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Abstract. By topological arguments, we prove new results on the existence, non-existence, local-
ization and multiplicity of nontrivial solutions of a class of perturbed nonlinear integral equations.

These type of integral equations arise, for example, when dealing with boundary value problems

where nonlocal terms occur in the differential equation and/or in the boundary conditions. Some
examples are given to illustrate the theoretical results.
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1. Introduction

Infante and Webb [33], by means of classical fixed point index theory, studied the
existence of multiple nontrivial solutions of perturbed integral equations of the type

u(t) = γ(t)α̂[u] +

∫ 1

0

k(t, s)f(s, u(s)) ds, (1.1)

where γ is a continuous function, allowed to change sign, and α̂[·] is an affine functional
given by a Stieltjes integral with a positive measure, namely

α̂[u] = A0 +

∫ 1

0

u(s) dA(s).

Equation (1.1) can be used to study some nonlocal boundary value problems (BVPs)
occurring when modelling the steady-state of a heated bar of length one subject to
a thermostat, where a controller in one end adds or removes heat accordingly to the
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temperature measured by a sensor at a point of the bar. This type of heat-flow
problem was motivated by earlier work by Guidotti and Merino [22] and has been
investigated by a number of authors –we refer the reader to the recent papers [30, 55]
and references therein.

The approach of [33] was modified by Cabada and co-authors [7] in order to deal
with the case of integral equations with a deviated argument, namely

u(t) = γ(t)α[u] +

∫ 1

0

k(t, s)g(s)f(s, u(s), u(σ(s)))ds, (1.2)

where σ is a continuous function such that σ([0, 1]) ⊆ [0, 1] and α[·] is a linear func-
tional, given by a Stieltjes integral, that is

α[u] =

∫ 1

0

u(s) dA(s), (1.3)

with a signed measure, in the spirit of the paper by Webb and Infante [57]. The
results of [7] cover the interesting case of differential equations with reflections and,
in particular were applied to the study of the BVP

u′′(t) + g(t)f(t, u(t), u(σ(t))) = 0, t ∈ (0, 1), (1.4)

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1]. (1.5)

The BVP (1.4)-(1.5) arises when studying the steady states of a model of a light
bulb with a temperature regulating system that includes a feedback controller. One
assumption made in this thermostat model is that the feedback controller has a linear
response; for more details see Section 4 of [7].

The formulation of nonlocal boundary conditions (BCs) in terms of Stieltjes inte-
grals is fairly general and includes, as special cases, multi-point and integral condi-
tions, namely

α[u] =

m∑
j=1

αju(ηj) or α[u] =

∫ 1

0

φ(s)u(s)ds.

The study of multi-point problems has been initiated, as far as we know, in 1908
by Picone [48]. For an introduction to nonlocal problems we refer to the reviews of
Whyburn [60], Conti [9], Ma [42], Ntouyas [44] and Štikonas [50] and to the papers
by Karakostas and Tsamatos [38, 39] and Webb and Infante [56, 58].

Webb and Infante [58] gave a unified method for establishing the existence of
positive solutions of a large class of ordinary differential equations of arbitrary order,
subject to nonlocal BCs. The methodology in [58] involves the fixed point index and,
in particular deals with the integral equation

u(t) =

N∑
i=1

γi(t)αi[u] +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds. (1.6)

Here the functions γi are nonnegative and the linear functionals αi[·] are of the type
(1.3). The results of [58] are well suited for dealing with differential equations of
arbitrary order with many nonlocal terms. These results were applied to the study of
fourth order problems that model the deflection of an elastic beam.
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A common feature of the integral equations (1.1), (1.2) and (1.6) is the fact that
these equations are designed to deal with BVPs where the boundary conditions involve
at most affine functionals. In physical models this corresponds to feedback controllers
having a linear response. Nevertheless, in a number of applications, the response of
the feedback controller can be nonlinear ; for example the nonlocal BVP

u(4)(t)− g(t)f(t, u(t)) = 0, u(0) = u′(0) = u′′(1) = 0, u′′′(1) + B̂(u(η)) = 0, (1.7)

describes a cantilever equation with a feedback mechanism, where a spring reacts (in
a nonlinear manner) to the displacement registered in a point η of the beam. Positive
solutions of the BVP (1.7) were investigated by Infante and Pietramala in [29] by
means of the perturbed integral equation

u(t) = γ(t)B̂(α̂[u]) +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds,

where B̂ : R+ → R+ is a continuous, possibly nonlinear function.
Note that the idea of using perturbed Hammerstein integral equations in order to

deal with the existence of solutions of BVPs with nonlinear BCs has been used with
success in a number of papers, see, for example, the manuscripts of Alves and co-
authors [1], Cabada [5], Franco et al. [15], Goodrich [17, 18, 19, 20, 21], Infante [26],
Karakostas [37], Pietramala [49], Yang [62, 63] and references therein.

The existence of nontrivial solutions of the BVP

u′′(t) + g(t)f(u(t)) = 0, u′(0) + B̂(α̂[u]) = 0, βu′(1) + u(η) = 0,

that models a heat-flow problem with a nonlinear controller, were discussed by In-
fante [25], by means of the perturbed integral equation

u(t) = γ(t)B̂(α̂[u]) +

∫ 1

0

k(t, s)g(s)f(u(s)) ds.

On the other hand, BVPs where nonlocal terms occur in the differential equation
have been studied by a number of authors. For example, the case of equations with
reflection of the argument has been investigated by Andrade and Ma [3], Cabada and
co-authors [6], Piao [45, 46], Piao and Xin [47], Wiener and Aftabizadeh [61], the case
of equations with deviated arguments has be en studied by Jankowski [34, 35, 36],
Figueroa and Pouso [14] and Szatanik [51, 52] and the case of equations that involve
the average of the solution has been considered by Andrade and Ma [3], Chipot and
Rodrigues [8] and Infante [27].

Here we continue the study of [7, 25, 27] and discuss the existence of multiple
nontrivial solutions of perturbed Hammerstein integral equations of the kind

u(t) = Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s)) ds,

where B : C(I) → C(I) is a compact and continuous map, D : C(I) → L∞(I) a
continuous map and f is a non-negative L∞-Carathéodory function. In our setting
B and D are possibly nonlinear. This type of integral equation arises naturally when
dealing with a BVP where nonlocal terms occur in the differential equation and in the
BCs. Here we prove the existence of multiple solutions that are allowed to change sign,
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in the spirit of the earlier works [32, 31, 33]. The methodology relies on the use of the
theory of fixed point index. Some of our criteria involve the principal eigenvalue of an
associated linear operator. We make use of ideas from the papers [7, 32, 30, 54, 56, 59]
and our results complement the ones of [7, 26, 30, 58].

In the last Section, for illustrative purposes we study, in two examples, the nonlocal
differential equation

u′′(t) + f(t, u(t)) + γ(t)u(η(t)) = 0,

subject to different BCs, showing that the constants occurring in our theoretical
results can be computed.

2. The integral operator

Let I := [0, 1], R+ = (0,+∞). We work in the space C(I) of the continuous
functions on I endowed with the usual norm ‖w‖ := maxt∈I |w(t)|. We also use
the space L∞(I), where we denote (with an abuse of notation) its norm by ‖w‖ :=
ess supt∈I |w(t)|. In this section we obtain results for the fixed points of the integral
operator

Tu(t) = Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s)) ds, (2.1)

where B : C(I) → C(I) is a continuous and compact map, D : C(I) → L∞(I) a
continuous map and f is a non-negative L∞-Carathéodory function. B and D are
not necessarily linear.

Given u : I → R, we define u+(s) := max{u(s), 0}, u−(s) := max{−u(s), 0}. We
recall that a cone K in a Banach space X is a closed convex set such that λx ∈ K
for x ∈ K and λ ≥ 0 and K ∩ (−K) = {0}. We denote by P the cone of non-negative
functions in C(I).

We make the following assumptions on the terms that occur in (2.1).

(C1) k : I × I → R is measurable, and for every τ ∈ I we have

lim
t→τ
|k(t, s)− k(τ, s)| = 0 for almost every s ∈ I.

