx(t) = limt→∞Dα−1

0+ x(t) =
∫∞

0
g(s)x(s)ds

(2.1)

if and only if x ∈ X and

x(t) =

∫ ∞
0

G(t, s)h(s)ds.

Here,

G(t, s) = G0(t, s) +G1(t, s), (2.2)

where

G0(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ +∞,
tα−1, 0 ≤ t ≤ s ≤ +∞,

and

G1(t, s) =
[ tα−1

Γ(α)
+ tα−2

] 1

ψ

∫ ∞
0

G0(t, s)g(t)dt.

Obviously, G(t, s) is continuous and G(t, s) ≥ 0 for (t, s) ∈ (0,+∞)× (0,+∞).
Proof. We may apply Lemma 2.5 to reduce BVP (2.1) to an equivalent integral
equation

x(t) = −Iαh(t)− c1tα−1 − c2tα−2, (2.3)

where c1 and c2 are arbitrary constants. Since∣∣∣t2−α ∫ t

0

(t− s)α−1h(s)ds
∣∣∣ ≤ tσ+2M

∫ 1

0

(1− τ)α−1τσdτ → 0, t→ 0, (2.4)

and from (2.3), we have

t2−αx(t) = −t2−αIαh(t)− c1t− c2,
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together with the given boundary condition in (2.1), we find that

c2 = −
∫ ∞

0

g(s)x(s)ds.

Since ∣∣∣ ∫ ∞
0

h(s)ds
∣∣∣ ≤ M

kσ+1

∫ ∞
0

τσe−τdτ =
M

kσ+1
Γ(σ + 1), (2.5)

and

Dα−1
0+ x(t) = −I1h(t)− c1Γ(α).

Then, boundary condition in (2.1) implies c1 = − 1
Γ(α)

[
I1h(∞) +

∫∞
0
g(s)x(s)ds

]
.

Substituting the values of c1 and c2 into (2.3) gives

x(t) = −Iαh(t) +
[ tα−1

Γ(α)
+ tα−2

] ∫ ∞
0

g(s)x(s)ds+
tα−1

Γ(α)
I1h(∞), (2.6)

where∫ ∞
0

g(s)x(s)ds =
1

1−
∫ ∞

0

g(s)
[sα−1

Γ(α)
+ sα−2

]
ds

(
−
∫ ∞

0

g(s)Iαh(s)ds

+

∫ ∞
0

h(τ)dτ

∫ ∞
0

g(s)sα−1

Γ(α)
ds
)
.

(2.7)

Substituting (2.7) into (2.6), we have

x(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+
tα−1

Γ(α)

∫ ∞
0

h(s)ds

−
[ tα−1

Γ(α)
+ tα−2

] 1

ψ

1

Γ(α)

∫ ∞
0

h(s)

∫ ∞
s

g(t)(t− s)α−1dtds

+
[ tα−1

Γ(α)
+ tα−2

] 1

ψ

∫ ∞
0

h(s)ds

∫ ∞
0

g(s)
sα−1

Γ(α)
ds

=

∫ ∞
0

G(t, s)h(s)ds,

(2.8)

where G(t, s) is defined by (2.2). It is easy to show that G(t, s) ≥ 0 for (t, s) ∈
(0,+∞)×(0,+∞). Now, we prove x ∈ X. From (2.8) together with |h(t)| ≤Mtσe−kt,
we know that x ∈ C(0,+∞). Observe that

t2−α

1 + tσ+2
|x(t)| =

∣∣∣ ∫ ∞
0

t2−α

1 + tσ+2
G(t, s)h(s)ds

∣∣∣.
One see that

t2−α

1 + tσ+2
G(t, s) =

t2−α

1 + tσ+2
G0(t, s) +

t2−α

1 + tσ+2
G1(t, s).

Then

t2−α

1 + tσ+2
G0(t, s) ≤ t

Γ(α)(1 + tσ+2)
≤ 1

Γ(α)
,
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and

t2−α

1 + tσ+2
G1(t, s) ≤

[ t

Γ(α)(1 + tσ+2)
+

1

1 + tσ+2

] 1

ψ

∫ ∞
0

G0(t, s)g(t)dt

≤
[ 1

Γ(α)
+ 1
] 1

ψ

(∫ s

0

tα−1

Γ(α)
g(t)dt+

∫ ∞
s

[tα−1 − (t− s)α−1]

Γ(α)
g(t)dt

)
≤
[ 1

Γ(α)
+ 1
] 1

ψ

∫ ∞
0

tα−1

Γ(α)
g(t)dt.

