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∗Department of Mathematics, National Defence Academy
Khadakwasla, Pune, India

E-mail: ravindra.bisht@yahoo.com

∗∗University of Nis, Faculty of Sciences and Mathematics

Visegradska 33, 18000 Nis, Serbia

E-mail: vrakoc@sbb.rs

Abstract. In this paper, we show that generalized Meir-Keeler type contractive definitions are

strong enough to generate a fixed point but do not force the mapping to be continuous at the fixed
point. Thus we provide more answers to the open question posed by B.E. Rhoades in the paper

Contractive definitions and continuity, Contemporary Mathematics 72(1988), 233-245.
Key Words and Phrases: Fixed point, (ε− δ) contractions, power contraction, orbital continuity.

2010 Mathematics Subject Classification: 47H09, 54E50, 47H10, 54E40.

1. Introduction

A fixed point theorem is one which guarantees the existence of a fixed point of
mapping under suitable assumptions both on the space and the mapping. Apart from
ensuring the existence of a fixed point, it often becomes essential to prove the unique-
ness of the fixed point. Besides, from a computational point of view, an algorithm
for calculating the value of the fixed point is desirable. Often such algorithms involve
iterates of the mapping.

The questions about the existence, uniqueness and approximation of a fixed point
provide three significant features of a general fixed point theorem. Most of the fixed
point theorems for contractive mappings answer to all the three questions mentioned
above [30]. Meanwhile, a more complete study (data dependence, well-posedness,
Ulam-Hyers stability, Ostrowski property) was recently proposed in [27].

In 1988, Rhoades [25] compared 250 contractive definitions and showed that ma-
jority of the contractive definitions does not require the mapping to be continuous in
the entire domain. However, in all the cases the mapping is continuous at the fixed
point. He further demonstrated that the contractive definitions force the mapping to
be continuous at the fixed point though continuity was neither assumed nor implied
by the contractive definitions. In [3] Bryant proved that power contraction (finite
compositions of the mapping) of a complete metric space need not imply continuity
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of the mapping. But the example presented in his paper is continuous at the fixed
point.

The question whether there exists a contractive definition which is strong enough
to generate a fixed point but does not force the mapping to be continuous at the fixed
point was reiterated by Rhoades in [26] as an existing open problem. The question
of the existence of contractive mappings which are discontinuous at their fixed points
was settled in the affirmative by Pant [18]. In order to achieve his goal he employed
a combination of an (ε− δ) condition and a φ-contractive condition to prove a fixed
point in which the fixed point may be a point of discontinuity. In this paper we
show that some contractive definitions which include power contractions need not be
continuous at the fixed point. Thus we provide more answers to the open question
posed in [26].

In [7] Jachymski listed some Meir-Keeler type conditions and established relations
between them. Further he gave some new Meir-Keeler type conditions ensuring a
convergence of the successive approximations. In all that follows T is a self-mapping
on metric space (X, d). For i ∈ {1, . . . , 5}, we consider:

[Ai] for a given ε > 0 there exists a δ(ε) > 0 such that, for any x, y ∈ X,

ε ≤ mi(x, y) < ε+ δ implies d(Tx, Ty) < ε;

[Bi] for a given ε > 0 there exists a δ(ε) > 0 such that, for any x, y ∈ X,

ε < mi(x, y) < ε+ δ implies d(Tx, Ty) ≤ ε;

[Ci] d(Tx, Ty) < mi(x, y), for any x, y ∈ X with mi(x, y) > 0, where
m1(x, y) = d(x, y),
m2(x, y) = max{d(x, Tx), d(y, Ty)},
m3(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

m4(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
,

m5(x, y) = max

{
d(x, y),

k[d(x, Tx) + d(y, Ty)]

2
,
k[d(x, Ty) + d(y, Tx)]

2

}
, 0 ≤ k < 1.