(C2) There exist a subinterval [a, b] ⊆ I, a function Φ ∈ L1(I), and a constant
c1 ∈ (0, 1] such that

|k(t, s)| ≤ Φ(s) for t ∈ I and almost every s ∈ I,
k(t, s) ≥ c1Φ(s) for t ∈ [a, b] and almost every s ∈ I.

(C3) g, gΦ ∈ L1(I), g(t) ≥ 0 for almost every t ∈ I, and
∫ b
a

Φ(s)g(s) ds > 0.
(C4) There exist measurable functions fi : I × R → [0,∞), γij : I → R, j =

1, . . . ,mi, δij : I → R, j = 1, . . . , ni, continuous functionals αij : C(I) → R,
j = 1, . . . ,mi and βij : C(I) → R, j = 1, . . . , ni, i = 1, 2 and a constant
c ∈ (0, c1] such that the set

K := {u ∈ C(I) : min
t∈[a,b]

u(t) ≥ c‖u‖, αij [u], βij [u] ≥ 0},
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is a cone satisfying the following inequalities for every u ∈ K:
m1∑
j=1

γ1j(t)α1j [u] + f1(t, u(t)) ≤ f(t, u(t), Du(t)), for every t ∈ [a, b],

n1∑
j=1

δ1j(t)β1j [u] ≤ Bu(t), for every t ∈ [a, b],

f(t, u(t), Du(t)) ≤
m2∑
j=1

γ2j(t)α2j [u] + f2(t, u(t)), for every t ∈ I,

Bu(t) ≤
n2∑
j=1

δ2j(t)β2j [u], |Bu(t)| ≤
n2∑
j=1

|δ2j(t)|β2j [u], for every t ∈ I.

(C5) The nonlinearities f : I × R2 → [0,+∞), f1 : I × R → [0,+∞) and f2 :
I×R→ [0,+∞) satisfy L∞-Carathéodory conditions, that is f(·, u, v), fi(·, u)
are measurable for each fixed u, v ∈ R; f(t, ·, ·), fi(t, ·) are continuous for a. e.
t ∈ I, and for each r > 0, there exists φr ∈ L∞(I) such that

f(t, u, v), fi(t, u) ≤ φr(t) for all u, v ∈ [−r, r], and a. e. t ∈ I.

(C6) γij ∈ C(I). Let γ̃ij(t) :=
∫ 1

0
|k(t, s)|g(s)γij(s)ds. Assume that the families of

functions {γ̃ij , δij}i,j belong to K\{0}.
(C7) Define ϕi = (αi1, . . . , αimi , βi1, . . . , βini), ψi = (γ̃i1, . . . , γ̃imi , δi1, . . . , δini)

and denote by ϕij and ψij the j-th element of ϕi and ψi respectively. We
have the following inequalities.

ϕ1j [τ1u+ τ2v] ≥τ1ϕ1j [u] + τ2ϕ1j [v], τ1, τ2 ∈ R+, u, v ∈ K, j = 1, . . . ,m1 + n1,
(2.2)

ϕ2j [τ1u+ τ2v] ≤|τ1|ϕ2j [u] + |τ2|ϕ2j [v], τ1, τ2 ∈ R, u, v ∈ K, j = 1, . . . ,m2 + n2,
(2.3)

ϕ2j [τu] ≥ϕ2j [u], τ ≥ 1, u, v ∈ K, j = 1, . . . ,m2 + n2. (2.4)

Furthermore, assume that

Kϕ1j
(s) := ϕ1j [k(·, s)] ≥ 0, for a. e. s ∈ I, Kϕ1j

∈ L∞(I), j = 1, . . . ,m1 + n1,

Kϕ2j (s) := ϕ2j [|k(·, s)|] ≥ 0, for a. e. s ∈ I, Kϕ2j ∈ L∞(I), j = 1, . . . ,m2 + n2,

ϕ1j

[∫ b

a

k(·, s)g(s)f1(s, u(s))ds

]
≥
∫ b

a

ϕ1j [k(·, s)]g(s)f1(s, u(s))ds,

u ∈ K, j = 1, . . . ,m1 + n1,

(2.5)

ϕ2j

[∫ 1

0

|k(·, s)|g(s)f2(s, u(s))ds

]
≤
∫ 1

0

ϕ2j [|k(·, s)|]g(s)f2(s, u(s))ds,

u ∈ K, j = 1, . . . ,m2 + n2.

(2.6)

(C8) Define Mk = (ϕki[ψkj ])
mk+nk
i,j=1 ∈ Mmk+nk

(R), k = 1, 2. Assume that their

respective spectral radii r satisfy that r(M1) < 1/c1 and r(M2) < 1.
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(C9) Let c and K be given in (C4) and assume that
n1∑
j=1

δ1j(t)β1j [u] ≥ c
n2∑
j=1

‖δ2j‖β2j [u] for every t ∈ [a, b] and u ∈ K.

(C10) ϕ1j [u] ≥ ϕ1j [v] for every u, v ∈ K such that u(t) ≥ v(t) for all t ∈ [a, b],
ϕ2j [u] ≥ ϕ2j [v] for every u, v ∈ K such that u(t) ≥ v(t) for all t ∈ I and
ϕij [u] ≥ 0 for every u ∈ P .
We also assume ϕij [Tu], ϕij [F1u], ϕij [L1u] ≥ 0 for every u ∈ K where, for
t ∈ [0, 1],

F1u(t) :=

∫ b

a

k(t, s)g(s)f1(s, u(s))ds,

L1u(t) :=

∫ b

a

k+(t, s)g(s)u(s)ds.

Remark 2.1. Observe that from conditions (C6) and (C8) we know that ψij ∈ K
and Mk has positive entries for k = 1, 2. Furthermore, if the ϕij are linear functionals
defined as integrals with respect to a measure of bounded variation, the properties
(2.2)–(2.6) are satisfied.

Remark 2.2. In [30] Infante and co-authors used the cone

K̂ = K0 ∩ {u ∈ C[0, 1] : α[u] ≥ 0} ∩ {u ∈ C[0, 1] : β[u] ≥ 0},
where

K0 := {u ∈ C[0, 1] : min
t∈[a,b]

u(t) ≥ c‖u‖}

and α and β are continuous, linear functionals. Note that the functions in K0 are
positive on the subset [a, b] but are allowed to change sign in [0, 1]. The cone K0

is similar to a cone of non-negative functions first used by Krasnosel’skĭı, see [40],
and D. Guo, see e.g. [23], has been introduced by Infante and Webb in [32] and later
been used in a number of papers, see for example [6, 16, 13, 24, 28, 31, 33, 43] and
references therein.

On the other hand, Webb and Infante [58] used the cone

K̃ = {u ∈ P : min
t∈[a,b]

u(t) ≥ c‖u‖, βi[u] ≥ 0 for every j},

where βi are continuous, linear functionals. Thus the cone K can be seen as an
analogue of the cones K̂ and K̃ when nonlinear functionals are involved.

Remark 2.3. Condition (2.3) is some sort of triangle inequality. In particular, it
implies a kind of second triangle inequality. Indeed, let u− v, v ∈ K, then we have

ϕ2j [u] = ϕ2j [(u− v) + v] ≤ ϕ2j [u− v] + ϕ2j [v].

Hence we obtain

ϕ2j [u]− ϕ2j [v] ≤ ϕ2j [u− v].

Therefore,

ϕ2j [v] = ϕ2j [u− (u− v)] ≤ ϕ2j [u− v] + ϕ2j [u].
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Thus,

ϕ2j [v]− ϕ2j [u] ≤ ϕ2j [u− v],

which implies, in particular,

|ϕ2j [u]− ϕ2j [v]| ≤ ϕ2j [u− v].

Remark 2.4. It follows from (C10) that if u ∈ K, then u+, |u| ∈ K. Furthermore we
have ϕij [F2u] ≥ 0 for every u ∈ K, where

F2u(t) :=

∫ 1

0

|k(t, s)| g(s) f2(s, u(s))ds.