Consequently,

t2−α

1 + tσ+2
G(t, s) ≤ 1

Γ(α)
+
[ 1

Γ(α)
+ 1
] 1

ψ

∫ ∞
0

tα−1

Γ(α)
g(t)dt

≤ 1

ψΓ(α)

(
1 +

∫ ∞
0

tα−1g(t)dt
)
.

(2.9)

So, we obtain

t2−α

1 + tσ+2
|x(t)| =

∣∣∣ ∫ ∞
0

t2−α

1 + tσ+2
G(t, s)h(s)ds

∣∣∣
≤ L

∣∣∣ ∫ ∞
0

h(s)ds
∣∣∣

≤ LM

kσ+1
Γ(σ + 1).

Hence, x ∈ X. Conversely, if x ∈ X satisfies (2.8), then we can show easily that
x ∈ X and satisfies (2.1). The proof is completed. �

Let us define an operator A on P by

(Ax)(t) =

∫ ∞
0

G(t, s)f(s, x(s))ds.

Observe that the BVP (1.1) has a solution if and only if the operator A has a fixed
point.
Lemma 2.8. Assume that (H1) and (H2) hold and f satisfies that

• for each r > 0 there exist constants k,Mr > 0 and σ1 ∈ (−1, σ) such that

0 ≤ f(t,
1 + tσ+2

t2−α
x) ≤Mrt

σ1e−kt for all t ∈ (0,+∞), |x| ≤ r.

Then A : P → P is well defined and completely continuous.
Proof. We divide the proof into several steps.
Step 1. We prove that A : P → P is well defined and maps bounded sets into bounded
sets. For x ∈ P , we find x(t) ≥ 0 for all t ∈ (0,+∞) and there exists r ≥ 0 such that

||x|| = sup
t∈(0,+∞)

t2−α

1 + tσ+2
|x(t)| ≤ r.

Then there exist constants σ1 ∈ (−1, σ) and Mr > 0 such that

0 ≤ f(t,
1 + tσ+2

t2−α
t2−α

1 + tσ+2
x) ≤Mrt

σ1e−kt for all t ∈ (0,+∞), ||x|| ≤ r.



RIEMANN LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS 99

Since f is nonnegative together with Lemma 2.7, we know that Ax(t) ≥ 0 for all
t ∈ (0,+∞). From the definition of A, we have Ax ∈ C(0,+∞).
On the other hand, from (2.9)

||(Ax)|| = sup
t∈(0,+∞)

t2−α

1 + tσ+2

∣∣∣ ∫ ∞
0

G(t, s)f(s, x(s))ds
∣∣∣

≤ L
∫ ∞

0

f(s, x(s))ds

≤ LMr

∫ ∞
0

sσ1e−ksds < +∞.

So Ax ∈ P and A : P → P is well defined. Similarly, it is easy to show that A maps
bounded sets into bounded sets.
Step 2. Now we show that the operator A is continuous.
We consider {xn}∞n=1 ⊂ P such that xn → x as n→∞. Then there exists r > 0 such
that maxn∈N\{0}{||xn||, ||x||} ≤ r together with

0 ≤ f(t,
1 + tσ+2

t2−α
t2−α

1 + tσ+2
x) ≤Mrt

σ1e−kt for all t ∈ (0,+∞).

Thus, ∣∣∣ ∫ +∞

0

f(s, xn(s))ds−
∫ +∞

0

f(s, x(s))ds
∣∣∣ ≤ 2Mr

∫ ∞
0

sσ1e−ksds < +∞.

By the Lebesgue dominated convergence theorem, we have∣∣∣ ∫ +∞

0

f(s, xn(s))ds−
∫ +∞

0

f(s, x(s))ds
∣∣∣→ 0, n→ +∞.