Condition A1 is studied by Meir-Keeler [16] and B1 has been considered by
Matkowski [14]. By considering the common features of various contractive defini-
tions several authors introduced some new contractive definitions which yielded new
fixed point theorems (for various contractive definitions of Meir-Keeler type one may
see [4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 31]).

It is well-known that A1 =⇒ A3 =⇒ A4 =⇒ A5 and Ai =⇒ (Bi ∧ Ci), for i =
1, 2, 3, 4, 5 but not conversely.

In this paper, we study the following condition which subsumes most of the con-
ditions stated above.

m6(x, y) = max

{
d(x, y), ad(x, Tx) + (1− a)d(y, Ty), (1− a)d(x, Tx) + ad(y, Ty),

b[d(x, Ty) + d(y, Tx)]

2

}
,

where 0 < a < 1, 0 ≤ b < 1.



GENERALIZED MEIR-KEELER TYPE CONTRACTIONS 59

Further, we do not assume any kind of continuity condition on the mapping. Our
results improve and generalize many fixed point theorems existing in the literature
[1, 2, 6, 7, 10, 13, 14, 15, 16, 18, 19].

It may be observed that an (ε − δ) contractive condition does not ensure the
existence of a fixed point. The following example [19] illustrates this fact.
Example 1.1. Let X = [0, 2] and d be the usual metric on X. Define T : X → X by

T (x) =
1 + x

2
if x ∈ [0, 1], T (x) = 0 if x ∈ (1, 2].

Then T satisfies condition (i) of Theorem 2.1 (below) with δ(ε) = 1 for ε ≥ 1 and
δ(ε) = 1− ε for ε < 1 but T is a fixed point free mapping.

Therefore, to ensure the existence of fixed points under condition (i) of Theorem 2.1
(below), an additional condition is necessarily required either on δ or on the mapping.
These additional conditions may assume various forms:

(A) δ is assumed lower semicontinuous [8];
(B) δ is assumed nondecreasing [20];
(C) By assuming relatively strong conditions on the continuity of mapping [21, 22];
(D) By assuming corresponding φ-contractive condition but without additional

hypothesis on φ and ε [1, 18].

2. Main results

Our first main result is the following.
Theorem 2.1. Let (X, d) be a complete metric space. Let T be a self-mapping on X
such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m6(x, y) < ε+δ implies
d(Tx, Ty) ≤ ε;

(ii) d(Tx, Ty) < m6(x, y), whenever m6(x, y) > 0.

Then T has a unique fixed point, say z, and Tnx → z for each x ∈ X. Moreover, T
is continuous at z iff limx→zm6(x, z) = 0.
Proof. Let x0 be any point in X. Define a sequence {xn} in X given by the rule
xn+1 = Tnx0 = Txn and cn = d(xn, xn+1) for all n ∈ N

⋃
{0}. Then by (ii)

cn = d(xn, xn+1) = d(Txn−1, Txn) < m6(xn−1, xn) = cn−1.

Thus {cn} is a strictly decreasing sequence of positive real numbers and, hence, tends
to a limit c ≥ 0. If possible, suppose c > 0. Then there exists a positive integer k ∈ N
such that n ≥ k implies

c < cn < c+ δ(c).

It follows from (i) and cn < cn−1 that cn ≤ c, for n ≥ k, which contradicts the above
inequality. Thus we have c = 0.

We shall show that {xn} is a Cauchy sequence. Fix an ε > 0. Without loss of
generality, we may assume that δ(ε) < ε. Since cn → 0, there exists k ∈ N such that
cn <

1
2δ, for n ≥ k.

Following Jachymski [7] we shall use induction to show that, for any n ∈ N,

d(xk, xk+n) < ε+
1

2
δ. (2.1)
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Inequality (2.1) holds for n = 1. Assuming (2.1) is true for some n we shall prove it
for n+ 1. By the triangle inequality, we have

d(xk, xk+n+1) ≤ d(xk, xk+1) + d(xk+1, xk+n+1).