Remark 2.5. The first part of condition (C10) implies that, if u, v ∈ K satisfy
u|[a,b] = v|[a,b], then ϕ1j [u] = ϕ1j [v].

Lemma 2.6. The operator Nf (u, v)(t) =
∫ 1

0
k(t, s)g(s)f(s, u(s), v(s))ds maps C(I)×

L∞(I) to C(I) and is compact and continuous.

Proof. Fix (u, v) ∈ C(I)×L∞(I) and let (tn)n∈N ⊂ I be such that lim
n→∞

(tn) = t ∈ I.

Take r = ‖(u, v)‖ := ‖u‖+ ‖v‖ and consider

hn(s) := k(tn, s) g(s) f(s, u(s), v(s)), for a.e. s ∈ I.

We have, by (C1), that

lim
n→∞

hn(s) = h(s) := k(t, s) g(s) f(s, u(s), v(s)), for a.e. s ∈ I.

On the other hand, |hn| ≤ Φ g ‖φr‖∞ for all n ∈ N. So, by condition (C3), the
sequence {hn} is uniformly bounded in L1(I) so, by the Dominated Convergence
Theorem, we have lim

n→∞
Nf (u, v)(tn) = Nf (u, v)(t) and therefore Nf (u, v) ∈ C(I).

Now we show that Nf is compact. Indeed, let B̃ ⊂ C(I) × L∞(I) be a bounded

set, i.e. there exists r > 0 such that ‖(u, v)‖ ≤ r < +∞ for all (u, v) ∈ B̃.

In order to use the Arzelà-Ascoli Theorem, we have to verify that Nf (B̃) is a
uniformly bounded and equicontinuous set in C(I).

The uniformly boundedness follows from the fact that, for all t ∈ I, the following
inequality holds

|Nf (u, v)(t)| ≤
∫ 1

0

|k(t, s)|g(s)f(s, u(s), v(s))ds ≤
∫ 1

0

Φ(s)g(s)φr(s)ds,

for all (u, v) ∈ B̃.
On the other hand, taking into account (C1)−(C3) and the Dominated Convergence

Theorem, we know that for any τ ∈ I given, the following property holds:

lim
t→τ

∫ 1

0

|k(t, s)− k(τ, s)|g(s)φr(s)ds = 0.
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As a consequence, for any τ ∈ I and ε > 0, there is (.τ) > 0 such that, if |t−τ | < (.τ),

then, for all (u, v) ∈ B̃, the following inequalities are fulfilled:

|Nf (u, v)(t)−Nf (u, v)(τ)| ≤
∫ 1

0

|k(t, s)− k(τ, s)|g(s)f(s, u(s), v(s))ds

≤
∫ 1

0

|k(t, s)− k(τ, s)|g(s)φr(s)ds < ε.

Now, {(τ − (.τ), τ + (.τ))}τ∈I is an open covering of I. Since I is compact, there exists

a finite subcovering of indices τ1, . . . , τk.
To deduce the equicontinuity of the set B̃ is enough to take δ0 = min{δ(τ1), . . . , δ(τk)}.

To show the continuity of operator Nf , consider {(un, vn)} a convergent sequence
in C(I)×L∞(I) to (u, v) ∈ C(I)×L∞(I). In particular, for a.e. s ∈ I, the sequences
{un(s)} and {vn(s)} converge pointwisely to u(s) and v(s) respectively.

Define yn(s) = f(s, un(s), vn(s)). By Condition (C5), we know that there is y(s) :=
lim
n→∞

yn(s) for a.e. s ∈ I. Since |yn| ≤ ‖φr‖∞ for all n ∈ N, we have that the sequence

{yn} is uniformly bounded in L∞(I). Now, using that Φg ∈ L1(I), the Dominated
Convergence Theorem ensures that

lim
n→∞

∫ 1

0

Φ(s)g(s)|yn(s)− y(s)|ds = 0.

Furthermore, using the inequality

|Nf (un, vn)(t)−Nf (u, v)(t)| ≤
∫ 1

0

|k(t, s)|g(s)|yn(s)− y(s)|ds

≤
∫ 1

0

Φ(s)g(s)|yn(s)− y(s)|ds,

we deduce that such convergence is uniform in I, and the assertion holds. �

Lemma 2.7. The operator T defined in (2.1) maps K into K and is continuous and
compact.

Proof. Take u ∈ K. Then, by (C2), (C4) and (C5), we have

|Tu(t)| =
∣∣∣∣Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s)) ds

∣∣∣∣
≤

n2∑
j=1

|δ2j(t)|β2j [u] +

∫ 1

0

Φ(s)g(s)f(s, u(s), Du(s)) ds.

Hence, we obtain

‖Tu‖ ≤
n2∑
j=1

‖δ2j‖β2j [u] +

∫ 1

0

Φ(s)g(s)f(s, u(s), Du(s)) ds.
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Combining this fact with (C2), (C4)− (C6) and (C9), for t ∈ [a, b], we get

Tu(t) ≥
n1∑
j=1

δ1j(t)β1j [u] + c1

∫ 1

0

Φ(s)g(s)f(s, u(s), Du(s)) ds

≥c
n2∑
j=1

‖δ2j‖β2j [u] + c

∫ 1

0

Φ(s)g(s)f(s, u(s), Du(s)) ds ≥ c‖Tu‖.

Furthermore, by (C10), ϕij [Tu] ≥ 0. Hence we have Tu ∈ K.
Now, we have that the operator Nf : C(I)× L∞(I)→ C(I) such that

Nf (u, v)(t) =

∫ 1

0

k(t, s)g(s)f(s, u(s), v(s))ds

is compact.
Since D is continuous, Id×D is also continuous so Nf ◦ (Id×D) is compact. Since

T is the sum of two compact operators, it is compact. �

Remark 2.8. Similarly, from condition (C2), we observe here that F1, F2 and L1

map K to K. To see this, observe that for all t ∈ [a, b] and u ∈ K the following
properties hold:

F1u(t) :=

∫ b

a

k(t, s)g(s)f1(s, u(s))ds ≥ c
∫ b

a

Φ(s)g(s)f1(s, u(s))ds ≥ c‖F1u‖,

F2u(t) :=

∫ 1

0

|k(t, s)|g(s)f2(s, u(s))ds ≥ c
∫ 1

0

Φ(s)g(s)f2(s, u(s))ds ≥ c‖F2u‖,

L1u(t) :=

∫ b

a

k+(t, s)g(s)u(s)ds ≥ c
∫ b

a

Φ(s)g(s)u(s)ds ≥ c‖L1u‖.

Also, ϕij [F1u], ϕij [F2u], ϕij [L1u] ≥ 0 by (C10) and Remark 2.4.
On the other hand, L1 maps P to P , but also maps P to K. The proof goes as

above.

3. Fixed point index calculations

The following Lemma summarizes some classical results regarding the fixed point
index, for more details see [2, 23]. Let U be an open bounded subset of C(I), we
denote by UK := U ∩K, which is an open subset in the topology relative to K.

Lemma 3.1. Let U be an open bounded set with 0 ∈ UK and UK 6= K. Assume that
F : UK → K is a compact map such that x 6= Fx for all x ∈ ∂UK . Then the fixed
point index iK(F,UK) has the following properties.

(1) If there exists e ∈ K \ {0} such that x 6= Fx + λe for all x ∈ ∂UK and all
λ > 0, then iK(F,UK) = 0.

(2) If µx 6= Fx for all x ∈ ∂UK and for every µ ≥ 1, then iK(F,UK) = 1.
(3) If iK(F,UK) 6= 0, then F has a fixed point in UK .

(4) Let U1 be open in X with U1 ⊂ UK . If iK(F,UK) = 1 and iK(F,U1
K) = 0,

then F has a fixed point in UK \U1
K . The same result holds if iK(F,UK) = 0

and iK(F,U1
K) = 1.
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For ρ > 0 we define the following open subsets of K:

Kρ := {u ∈ K : ‖u‖ < ρ}, Vρ := {u ∈ K : min
t∈[a,b]

u(t) < ρ}.