Therefore, by (2.9), we have

||(Axn)− (Ax)||

= sup
t∈(0,+∞)

t2−α

1 + tσ+2

∣∣∣ ∫ ∞
0

G(t, s)f(s, xn(s))ds−
∫ ∞

0

G(t, s)f(s, x(s))ds
∣∣∣

≤ L
∣∣∣ ∫ ∞

0

f(s, xn(s))ds−
∫ ∞

0

f(s, x(s))ds
∣∣∣

→ 0, n→ +∞.
Hence A is a continuous operator. Recall that Ω ⊂ X is relatively compact if

(i) it is bounded,

(ii)
t2−α

1 + tσ+2
Ω is equicontinuous on any closed subinterval [a, b] of (0,+∞),

(iii)
t2−α

1 + tσ+2
Ω is equiconvergent at t = 0 and t =∞.

Step 3. Let Ω = {x ∈ P : ||x|| ≤ r} be a bounded set in P . We prove that A is an
equicontinuous operator on any closed subinterval of (0,+∞). For x ∈ Ω, we have

||x|| = sup
t∈(0,+∞)

t2−α

1 + tσ+2
|x(t)| ≤ r.
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Then there exist constants σ1 ∈ (−1, σ) and Mr > 0 such that

0 ≤ f(t,
1 + tσ+2

t2−α
t2−α

1 + tσ+2
x) ≤Mrt

σ1e−kt for all t ∈ (0,+∞), ||x|| ≤ r.

For [a, b] ⊂ (0,+∞), t1, t2 ∈ [a, b] with t1 < t2, we can get

∣∣∣ t2−α2

1 + tσ+2
2

Ax(t2)− t2−α1

1 + tσ+2
1

Ax(t1)
∣∣∣

≤Mr

∫ +∞

0

∣∣∣ t2−α2

1 + tσ+2
2

G(t2, s)−
t2−α1

1 + tσ+2
1

G(t1, s)
∣∣∣sσ1e−ksds

≤Mr

∫ +∞

0

∣∣∣ t2−α2

1 + tσ+2
2

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t1, s)
∣∣∣sσ1e−ksds

+Mr

∫ +∞

0

∣∣∣ t2−α2

1 + tσ+2
2

G1(t2, s)−
t2−α1

1 + tσ+2
1

G1(t1, s)
∣∣∣sσ1e−ksds

≤Mr

∫ +∞

0

∣∣∣ t2−α1

1 + tσ+2
1

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t1, s)
∣∣∣sσ1e−ksds

+Mr

∫ +∞

0

∣∣∣ t2−α2

1 + tσ+2
2

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t2, s)
∣∣∣sσ1e−ksds

+Mr
1

ψ

∫ ∞
0

G0(t, s)g(t)dt

×
∣∣( t2

Γ(α)(1 + tσ+2
2 )

+
1

1 + tσ+2
2

)
−
( t1

Γ(α)(1 + tσ+2
1 )

+
1

1 + tσ+2
1

)∣∣
×
∫ +∞

0

sσ1e−ksds.

On the other hand

∫ +∞

0

∣∣∣ t2−α1

1 + tσ+2
1

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t1, s)
∣∣∣sσ1e−ksds

≤
(∫ t1

0

+

∫ t2

t1

+

∫ +∞

t2

)∣∣∣ t2−α1

1 + tσ+2
1

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t1, s)
∣∣∣sσ1e−ksds

=

∫ t1

0

t2−α1 |(tα−1
2 − tα−1

1 ) + (t1 − s)α−1 − (t2 − s)α−1|
1 + tσ+2

1

sσ1e−ksds

+

∫ t2

t1

t2−α1 |(tα−1
2 − tα−1

1 )− (t2 − s)α−1|
1 + tσ+2

1

sσ1e−ksds

+

∫ +∞

t2

t2−α1 (tα−1
2 − tα−1

1 )

1 + tσ+2
1

sσ1e−ksds
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≤ t2−α1 (tα−1
2 − tα−1

1 )

1 + tσ+2
1

∫ t1

0

sσ1e−ksds

+

∫ t1

0

t2−α1 |(t1 − s)α−1 − (t2 − s)α−1|
1 + tσ+2

1

sσ1e−ksds

+
t2−α1 (tα−1

2 − tα−1
1 )

1 + tσ+2
1

∫ t2

t1

sσ1e−ksds+

∫ t2

t1

t2−α1 (1− s)α−1

1 + tσ+2
1

sσ1e−ksds

+
t2−α1 (tα−1

2 − tα−1
1 )