Observe that it suffices to show that

d(xk+1, xk+n+1) ≤ ε.
To show it we shall prove that M(xk, xk+n) ≤ ε+ δ, where

m6(xk, xk+n) = max

{
d(xk, xk+n), ad(xk, Txk) + (1− a)d(xk+n, Txk+n),

(1− a)d(xk, Txk) + ad(xk+n, Txk+n),
b[d(xk, Txk+n) + d(xk+n, Txk)]

2

}
.

By the induction hypothesis, we get

d(xk, xk+n) < ε+
1

2
δ,

ad(xk, xk+1) + (1− a)d(xk+n, xk+n+1) <
a

2
δ +

(1− a)

2
δ =

1

2
δ,

(1− a)d(xk, xk+1) + ad(xk+n, xk+n+1) <
(1− a)

2
δ +

a

2
δ =

1

2
δ.

Also,
b[d(xk, Txk+n+1) + d(xk+1, Txk+n)]

2

≤ b[d(xk, xk+n) + d(xk+n+1, xk+n) + d(xk, xk+1) + d(xk, xk+n)]

2

<
[d(xk, xk+n) + d(xk+n+1, xk+n) + d(xk, xk+1) + d(xk, xk+n)]

2
< ε+ δ.

Thus M(xk, xk+n) < ε+ δ so by (ii) d(xk+1, xk+n+1) ≤ ε, completing the induction.
Hence (2.1) implies that {xn} is a Cauchy sequence. Since X is complete, there exists
a point z ∈ X such that xn → z as n → ∞. Also Txn → z. We claim that Tz = z.
For if Tz 6= z, using (ii) we get

d(Tz, Txn) < max

{
d(z, xn), ad(z, Tz) + (1− a)d(xn, Txn), (1− a)d(z, Tz)

+a(d(xn, Txn),
b[d(z, Txn) + d(xn, T z)]

2

}
.

On letting n→∞ this yields,

d(Tz, z) ≤ max

{
ad(z, Tz), (1− a)d(z, Tz),

b[d(z, Tz)]

2

}
,

that is, Tz = z and z is a fixed point of T . Uniqueness of the fixed point follows
easily.
Now, let T be continuous at the fixed point z and xn → z. Then Txn → Tz = z.
Hence

lim
n
m6(xn, z) = lim

n
max

{
d(xn, z), ad(xn, Txn) + (1− a)d(z, Tz),
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(1− a)d(xn, Txn) + ad(z, Tz),
b[d(xn, T z) + d(z, Txn)]

2

}
= 0.

On the other hand, if limxn→zm6(xn, z) = 0, then d(xn, Txn) → 0 as xn → z. This
implies that Txn → z = Tz, i.e., T is continuous at z. This concludes the theorem. �
Remark 2.2. The last part of Theorems 2.1 can alternatively be stated as: T is
discontinuous at z iff limx→zm6(x, z) 6= 0.

Theorem 2.1 is also true if we take a = 0, b = 1 in m6(x, y).
Corollary 2.3. Let (X, d) be a complete metric space. Let T be a self-mapping on
X such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m′6(x, y) < ε+δ implies
d(Tx, Ty) ≤ ε;

(ii) d(Tx, Ty) < m′6(x, y), whenever

m′6(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
> 0.

Then T has a unique fixed point, say z, and Tnx→ z for each x ∈ X. Moreover,
T is continuous at z iff limx→zm

′
6(x, z) = 0.

The following example [18] illustrates the above theorem:
Example 2.4. Let X = [0, 2] and d be the usual metric on X. Define T : X → X by

T (x) = 1 if x ∈ [0, 1], T (x) = 0 if x ∈ (1, 2].

Then T satisfies the conditions of Theorem 2.1 and has a unique fixed point x = 1
at which T is discontinuous. The mapping T satisfies condition (i) with δ(ε) = 1 for
ε ≥ 1 and δ(ε) = 1− ε for ε < 1. It can also be easily seen that limx→1m6(x, 1) 6= 0
and T is discontinuous at the fixed point x = 1.