The set Vρ was introduced in [33] and is equal to the set called Ωρ/c in [31]. The
inclusions

Kρ ⊂ Vρ ⊂ Kρ/c

play a key role in our existence and multiplicity results.
If u, v are vectors, we denote by [u]j the j-th component of u and if we write u ≤ v

the inequality is to be interpreted component-wise. Also, we denote by

Kϕi
:=
(
Kϕij

)mi+ni

j=1
, i = 1, 2

(Kϕij as defined in (C7)).
The following Lemma gives a sufficient condition that implies that the index is 1.

Lemma 3.2. Assume that

(I1ρ) there exists ρ > 0 such that

f−ρ,ρ2 · sup
t∈I

m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1

∫ 1

0

Kϕ2
(s)g(s)ds

]
j

+ σ(t)

 < 1, (3.1)

where

f−ρ,ρ2 := ess sup
{f2(t, u)

ρ
: (t, u) ∈ I × [−ρ, ρ]

}
and

σ(t) :=

∫ 1

0

|k(t, s)|g(s)ds.

Then we have iK(T,Kρ) = 1.

Proof. We show that Tu 6= λu for all λ ≥ 1 when u ∈ ∂Kρ, which implies that
iK(T,Kρ) = 1. In fact, if this does not happen, then there exist u ∈ K with ‖u‖ = ρ
and λ ≥ 1 such that λu(t) = Tu(t). Therefore, by (C4) and (C5),

λu(t) ≤
m2+n2∑
j=1

ψ2j(t)ϕ2j [u] + F2u(t), t ∈ I, (3.2)

so, from (C6) and Remark 2.8, we have that both sides of the inequality are in K. As
a consequence, from (2.3), (2.4) and (C10), we deduce

ϕ2i[u] ≤ ϕ2i[λu] ≤
m2+n2∑
j=1

ϕ2i[ψ2j ]ϕ2j [u] + ϕ2i[F2u],

which, expressed in matrix notation, is

ϕ2[u] ≤M2ϕ2[u] + ϕ2[F2u].

Hence, we have

(Id−M2)ϕ2[u] ≤ ϕ2[F2u].
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Since r(M2) < 1, Id−M2 is invertible and (Id−M2)−1 =

∞∑
k=0

Mk
2 . Hence, (Id−M2)−1

is positive and thus, due to the nonnegativeness of ϕ2[F2u], we deduce that

ϕ2[u] ≤ (Id−M2)−1ϕ2[F2u]. (3.3)

Now, for all t ∈ I, using (2.6), we have that

λ|u(t)| =|Tu(t)| =
∣∣∣∣Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s))ds

∣∣∣∣
≤ |Bu(t)|+

∫ 1

0

|k(t, s)|g(s)f(s, u(s), Du(s))ds

≤
n2∑
j=1

|δ2j(t)|β2j [u] +

∫ 1

0

|k(t, s)|g(s)

m2∑
j=1

γ2j(s)α2j [u] + f2(s, u(s))

 ds
=

n2∑
j=1

|δ2j(t)|β2j [u] +

m2∑
j=1

∫ 1

0

|k(t, s)|g(s)γ2j(s)dsα2j [u]

+

∫ 1

0

|k(t, s)|g(s)f2(s, u(s))ds

=

n2∑
j=1

|δ2j(t)|β2j [u] +

m2∑
j=1

γ̃2j(t)α2j [u] + F2u(t) ≤
m2+n2∑
j=1

|ψ2j(t)|ϕ2j [u] + F2u(t)

≤
m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1ϕ2[F2u]

]
j

+ F2u(t)

≤
m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1

∫ 1

0

ϕ2[|k(t, s)|]g(s)f2(s, u(s))ds

]
j

+ F2u(t)

≤
m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1

∫ 1

0

Kϕ2(s)g(s)ρf−ρ,ρ2 ds

]
j

+

∫ 1

0

|k(t, s)|g(s)ρf−ρ,ρ2 ds

≤ρf−ρ,ρ2 · sup
t∈I

m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1

∫ 1

0

Kϕ2
(s)g(s)ds

]
j

+ σ(t)

 .

Taking the supremum on t ∈ I,

λρ ≤ ρf−ρ,ρ2 · sup
t∈I

m2+n2∑
j=1

|ψ2j(t)|
[
(Id−M2)−1

∫ 1

0

|Kϕ2
(s)|g(s)ds

]
j

+ σ(t)

 .

From (3.1) we obtain λρ < ρ, contradicting the fact that λ ≥ 1. �
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Remark 3.3. We point out, in similar way as in [57], that a stronger (but easier to
check) condition than (I1ρ) is given by the following.

f−ρ,ρ2

m2+n2∑
j=1

‖ψ2j‖
[
(Id−M2)−1

∫ 1

0

|Kϕ2(s)| g(s)ds

]
j

+
1

m

 < 1.

where
1

m
:= sup

t∈I
σ(t). (3.4)

A similar constant has been considered in [6, 7, 32, 57].

The next Lemma yields a condition sufficient for the index to be 0.

Lemma 3.4. Assume that

(I0ρ) There exists ρ > 0 such that

f1,ρ,ρ/c · inf
t∈[a,b]

(m1+n1∑
j=1

ψ1j(t)
[
(Id−c1M1)−1

∫ b

a

Kϕ1(s)g(s)ds
]
j

+

∫ b

a

k(t, s)g(s)ds
)
> 1,

where

f1,ρ,ρ/c := ess inf

{
f1(t, u)

ρ
: (t, u) ∈ [a, b]× [ρ, ρ/c]

}
.

Then we have iK(T, Vρ) = 0.

Proof. Take e ∈ K\{0} (for instance e = γ̃21). We will show that u 6= Tu + λe for
all λ ≥ 0 and u ∈ ∂Vρ which implies that iK(T, Vρ) = 0. In fact, if this does not
happen, there are u ∈ ∂Vρ (and so we have mint∈[a,b] u(t) = ρ and ρ ≤ u(t) ≤ ρ/c for
all t ∈ [a, b]), and λ ≥ 0 with

u(t) = Tu(t) + λe.

Therefore, for t ∈ [a, b], by (C2), (C4)− (C6) and Remark 2.8, we have

u(t) ≥
m1+n1∑
j=1

ψ1j(t)ϕ1j [u] + F1u(t) + λe(t). (3.5)

Thus, using again (C6), (C7) and (C10) together with (2.2), we obtain

ϕ1i[u] ≥
m1+n1∑
j=1

ϕ1i[ψ1j ]ϕ1j [u] + ϕ1i[F1u] + λϕ1i[e]

≥c1
(m1+n1∑

j=1

ϕ1i[ψ1j ]ϕ1j [u] + ϕ1i[F1u]
)
,

which, expressed in matrix notation, is

ϕ1[u] ≥ c1 (M1ϕ1[u] + ϕ1[F1u]) .
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Hence we get

(Id−c1M1)ϕ1[u] ≥ ϕ1[F1u].

Since r(M1) < 1/c1, Id−c1M1 is invertible and

(Id−c1M1)−1 =

∞∑
k=0

(c1M1)
k
,

so (Id−c1M1)−1 is positive and hence

ϕ1[u] ≥ (Id−c1M1)−1ϕ1[F1u]. (3.6)

Therefore, from (3.5) and (3.6) we obtain, using (2.6), for t ∈ [a, b],

u(t) ≥
m1+n1∑
j=1

ψ1j(t)ϕ1j [u] + F1u(t) ≥
m1+n1∑
j=1

ψ1j(t)
[
(Id−c1M1)−1ϕ1[F1u]

]
j

+ F1u(t)

≥ρf1,ρ,ρ/c inf
t∈[a,b]

(m1+n1∑
j=1

ψ1j(t)
[
(Id−c1M1)−1

∫ b

a

Kϕ1(s)g(s)ds
]
j

+

∫ b

a

k(t, s)g(s)ds
)
.