1 + tσ+2
1

∫ +∞

t2

sσ1e−ksds

≤ t2−α1 (tα−1
2 − tα−1

1 )

1 + tσ+2
1

∫ t1

0

sσ1e−ksds+
t2−α1 (t2 − t1)α−1

1 + tσ+2
1

∫ t1

0

sσ1e−ksds

+
t2−α1 (tα−1

2 − tα−1
1 )

1 + tσ+2
1

∫ t2

t1

sσ1e−ksds+
t2−α1

1 + tσ+2
1

∫ t2

t1

(1− s)α−1sσ1e−ksds

+
t2−α1 (tα−1

2 − tα−1
1 )

1 + tσ+2
1

∫ +∞

t2

sσ1e−ksds.

Hence, ∫ +∞

0

∣∣∣ t2−α1

1 + tσ+2
1

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t1, s)
∣∣∣sσ1e−ksds→ 0, t1 → t2,

and ∫ +∞

0

∣∣∣ t2−α2

1 + tσ+2
2

G0(t2, s)−
t2−α1

1 + tσ+2
1

G0(t2, s)
∣∣∣sσ1e−ksds→ 0, t1 → t2.

Thus, we can get ∣∣ t2−α2

1 + tσ+2
2

Ax(t2)− t2−α1

1 + tσ+2
1

Ax(t1)
∣∣→ 0, t1 → t2.

Consequently, AΩ is equicontinuous on (0,+∞).
Next, we show that operator A : P → P is an equiconvergent operator at infinity.

For each x ∈ Ω, we have∫ +∞

0

f(s, x(s))ds ≤Mr

∫ +∞

0

sσ1e−ksds < +∞,

and∣∣∣ t2−α

1 + tσ+2
Ax(t)

∣∣∣≤ 1

Γ(α)

tσ1+2

1 + tσ+2
Mr

∫ 1

0

(1−τ)α−1τσ1dτ+
1

Γ(α)

t

1 + tσ+2

Mr

kσ1+1
Γ(σ1+1)

+
( 1

Γ(α)

t

1 + tσ+2
+

1

1 + tσ+2

) 1

ψ

∫ ∞
0

g(s)
sα−1

Γ(α)
ds

Mr

kσ1+1
Γ(σ1 + 1).

The right-hand side of the above inequality tends to 0 uniformly as t → +∞. Thus
AΩ is equiconvergent at infinity.



102 TUGBA SENLIK CERDIK, FULYA YORUK DEREN AND NUKET AYKUT HAMAL

Finally, we prove that operator A : P → P is an equiconvergent operator at 0.∣∣∣ t2−α

1 + tσ+2
Ax(t)− 1

ψ

∫ ∞
0

( ∫ ∞
0

G0(t, s)g(t)dt
)
f(s, x(s))ds

∣∣∣
≤ 1

Γ(α)

tσ1+2

1 + tσ+2
Mr

∫ 1

0

(1− τ)α−1τσ1dτ +
1

Γ(α)

t

1 + tσ+2

Mr

kσ1+1
Γ(σ1 + 1)

+
∣∣∣ 1

Γ(α)

t

1 + tσ+2
+

1

1 + tσ+2
− 1
∣∣∣ 1

ψ

∫ ∞
0

( ∫ ∞
0

G0(t, s)g(t)dt
)
f(s, x(s))ds

≤ 1

Γ(α)

tσ1+2

1 + tσ+2
Mr

∫ 1

0

(1− τ)α−1τσ1dτ +
1

Γ(α)

t

1 + tσ+2

Mr

kσ1+1
Γ(σ1 + 1)

+
∣∣∣ 1

Γ(α)

t

1 + tσ+2
+

1

1 + tσ+2
− 1
∣∣∣ 1

ψ

∫ ∞
0

g(s)
sα−1

Γ(α)
ds

Mr

kσ1+1
Γ(σ1 + 1).

The right-hand side of the above inequality tends to 0 uniformly as t→ 0. Then AΩ
is equiconvergent at 0.