The following theorem shows that power contraction allows the possibility of dis-
continuity at the fixed point. In the next theorem we denote:

m′′6(x, y) = max

{
d(x, y), ad(x, T qx) + (1− a)d(y, T qy),

(1− a)d(x, T qx) + ad(y, T qy),
b[d(x, T qy) + d(y, T qx)]

2

}
,

where 0 < a < 1 and 0 ≤ b < 1 and q ∈ N.
Theorem 2.5. Let (X, d) be a complete metric space. Let T be a self-mapping on X
such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m′′6(x, y) < ε + δ
implies d(T qx, T qy) ≤ ε;

(ii) d(T qx, T qy) < m′′6(x, y), whenever m′′6(x, y) > 0.

Then T has a unique fixed point, say z, and Tnx→ z for each x ∈ X.
Proof. By Theorem 2.1, T q has a unique fixed point z ∈ X; i.e., T q(z) = z. Then
T (z) = T (T q(z)) = T q(T (z)) and so T (z) is a fixed point of T q. Since the fixed point
of T q is unique, Tz = z. To prove the uniqueness, we assume that y is another fixed
point of T . Then Ty = y and so T q(y) = y. Again by the uniqueness of the fixed
point of T q, we have z = y. Hence z is a fixed point of T .
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Recall that the set O(x;T ) = {Tnx : n = 0, 1, 2, . . .} is called the orbit of the
self-mapping T at the point x ∈ X.
Definition 2.6. A self-mapping T of a metric space (X, d) is called orbitally contin-
uous at a point z ∈ X if for any sequence {xn} ⊂ O(x;T ) (for some x ∈ X) xn → z
implies Txn → Tz as n→∞.

Every continuous self-mapping of a metric space is orbitally continuous, but con-
verse need not be true (see Example 2.4 above).
Theorem 2.7. Let (X, d) be a complete metric space. Let T be a self-mapping on X
such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m6(x, y) < ε+δ implies
d(Tx, Ty) ≤ ε;

(ii) d(Tx, Ty) < m6(x, y), whenever m6(x, y) > 0.

Suppose T is orbitally continuous. Then T has a unique fixed point, say z, and
Tnx→ z for each x ∈ X. Moreover, T is continuous at z iff limx→zm6(x, z) = 0.
Proof. Let x0 be any point in X. Define a sequence {xn} in X given by the rule
xn+1 = Tnx0 = Txn. Then following the proof of Theorem 2.1 we conclude that
{xn} is a Cauchy sequence. Since X is complete, there exists a point z ∈ X such
that xn → z as n → ∞. Also Txn → z. Orbital continuity of T implies that
limn→∞ Txn = Tz. This yields Tz = z, that is, z is a fixed point of T . Uniqueness of
the fixed point follows from (ii). This concludes the theorem.

In the next theorem, we replace the orbital continuity of the mapping T by conti-
nuity condition on T p, where p ≥ 2 is an integer.
Theorem 2.8. Let (X, d) be a complete metric space. Let T be a self-mapping on X
such that such that T p is continuous for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m6(x, y) < ε+δ implies
d(Tx, Ty) ≤ ε;

(ii) d(Tx, Ty) < m6(x, y), whenever m6(x, y) > 0.

Then T has a unique fixed point, say z, and Tnx → z for each x ∈ X. Moreover, T
is continuous at z iff limx→zm6(x, z) = 0.
Proof. Let x0 be any point in X. Define a sequence {xn} in X given by the rule
xn+1 = Tnx0 = Txn. Then following the proof of above theorem we conclude that
{xn} is a Cauchy sequence. Since X is complete, there exists a point z ∈ X such
that xn → z as n→∞. Also Txn → z and T pxn → z. By continuity of T p, we have
T pxn → T pz. This implies T pz = z. We claim that Tz = z. For if Tz 6= z, we get

d(Tz, z) = d(Tz, T pz) < m6(z, T p−1z) = d(T pz, T p−1z);

d(T pz, T p−1z) < m6(T p−1z, T p−2z) = d(T p−1z, T p−2z);