Taking the infimum on t ∈ [a, b], gives

ρ≥ρf1,ρ,ρ/c inf
t∈[a,b]

(m1+n1∑
j=1

ψ1j(t)
[
(Id−c1M1)−1

∫ b

a

Kϕ1
(s)g(s)ds

]
j
+

∫ b

a

k(t, s)g(s)ds
)

which contradicts the hypothesis. �

Remark 3.5. We point out, in similar way as in [57], that a stronger (but easier to
check) condition than (I0ρ) is given by the following.

f1,ρ,ρ/c

 inf
t∈[a,b]

m1+n1∑
j=1

ψ1j(t)

[
(Id−c1M1)−1

∫ b

a

Kϕ1
(s)g(s)ds

]
j

+
1

M(a, b)

 > 1,

where
1

M(a, b)
:= inf

t∈[a,b]

∫ b

a

k(t, s)g(s) ds. (3.7)

The results above can be used in order to prove the existence of at least one, two or
three nontrivial solutions. We omit the proof which follows from the properties of the
fixed point index. We note that, by expanding the lists in conditions (S5), (S6) below,
it is possible to state results for four or more nontrivial solutions, see for example the
paper by Lan [41] for the type of results that might be stated.

Theorem 3.6. Assume conditions (C1) − (C10) are satisfied. The integral equation
(2.1) has at least one non-zero solution in K if one of the following conditions hold.

(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0ρ1) and (I1ρ2) hold.

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1ρ1) and (I0ρ2) hold.
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The integral equation (2.1) has at least two non-zero solutions in K if one of the
following conditions hold.

(S3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 such that (I0ρ1), (I1ρ2)

and (I0ρ3) hold.
(S4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 such that

(I1ρ1), (I0ρ2) and (I1ρ3) hold.

The integral equation (2.1) has at least three non-zero solutions in K if one of the
following conditions hold.

(S5) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 and ρ3/c < ρ4 such
that (I0ρ1), (I1ρ2), (I0ρ3) and (I1ρ4) hold.

(S6) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 < ρ4 such that
(I1ρ1), (I0ρ2), (I1ρ3) and (I0ρ4) hold.

3.1. Non-existence results. For this epigraph we will assume that the operators
ϕij are linearly bounded i. e., an operator A : X → Y between two normed spaces X
and Y is linearly bounded if there exists M ∈ R+ such that ‖Ax‖ ≤M‖x‖ for every
x ∈ X. We define the norm of A as ‖A‖ := inf{M ∈ R+ : ‖Ax‖ ≤M‖x‖, x ∈ X}.
Observe that for linear operators this is the usual norm. We denote by LB(X,Y ) the
space of linearly bounded operators from X to Y (and by LB(X) if X = Y ).

We now offer some non-existence results for the integral equation (2.1).

Theorem 3.7. Assume conditions (C1) − (C5) are satisfied. Let m be as in (3.4)
and M(a, b) as in (3.7). If one of the following conditions holds,

(1) f2(t, u) < m

1−
m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖

 |u|, for every t ∈ I and u ∈ R\{0},

(2) f1(t, u) > M(a, b)u for every t ∈ [a, b] and u ∈ R+,

then there is no non-trivial solution of the integral equation (2.1) in K.

Proof. (1) Assume, on the contrary, that there exists u ∈ K, u 6≡ 0 such that u = Tu
and let t0 ∈ I such that ‖u‖ = |u(t0)|. Then we have

‖u‖ =|u(t0)|

≤
m2+n2∑
j=1

‖ψ2j‖ϕ2j [u] +

∫ 1

0

|k(t0, s)|g(s)f2(s, u(s)) ds

<

m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖‖u‖+

∫ 1

0

|k(t0, s)|g(s) dsm

1−
m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖

 ‖u‖
≤
m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖‖u‖+

1−
m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖

 ‖u‖ = ‖u‖,

a contradiction, thus there is no non-trivial solution of the integral equation (2.1)
in K.
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(2) Assume, on the contrary, that there exists u ∈ K, u 6≡ 0 such that u = Tu and
let t0 ∈ I such that u(t0) = mint∈[a,b] u(t). Then,

u(t0) = Tu(t0) ≥
m2+n2∑
j=1

ψ1j(t0)ϕ1j [u] +

∫ 1

0

k(t0, s)g(s)f1(s, u(s))ds

>

∫ b

a

k(t0, s)g(s)M(a, b)u(s)ds

≥M(a, b)u(t0)

∫ b

a

k(t0, s)g(s)ds ≥ u(t0),

a contradiction. Thus there is no non-trivial solution of the integral equation (2.1)
in K. �

4. The spectral radius and the existence of multiple solutions

In order to prove the results that follow we make use of different requirements on
the functionals ϕij than being linearly bounded. We introduce now some definitions,
see [11, 12].

For operators A ∈ LB(X) we can define the spectral radius of A as

r(A) = lim
n→∞

‖An‖ 1
n .

We define the principal characteristic value as µ(A) := 1/r(A). For more properties
of this generalized spectral value we refer the reader to [4, 64].

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be real normed spaces. Let Lip(X,Y ) be the set of
operators from X to Y that satisfy the Lipschitz property, that is,

Lip(X,Y ) := {N : X → Y : ∃M ∈ R+, ‖Nx−Ny‖Y ≤M‖x− y‖X , x, y ∈ X}.

Define the function

‖N‖∗ := inf{M ∈ R+ : ‖Nx−Ny‖Y ≤M‖x− y‖X , x, y ∈ X}, N ∈ Lip(X,Y ).

We denote by Lip(X) ≡ Lip(X,X). Lip(X,Y ) is a real vector space and ‖ · ‖∗ is a
seminorm on Lip(X,Y ) (in fact, (‖ · ‖∗)−1({0}) = R). Also, observe that

‖N −N(0)‖ = sup
x∈X,
x 6=0

‖N(x)−N(0)‖Y
‖x‖X

≤ sup
x,y∈X,
x 6=y

‖N(x)−N(y)‖Y
‖x− y‖X

= ‖N‖∗,

thus, in particular, N − N(0) is linearly bounded for every N ∈ Lip(X,Y ). On the
other hand if N(0) 6= 0, N is not linearly bounded, for the definition of linearly
bounded operators implies that they vanish at zero. With these considerations in
mind we can define then

Lip0(X,Y ) := Lip(X,Y ) ∩ LB(X,Y ) = {N ∈ Lip(X,Y ) : N(0) = 0}.

Note that ‖ · ‖∗ is a norm on Lip0(X,Y ).
The following theorems from [12] characterize invertibility of the operators between
X and Y .
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Theorem 4.1. [12, Theorem 1] Let X a real normed space and Y a real Banach space.
Let N : X → Y be an operator. Then N is invertible if and only if there exists an
invertible operator J : Y → X such that (N−J)J−1 ∈ Lip(Y ) and ‖(N−J)J−1‖∗ < 1.

Theorem 4.2. [12, Theorem 2] Let X a real normed space and Y a real Banach space.
Let N : X → Y be an operator. Then N is invertible and N ∈ Lip(X,Y ), if and only
if there exists an invertible operator J : Y → X with inverse J−1 ∈ Lip(X,Y ) such
that (N − J)J−1 ∈ Lip(Y ) and ‖(N − J)J−1‖∗ < 1.

In such a case,

‖N−1‖∗ ≤ ‖J−1‖∗/(1− ‖(N − J)J−1‖∗).

The following consequence (in the line of [11, Corollary 2]) can be obtained by
taking X = Y , N = Id−Q, J = Id.

Corollary 4.3. Let X be a real Banach space and Q ∈ Lip(X) such that ‖Q‖∗ < 1.
Then Id−Q is an invertible operator and ‖(Id−Q)−1‖∗ ≤ 1/(1− ‖Q‖∗).

Remark 4.4. Assume Q ∈ Lip(X), Q(X) closed for the sum, ‖Q‖∗ < 1. Then

(Id−Q)−1|Q(X) : Q(X)→ Q(X).

To see this take x ∈ X and define y = (Id−Q)−1Qx. Then y = Qx+Qy ∈ Q(X).

We now present a result which is a straightforward generalization to the case of
linearly bounded operators of a classical result on linear operators.

Let us define the following operators and constants from the functions defined in
conditions (C1)-(C10).