Thus, A is completely continuous. The proof is completed. �

3. Main result

In this section, we deal with the existence of positive solutions for the problem (1.1).
Theorem 3.1. Assume that (H1) and (H2) hold, and there exist σ1 ∈ (−1, σ) and
d > 0, k > 0 satisfying the following conditions:

(H3) f(t, u0) ≤ f(t, u0), for any t ∈ (0,+∞), 0 ≤ u0 ≤ u0;

(H4) f
(
t,

1 + tσ+2

t2−α
u0

)
≤ d

N
tσ1e−kt, (t, u0) ∈ (0,+∞)× [0, d].

Then the BVP (1.1) has maximal and minimal positive solutions w∗ and v∗ on
(0,+∞), such that

0 < ||w∗|| ≤ d, 0 < ||v∗|| ≤ d.

Moreover, for initial values w0(t) = d[ t
α−1+tα−2

2 ], v0(t) = 0, t ∈ (0,+∞), define the
iterative sequences wn and vn by

wn = Awn−1 = Anw0, vn = Avn−1 = Anv0

then

lim
n→∞

wn = lim
n→∞

Anw0 = w∗, lim
n→∞

vn = lim
n→∞

Anv0 = v∗.

Proof. By Lemma 2.8, A : P → P is completely continuous. For any x1, x2 ∈ P
with x1 ≤ x2, from the definition of A and (H3), we know that Ax1 ≤ Ax2. Let
Pd = {x ∈ P : ||x|| ≤ d}. Next, we show that A : Pd → Pd. If x ∈ Pd, then ||x|| ≤ d.
Hence

0 ≤ t2−αx(t)

1 + tσ+2
≤ d for t ∈ (0,+∞).

By (H4), we know that

f
(
t,

1 + tσ+2

t2−α
u0

)
≤ d

N
tσ1e−kt, (t, u0) ∈ (0,+∞)× [0, d].
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By Lemma 2.7, (2.9) and (H4), we have

||(Ax)|| = sup
t∈(0,+∞)

t2−α

1 + tσ+2

∣∣∣ ∫ ∞
0

G(t, s)f(s, x(s))ds
∣∣∣ ≤ L∫ ∞

0

f(s, x(s))ds

≤ dL

N

∫ ∞
0

sσ1e−ksds =
dL

N

Γ(σ1 + 1)

kσ1+1
≤ d.

Hence, we prove that A : Pd → Pd. Let

w0(t) = d

[
tα−1 + tα−2

2

]
, t ∈ (0,+∞),

then w0(t) ∈ Pd. Now, we denote a sequence {wn} by the iterative scheme

wn+1 = Awn = Anw0, n = 0, 1, 2, . . . . (3.1)

Since A(Pd) ⊂ Pd and w0(t) ∈ Pd, we have wn ∈ Pd, n = 0, 1, 2, . . . . It follows from
the complete continuity of A that {wn}∞n=1is a sequentially compact set in X, then
{wn}∞n=1 has a convergent subsequence {wnk}∞k=1 and there exists w∗ ∈ Pd such that
wnk → w∗.
On the other hand,

w1(t) = Aw0(t)

=

∫ ∞
0

G(t, s)f(s, w0(s))ds

=

∫ ∞
0

(G0(t, s) +G1(t, s))f(s, w0(s))ds

≤ tα−1

Γ(α)

∫ ∞
0

f(s, w0(s))ds

+
[ tα−1

Γ(α)
+ tα−2

] 1

ψ

∫ ∞
0

sα−1

Γ(α)
g(s)ds

∫ ∞
0

f(s, w0(s))ds

≤
( tα−1

Γ(α)
+
[ tα−1

Γ(α)
+ tα−2

] 1

ψ

∫ ∞
0

sα−1

Γ(α)
g(s)ds

)∫ ∞
0

f(s, w0(s))ds

=

tα−1
[
1−

∫ ∞
0

g(s)sα−2ds
]

+ tα−2

∫ ∞
0

g(s)sα−1ds

Γ(α)ψ

∫ ∞
0

f(s, w0(s))ds

≤
tα−1 + tα−2

[ ∫ ∞
0

g(s)sα−1ds+ 1
]

Γ(α)ψ

∫ ∞
0

f(s, w0(s))ds

≤ L[tα−1 + tα−2]

∫ ∞
0

f(s, w0(s))ds

≤ dL

N
[tα−1 + tα−2]

Γ(σ1 + 1)

kσ1+1
= d[

tα−1 + tα−2

2
] = w0(t).