...

d(T 2z, Tz) < m6(Tz, z) = d(Tz, z),

a contradiction. Thus z is a fixed point of T . Uniqueness of the fixed point follows
from (ii).
Corollary 2.9. Let (X, d) be a complete metric space. Let T be a self-mapping on X
such that T q is continuous and satisfy the condition d(Tx, Ty) < d(x, y) for x 6= y,
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and d(Tx, Ty) ≤ φ[d(x, y)] for any x, y ∈ X, where φ : R+ → R+, satisfies the
condition

(φ) for a given ε > 0 there exists a δ > 0 such that, for any t,

ε < t < ε+ δ implies φ(t) ≤ ε.

Then T has a unique fixed point, say z, and Tnx→ z for each x ∈ X.
Proof. Obviously, such a mapping T satisfies B1 and C1, and hence B6 and C6.
Moreover, T q is continuous so for q = 1 the corollary is same as proved in [7]. For
q ≥ 2 apply Theorem 2.8 (above) to get the result.
Remark 2.10. The above proved theorems unify and improve the results due to Bisht
and Pant [1], Boyd and Wong [2], Ćirić [4, 5], Jachymski [7], Kannan [9], Kuczma et
al. [10], Maiti and Pal [13], Matkowski [14], Meir and Keeler [16] and Pant [18, 19].
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some improvements and thereby removing certain obscurities in the presentation.
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[5] Lj. B. Ćirić, A new fixed point theorem for contractive mapping, Publ. Inst. Math., 30(44)(1981),
25-27.

[6] K.J. Chung, On fixed point theorems of Meir and Keeler, Math. Japon., 23(1978), 381-383.

[7] J. Jachymski, Equivalent conditions and Meir-Keeler type theorems, J. Math. Anal. Appl.,
194(1995), 293-303.

[8] G. Jungck, K.B. Moon, S. Park, B.E. Rhoades, On generalizations of the Meir-Keeler type

contraction maps: Corrections, J. Math. Anal. Appl., 180(1993), 221-222.
[9] R. Kannan, Some results on fixed points, II, Amer. Math. Monthly, 76(1969), 405-408.

[10] M. Kuczma, B. Choczewski, R. Ger, Iterative Functional Equations, Encyclopedia of Mathe-

matics and its Applications, Vol. 32, Cambridge Univ. Press, Cambridge, UK, 1990.
[11] A. Kumar, S.L. Singh, S.N. Mishra, M.M. Milovanovic-Arandjelovic, Coincidences and fixed

points of new Meir-Keeler type contractions and applications, Fixed Point Theory, 15(2014),
no. 1, 117-134.

[12] T.C. Lim, On Characterizations of Meir-Keeler contractive maps, Nonlinear Anal., 46(2001),

113-120.
[13] M. Maiti, T.K. Pal, Generalizations of two fixed point theorems, Bull. Cal. Math. Soc., 70(1978),

59-61.

[14] J. Matkowski, Integrable solutions of functional equations, Diss. Math., 127(1975), 1-68.
[15] J. Matkowski, R. Wegrzyk, On equivalence of some fixed point theorems for self mappings of

metrically convex spaces, Boll. Un. Mat. Ital., A(5), 15(1978), 359-369.

[16] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-
329.

[17] M. Nabieia, T. Ezzati, A novel fixed point theorem for the k-Meir-Keeler function, Quaestiones

Math., 39(2016), no. 2, 245-250.
[18] R.P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240(1999), 284-289.

[19] R.P. Pant, A comparison of contractive definitions, J. Indian Math. Soc., 72(2005), 241-249.



64 RAVINDRA K. BISHT AND VLADIMIR RAKOČEVIĆ
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