H1u(t) :=

m1+n1∑
j=1

ψ1j(t)ϕ1j [u],

L2u(t) :=

∫ 1

0

|k(t, s)|g(s)u(s)ds, H2u(t) :=

m2+n2∑
j=1

|ψ2j(t)||ϕ2j [u]|,

f02 := lim
u→0

ess supt∈I
f2(t, u)

|u|
, f1,0 := lim

u→0+
ess inft∈[a,b]

f1(t, u)

u
,

f∞2 := lim
|u|→∞

ess supt∈I
f2(t, u)

|u|
, f1,∞ := lim

u→∞
ess inft∈[a,b]

f1(t, u)

u
.

Lemma 4.5. Assume conditions (C1)-(C7). Assume also that condition (2.3) holds
for every u, v ∈ C(I) and ϕ2j ∈ LB(C(I)), j = 1, . . . ,m2 +n2, then H2 ∈ Lip0(C(I)).
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Proof. Let u, v ∈ C(I). Using inequality (2.3) and Remark 2.3 we obtain

|H2u−H2v| =

∣∣∣∣∣∣
m2+n2∑
j=1

|ψ2j(t)|ϕ2j [u]−
m2+n2∑
j=1

|ψ2j(t)|ϕ2j [v]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m2+n2∑
j=1

|ψ2j(t)| (ϕ2j [u]− ϕ2j [v])

∣∣∣∣∣∣
≤
m2+n2∑
j=1

‖ψ2j‖ |ϕ2j [u]− ϕ2j [v]| ≤
m2+n2∑
j=1

‖ψ2j‖ |ϕ2j [u− v]|

≤
m2+n2∑
j=1

‖ψ2j‖‖ϕ2j‖‖u− v‖.

Hence, H2 ∈ Lip(C(I)) and ‖H2‖∗ ≤
∑m2+n2

j=1 ‖ψ2j‖‖ϕ2j‖. Also, since H2 ∈
LB(C(I)), H2(0) = 0, so H2 ∈ Lip0(C(I)). �

We now recall the celebrated Krein-Rutman theorem.

Theorem 4.6 (Theorem 19.2 and Ex. 12 of [10]). Let X be a Banach space, K ⊂ X a
total cone, that is, K −K = X, and L : X → X a continuous compact linear operator
that maps K to K with positive spectral radius r(L). Then r(L) is an eigenvalue of
L with an eigenfunction in K\{0}.

Corollary 4.7. The spectral radius of L1 is an eigenvalue of L1 with an eigenfunction
in P ∩K.

Proof. Recall that L1 is continuous, compact and maps P to P ∩K (see Remark 2.8).
Also, P is a total cone. Let u ∈ P , u ≡ 1 in [a, b]. L1u(t) in [0, 1] does not depend on
the values of u in [0, 1]\[a, b], and in particular we have

L1u(t) ≡ h(t) =

∫ b

a

k+(t, s)g(s)ds ≥ c
∫ b

a

Φ(s)g(s)ds =: q, t ∈ [a, b].

Assume a > 0 and b < 1 (in other cases it is straightforward). Since h is a continuous

function in [0, 1], there are some â, b̂ ∈ (0, 1) such that â < a and b̂ > b satisfying

h(t) >
q

2
, t ∈ [â, b̂].

Hence, defining

u(t) =



0 if 0,≤ t ≤ â,
t− â
a− â

, if â ≤ t ≤ a,
1, if a ≤ t ≤ b,
t− b̂
b− b̂

, if b ≤ t ≤ b̂,

0, if b̂ ≤ t ≤ 1,
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it can be verified that u ∈ P and L1u ≥ λ0u on [0, 1] for λ0 = q/2. Hence, by iteration,
we have Ln1u ≥ λn0u for all n ∈ N and therefeore ‖Ln1‖ ≥ ‖Ln1u‖ ≥ λn0‖u‖ = λn0 . Thus
we have

r(L1) = lim
n→∞

‖Ln1‖
1
n ≥ λ0.

Therefore, the hypotheses of the Krein-Rutman Theorem are satisfied and, as con-
sequence, there exists υ ∈ P such that L1υ = r(L1)υ. Since L1 : P → P ∩ K, we
know that υ ∈ P ∩K. �

In order to prove the next result, we use the following operator on C[a, b] defined by

L̄u(t) :=

∫ b

a

k+(t, s)g(s)u(s) ds, t ∈ [a, b]

and the cone P[a,b] of positive functions in C[a, b].
In the recent papers [53, 54], Webb developed an elegant theory valid for u0-positive

linear operators relative to two cones. It turns out that our operator L̄ fits within
this setting and, in particular, satisfies the assumptions of Theorem 3.4 of [54]. We
state here a special case of Theorem 3.4 of [54] that can be used for L̄.

Theorem 4.8. Suppose that there exist u ∈ P[a,b] \ {0} and λ > 0 such that

λu(t) ≥ L̄u(t), for t ∈ [a, b].

Then we have r(L̄) ≤ λ.

Theorem 4.9. Assume conditions (C1) - (C6), ϕ2j [u] ≥ ϕ2j [v] for every u, v ∈ K
such that u(t) ≥ v(t) for all t ∈ I and ϕij [u] ≥ 0 for every u ∈ P (part of (C10). We
have the following.

(1) If H2 ∈ Lip0(C(I)), ‖H2‖∗ < 1, (Id−H2)−1L2 ∈ LB(C(I)), (Id−H2)−1 :
K ∩ P → K ∩ P is order preserving, (Id−H2)−1(λu) ≤ λ(Id−H2)−1u for
every λ ∈ R+, u ∈ K ∩ P and 0 ≤ f02 < µ((Id−H2)−1L2), then there exists
ρ0 > 0 such that

iK(T,Kρ) = 1 for each ρ ∈ (0, ρ0].

(2) If µ(L1) < f1,0 ≤ ∞, then there exists ρ0 > 0 such that for each ρ ∈ (0, ρ0]

iK(T,Kρ) = 0.

(3) If µ(L1) < f1,∞ ≤ ∞, then there exists R1 such that for each R ≥ R1

iK(T,KR) = 0.

Proof. (1) Let ξ = µ((Id−H2)−1L2). By the hypothesis, there exist ρ0, τ ∈ (0, 1)
such that

f2(t, u) ≤ (ξ − τ)|u|
for all u ∈ [−ρ0, ρ0] and almost every t ∈ I.

Let ρ ∈ (0, ρ0]. We prove that Tu 6= λu for u ∈ ∂Kρ and λ ≥ 1, which implies the
result by Lemma 3.1. In fact, if we assume otherwise, then there exists u ∈ ∂Kρ and
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λ ≥ 1 such that λu = Tu. Observe that if u ∈ K, using what is assumed of (C10), we
conclude that |u| ∈ K ∩ P and for t ∈ I,

|u(t)| ≤λ|u(t)| = |Tu(t)| ≤ H2u(t) +

∫ 1

0

|k(t, s)|g(s)f2(s, u(s))ds

≤H2|u|(t) + (ξ − τ)L2|u|(t).
Now we have

|u|(t) ≤ (Id−H2)−1(ξ − τ)L2|u|(t) ≤ (ξ − τ)(Id−H2)−1L2|u|(t).
Iterating, that is, substituting the LHS into the RHS, for n ∈ N, we obtain

|u|(t) ≤ · · · ≤
[
(ξ − τ)(Id−H2)−1L2

]n |u|(t).
Therefore, taking norms, we have

‖u‖ ≤ ‖
[
(ξ − τ)(Id−H2)−1L2

]n |u|‖,
which implies

1 ≤ ‖
[
(ξ − τ)(Id−H2)−1L2

]n ‖,
or

1 ≤ (ξ − τ)‖
[
(Id−H2)−1L2

]n ‖ 1
n .

Taking the limit both sides we arrive to a contradiction,

1 ≤ ξ − τ
ξ

< 1.

(2) There exists ρ0 > 0 such that f1(t, u) ≥ µ(L1)u for all u ∈ [0, ρ0] and almost
all t ∈ [a, b]. Let ρ ∈ [0, ρ0]. Let us prove that u 6= Tu + λυ1 for all u in ∂Kρ and
λ ≥ 0, where υ1 ∈ K is the eigenfunction of L1 with ‖υ1‖ = 1 corresponding to the
eigenvalue 1/µ(L1), which would imply the result (cf. Corollary 4.7).