(3.2)

So, by (3.2) and (H3), we have

w2(t) = Aw1(t) ≤ Aw0(t) = w1(t), 0 < t < +∞.
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Moreover, we get

wn+1(t) ≤ wn(t), 0 < t < +∞, n = 0, 1, 2, . . . .

Therefore, wn → w∗. Applying the continuity of A and wn+1 = Awn, we obtain
Aw∗ = w∗.

Let v0(t) = 0, 0 < t < +∞, then v0(t) ∈ Pd. Let v1 = Av0, then v1 ∈ Pd. We
denote

vn+1 = Avn = Anv0, n = 0, 1, 2, . . . .

Similar to {wn}∞n=1, we assert that {vn}∞n=1 has a convergent subsequence {vnk}∞k=1

and there exists v∗ ∈ Pd such that vnk → v∗. Since v1 = Av0 = A0 ∈ Pd, we have

v2(t) = (Av1)(t) ≥ (A0)(t) = v1(t), 0 < t < +∞.
By induction, it is easy to see that for n = 1, 2, ....

vn+1(t) ≥ vn(t), 0 < t < +∞.
Thus vn → v∗. Applying the continuity of A and vn+1 = Avn, we get Av∗ = v∗.

If f(t, 0) 6≡ 0 on any subinterval of (0,+∞), then the zero function is not the
solution of the BVP (1.1). Thus, v∗ is a positive solution of BVP (1.1) on (0,+∞).

We are in a position to show that w∗, v∗ are the maximal and minimal positive

solutions of the BVP (1.1) in (0, d[ t
α−1+tα−2

2 ]]. Let x ∈ (0, d[ t
α−1+tα−2

2 ]] be any
solution of the BVP (1.1); that is, Ax = x. Note that A is nondecreasing and

v0 = 0 ≤ x(t) ≤ d
[
tα−1 + tα−2

2

]
= w0(t),

then we have v1(t) = (Av0)(t) ≤ x(t) ≤ (Aw0)(t) = w1(t), for all t ∈ (0,+∞).
By induction, we have

vn ≤ x ≤ wn, n = 1, 2, 3, . . . .

Since w∗ = limn→+∞ wn, v∗ = limn→+∞ vn,

v0 ≤ v1 ≤ ...vn ≤ ... ≤ v∗ ≤ x ≤ w∗ ≤ ... ≤ wn ≤ ... ≤ w1 ≤ w0.

Thus, w∗, v∗ are the maximal and minimal positive solutions of the BVP (1.1) in

(0, d[ t
α−1+tα−2

2 ]]. The proof is completed. �
Remark 3.2. By Theorem 3.1, we note that w∗, v∗ are the maximal and minimal
positive solutions of the BVP (1.1) in Pd, they may coincide, and then BVP (1.1) has
only one solution in Pd.

4. An example

Consider the following boundary-value problem with fractional integral boundary
conditions:{

D
3
2

0+x(t) + f(t, x(t)) = 0, t ∈ (0,+∞),

limt→0 t
2−αx(t) = limt→∞D

1
2

0+x(t) = 1
4

∫∞
0
e−sx(s)ds,

(4.1)

where α = 3
2 , g(s) = 1

4e
−s. By calculation, we have∫ ∞
0

g(s)

[
sα−1

Γ(α)
+ sα−2

]
ds = 0.69 < 1.



RIEMANN LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS 105

Choose

f(t, x) = t−
3
4 e−t +

t−
1
4 e−t

1 + t
3
2

x,

and σ = − 1
2 , σ1 = − 3

4 , k = 1. By direct computation, we get L ≈ 5.89 and N ≈ 42.7.
Take d = 120, then (t, x) ∈ (0,+∞)× [0, d],

f
(
t,

1 + t
3
2

t
1
2

x
)

= t−
3
4 e−t + t−

3
4 e−t = 2t−

3
4 e−t ≤ d

N
tσ1e−kt = 2.81t−

3
4 e−t,

(t, x) ∈ (0,+∞)× [0, 120].
Since all the conditions of Theorem 3.1 are satisfied, the conclusion of Theorem 3.1
holds.
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