We distinguish now two cases, λ ∈ R+ and λ = 0. Assume, on the contrary, that
there exist u ∈ ∂Kρ and λ ∈ R+ such that u = Tu + λυ1. Since Tu ≥ 0 in [a, b], we
have that u ≥ λυ1 in [a, b] and L1u ≥ λL1υ1 = [λ/µ(L1)]υ1 in [a, b]. Using this and
the previous estimate for f we have, by (C4) and (C6), in [a, b],

Tu(t) =Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s)) ds ≥
∫ 1

0

k(t, s)g(s)f1(s, u(s)) ds

≥µ(L1)

∫ b

a

k+(t, s)g(s)u(s) ds = µ(L1)L1u(t),

so
u ≥ µ(L1)L1u+ λυ1 ≥ λµ(L1)L1υ1 + λυ1 = 2λυ1, in [a, b].

Through induction we deduce that ρ ≥ u ≥ nλυ1 in [a, b] for every n ∈ N, a
contradiction because υ1 ∈ K\{0}.

Now we consider the case λ = 0. Let ε > 0 be such that for all u ∈ [0, ρ0] and
almost every t ∈ [a, b] we have

f1(t, u) ≥ (µ(L1) + ε)u.

We have, for t ∈ [a, b],
u(t) ≥ (µ(L1) + ε)L1u(t).
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Since L1υ1(t) = r(L1)υ1(t) for t ∈ [0, 1], we have, for t ∈ [a, b],

L̄υ1(t) = L1υ1(t) = r(L1)υ1(t),

and we obtain r(L̄) ≥ r(L1). On the other hand, we have, for t ∈ [a, b],

u(t) =Tu(t) = Bu(t) +

∫ 1

0

k(t, s)g(s)f(s, u(s), Du(s)) ds

≥(µ(L1) + ε)

∫ b

a

k(t, s)g(s)u(s) ds = (µ(L1) + ε)L1u(t) = (µ(L1) + ε)L̄u(t).

where u(t) > 0 in [a, b]. Thus, using Theorem 4.8, we have r(L̄) ≤ 1/(µ(L1) + ε) and
therefore r(L1) ≤ 1/(µ(L1) + ε). This gives µ(L1) + ε ≤ µ(L1), a contradiction.

(3) Take v1 as in part (2). Let R1 ∈ R+ such that f1(t, u) > µ(L1)u for all u ≥ cR1,
c as in (C4), and almost all t ∈ [a, b]. We will prove that u 6= Tu+λυ1 for all u in ∂KR

and λ ∈ R+ when R > R1. Observe that for u ∈ ∂KR, we have u(t) ≥ c‖u‖ ≥ cR1

for all t ∈ [a, b], so f1(t, u(t)) > µ(L1)u(t) for a.e. t ∈ [a, b].
Assume now, on the contrary, that there exist u ∈ ∂KR and λ ∈ R+ (the proof in

the case λ = 0 is treated as in the proof of the statement (2)) such that u = Tu+λυ1.
This implies u ≥ λυ1 in [a, b] and L1u ≥ λL1υ1 = [λ/µ(L1)]υ1 in [a, b]. Using this
and the previous estimate for f we have

u ≥ µ(L1)L1u+ λυ1 ≥ λµ(L1)L1υ1 + λυ1 = 2λυ1, in [a, b].

Through induction we deduce that R ≥ u ≥ nλυ1 for every n ∈ N, a contradiction
because υ1 ∈ K\{0}. �

Remark 4.10. In the previous Theorem, in point (1), it is enough to ask for L2 ∈
LB(C(I)) in order to have (Id−H2)−1L2 ∈ LB(C(I)) since (Id−H2)−1 ∈ Lip(C(I)).

Remark 4.11. It is clear that the spectral radius of a linearly bounded operator is
bounded from above by the norm ‖ · ‖. Hence, in the previous Theorem, in point
(1) the condition 0 ≤ f02 < µ((Id−H2)−1L2) can be strengthened to 0 ≤ f02 <
1/‖(Id−H2)−1L2‖. Furthermore, if L2 ∈ LB(C(I)), we can strengthen it even further
to 0 ≤ f02 < (1− ‖H2‖∗)/‖L2‖.

Remark 4.12. In the previous Theorem, the conditions µ(L1) < f1,0 ≤ ∞ and
µ(L1) < f1,∞ ≤ ∞ in (2) and (3) respectively can be strengthen in order to avoid the
computation of the spectral value of L1. As it is shown in [59], the new conditions
would be

1/ inf
t∈[a,b]

∫ b

a

k(t, s)g(s)ds < f1,0 ≤ ∞,

and

1/ inf
t∈[a,b]

∫ b

a

k(t, s)g(s)ds < f1,∞ ≤ ∞.
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5. An application

In order to prove the usefulness of our theory, we present a simple but yet fairly
general application in this Section. Consider the BVP

−u′′(t) = f(t, u(t)) + γ(t)u(η(t)), t ∈ [0, 1], u(0) = u(1) = θ max
t∈[a,b]

u(t). (5.1)

where f satisfies the L∞-Carathéodory conditions (see (C5)), γ ∈ C(I), γ ≥ 0,
θ ∈ (0, 1) and η : I → I is a measurable function such that for a fixed [a, b] ⊂ (0, 1)
satisfies η(I) ⊂ [a, b]. Note that u ◦ η is in L∞(I).

We could consider more complex BCs or non-linearities, but for the sake of sim-
plicity and insight we will keep it this way. Observe that the BVP (5.1) is equivalent
to

u(t) =

∫ 1

0

k(t, s) [f(s, u(s)) + γ(s)u(η(s))] ds+ θ max
s∈[a,b]

u(s),

where

k(t, s) :=

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Observe that k is non-negative. Take Φ(s) = supt∈I k(t, s) = s(1 − s). By direct
calculation we obtain

Φ̃(s) := inf
t∈[a,b]

k(t, s) =

{
s(1− b), 0 ≤ s ≤ a

1−(b−a) ,

α(1− s), a
1−(b−a) ≤ s ≤ 1.

Thus, infs∈I Φ̃(s)/Φ(s) = min{a, 1 − b}, so we take c ≤ min{a, 1 − b}. We will look
for solutions in the cone

K := {u ∈ C(I) : min
t∈[a,b]

u(t) ≥ c‖u‖}.

Observe that, for u ∈ K,

f(t, u(t)) + γ(t)u(η(t)) ≤f(t, u(t)) + γ(t) max
s∈[a,b]

u(s), t ∈ I,

f(t, u(t)) + γ(t) min
t∈[a,b]

u(t) ≤f(t, u(t)) + γ(t)u(η(t)), t ∈ [a, b].

Hence, take

g ≡1; fi = f, mi = ni = 1, i = 1, 2;

α11[u] =β11[u] = min
t∈[a,b]

u(t),

α21[u] =β21[u] = max
s∈[a,b]

u(s),

δ11(t) =δ21(t) = θ, γ11(t) = γ21(t) = γ(t).
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With these definitions we obtain

ϕ1[u] =
(

min
t∈[a,b]

u(t), min
t∈[a,b]

u(t)
)
,

ϕ2[u] =( max
t∈[a,b]

u(t), max
t∈[a,b]

u(t)),

ψ1[u] =ψ2[u] =

(∫ 1

0

|k(t, s)|γ(s)ds, θ

)
,

M1 =

(
m1 θ
m1 θ

)
, r(M1) = m1 + θ,

M2 =

(
m2 θ
m2 θ

)
, r(M2) = m2 + θ,

Kϕ11
(s) = Kϕ12

(s) = min{a(1− s), s(1− b)},

Kϕ21
(s) = Kϕ22

(s) =


s(1− a), 0 ≤ s ≤ a,
s(1− s), a ≤ s ≤ b,
b(1− s), b ≤ s ≤ 1.

where

m1 = min
t∈[a,b]

∫ 1

0

|k(t, s)|γ(s)ds and m2 = max
t∈[a,b]

∫ 1

0

|k(t, s)|γ(s)ds.

Observe that, with these definitions, conditions (C1)–(C7), (C9) and (C10) are satis-
fied. Assume also that r(M1) < 1/min{a, 1− b} and r(M2) < 1. Then we have that
(C8) is also satisfied.

If we rewrite the condition (I1ρ) in terms of the choices we have made, we get

(Id−M2)−1 =
1

1−m2 − θ

(
1− θ θ
m2 1−m2

)
,

∫ 1

0

Kϕ2
(s)g(s)ds =

(
−a

3

6
+
b3

6
− b2

2
+
b

2

)
(1, 1),

(Id−M2)−1
∫ 1

0

Kϕ2(s)g(s)ds =
−a

3

6 + b3

6 −
b2

2 + b
2

1−m2 − θ
(1, 1) ,

σ(t) =
1

2
t(1− t),

and condition (I1ρ) becomes

f−ρ,ρ sup
t∈I

(
−a

3

6 + b3

6 −
b2

2 + b
2

1−m2 − θ

[∫ 1

0

|k(t, s)|γ(s)ds+ θ

]
+

1

2
t(1− t)

)
< 1.

Of course, a sufficient condition in order for (I1ρ) to be satisfied, which is easier to
check, is

f−ρ,ρ

(
−a

3

6 + b3

6 −
b2

2 + b
2

1−m2 − θ

[∫ 1

0

s(1− s)γ(s)ds+ θ

]
+

1

8

)
< 1.
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If we rewrite the condition (I0ρ) in terms of the choices we have made, we get

(Id−c1M1)−1 =
1

1− c1(m1 + θ)

(
1− c1θ c1θ
c1m1 1− c1m1

)
,

∫ 1

0

Kϕ1
(s)g(s)ds =

(
a− ab

2a− 2b+ 2
,

a− ab
2a− 2b+ 2

)
,

(Id−c1M1)−1
∫ 1

0

Kϕ1
(s)g(s)ds =

1

1− c1(m1 + θ)

(
a− ab

2a− 2b+ 2
,

a− ab
2a− 2b+ 2

)
∫ b

a

k(t, s)g(s)ds =
1

2

(
a2(t− 1)− t((b− 2)b+ t)

)
, a ≤ t ≤ b,

inf
t∈[a,b]

∫ b

a

k(t, s)g(s)ds =

{
1
2a(a− b)(a+ b− 2), a+ b ≤ 1,
1
2 (b− 1)(a− b)(a+ b), otherwise,

and condition (I0ρ) becomes

f1,ρ,ρ/c · inf
t∈[a,b]

(
1

1− c1(m1 + θ)

a− ab
2a− 2b+ 2

[∫ 1

0

|k(t, s)|γ(s)ds+ θ

]
+
(
a2(t− 1)− t((b− 2)b+ t)

))
> 1. (5.2)

A sufficient condition in order for (I0ρ) to be satisfied is

f1,ρ,ρ/c

(
1

1− c1(m1 + θ)

a− ab
2a− 2b+ 2

[∫ 1

0

min{a(1− s), s(1− b)}γ(s)ds+ θ

]
+ inf
t∈[a,b]

(
a2(t− 1)− t((b− 2)b+ t)

))
> 1. (5.3)

Example 5.1. Let us now consider a particular case. Take f(t, u) = tu2, γ(t) =
t(1− t) + 1

4 , θ = 1/2 in the BVP (5.1). Fix ρ1 = 1, ρ2 = 28, a = 1/4, b = 3/4. With

these data, we have c = 1/4, f−ρ1,ρ12 = ρ1 = 1, f1,ρ2,ρ2/c = ρ2/4 = 7.

m1 =
43

1024
u 0.0419922, m2 =

11

192
u 0.0572917.

Condition (I1ρ1) is

f−ρ1,ρ12 sup
t∈I

(
31

85

[
1

24
(t− 1)t(2(t− 1)t− 5) +

1

2

]
+

1

2
t(1− t)

)
< 1.

where

sup
t∈I

(
31

85

[
1

24
(t− 1)t(2(t− 1)t− 5) +

1

2

]
+

1

2
t(1− t)

)
=

5357

16320
u 0.328248
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so condition (I1ρ1) is satisfied and condition (I0ρ2) becomes

f1,ρ2,ρ2/c · inf
t∈[a,b]

( 256

3541

[ 1

24
(t− 1)t(2(t− 1)t− 5) +

1

2

]
+
( 1

16
(t− 1)− t(t− 15

16
)
))

> 1,

where

inf
t∈[a,b]

(
256

3541

[
1

24
(t− 1)t(2(t− 1)t− 5) +

1

2

]
+

(
1

16
(t− 1)− t

(
t− 15

16

)))
=

4651

28328
u 0.164184,

therefore condition (I0ρ2) is satisfied.
Therefore (S2) in Theorem 3.6 is satisfied and the BVP (5.1) has at least a solution

which is positive in [1/4, 3/4].

We now apply Theorem 4.9 to the BVP

−u′′(t) + u(t) = f(t, u(t)) + θ u(η(t)), u(0) = u(1), u′(0) = u′(1), (5.4)

where θ ∈ (0, 1/2], f satisfies the L∞-Carathéodory conditions and η : I → I is a
measurable function such that for a fixed [a, b] ⊂ (0, 1) satisfies η(I) ⊂ [a, b]. We
rewrite sufficient conditions according to Remarks 4.10–4.12, for the points (1)− (3)
to be satisfied. Firstly, problem (5.4) is equivalent to

u(t) =

∫ 1

0

k(t, s) [f(s, u(s)) + θu(η(s))] ds,

where

k(t, s) =

{
− e

s−t+1+et−s

2−2e , 0 ≤ s ≤ t ≤ 1,

− e
s−t+e−s+t+1

2−2e , 0 < t < s ≤ 1.

In this case, we have that

ϕ1[u] =( min
t∈[a,b]

u(t), 0),

ϕ2[u] =( max
t∈[a,b]

u(t), 0),

ψ1[u] =ψ2[u] = (θ, 0) .

Let us bound ‖L2‖ from above, that is

L2u(t) =

∫ 1

0

|k(t, s)|u(s)ds ≤
∫ 1

0

|k(t, s)|ds‖u‖,

obtaining

‖L2‖ ≤ sup
t∈[0,1]

∫ 1

0

|k(t, s)|ds = 1.
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In this case, H2u(t) = θ maxs∈[a,b] u(s). Note that ‖H2‖∗ ≤ θ < 1 and H2(K ∩ P ) =
[0,+∞) ⊂ C(I) is a cone and therefore closed for the sum, which means, by Re-
mark 4.4, that (Id−H2)−1 maps K ∩ P to itself. Furthermore, we have that, for
θ ≤ 1/2,

(Id−H2)−1u(t) = u(t) +
θ

1− θ
max
s∈[a,b]

u(s), t ∈ [0, 1],

which satisfies (Id−H2)−1u ≤ (Id−H2)−1v, (Id−H2)−1(λu) ≤ λ(Id−H2)−1u for
every u ≤ v, u, v ∈ P ∩K, λ ∈ R+. Also we have ‖(Id−H2)−1‖ ≤ 1/(1− θ). On the
other hand, we have

inf
t∈[a,b]

∫ b

a

k(t, s)ds =
ea−b+1 − eb−a + 1− e

2− 2e
.

With these values, we have

(1) 0 ≤ f02 < 1− θ,
(2) 0 ≤ 2− 2e

ea−b+1 − eb−a + 1− e
< f1,0 ≤ ∞,

(3) 0 ≤ 2− 2e

ea−b+1 − eb−a + 1− e
< f1,∞ ≤ ∞.

Example 5.2. Consider again f(t, u) = tu2, a = 1/4, b = 3/4; this time in BVP (5.4).
We have that f02 = f1,0 = 0 and f∞2 = f1,∞ = +∞. Hence, the conditions (1) and
(3) in Theorem 4.9 are satisfied and therefore, by Lemma 3.1, the BVP (5.4) has at
least a nontrivial solution.
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