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Abstract. In this paper, we first define and study inverse-strongly monotone mappings in general
metric spaces. Then, we prove the existence theorem of solutions for variational inequalities involving

such mappings. Finally, we introduce an iterative process for finding a common element of the set of

fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem
for inverse-strongly monotone mappings in CAT(0) metric spaces.
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1. Introduction

Let (X, d) be a metric space. Berg and Nikolaev [3] introduced the concept of

quasilinearization in metric spaces. Let us formally denote a pair (a, b) ∈ X×X by
−→
ab

and call it a vector. Then quasilinearization is the map 〈·, ·〉 : (X×X)×(X×X)→ R
defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, (a, b, c, d ∈ X). (1.1)

It is easily seen that

〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉,

for all a, b, c, d, x ∈ X.

∗Corresponding author.
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Using the concept of quasilinearization, we may formulate a variational inequality
(VI) in metric spaces as finding a point x∗ with the property

x∗ ∈ C and 〈
−−−−→
x∗Tx∗,

−−→
xx∗〉 ≥ 0, ∀x ∈ C, (1.2)

where C is a nonempty subset of a metric space X and T : C → X is a mapping. The
set of solutions of the variational inequality problem (1.2) is denoted by VI(C, T ).
It is easy to verify that if X = H is a Hilbert space, then VI (1.2) reduces to the
following VI: find x∗ such that

x∗ ∈ C and 〈x∗ − Tx∗, x− x∗〉 ≥ 0, ∀x ∈ C. (1.3)

Various forms of VI (1.3) have been extensively studied by many authors (see, e.g.,
[1, 7, 12, 19, 6] and references therein).

The purpose of this paper is to investigate existence and approximation of solutions
for VI (1.2) when X is a complete CAT(0) space and T : C → X is a non-self inverse-
strongly monotone mappings. To the best of our knowledge, this would probably be
the first time in the literature that finding solutions of variational inequalities of the
kind (1.2) is investigated in the framework of metric spaces without linear structure.

2. Preliminaries

A metric space (X, d) is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane. For other equivalent definitions and basic properties, we refer the reader to
standard texts such as [2, 4]. Complete CAT(0) spaces are often called Hadamard
spaces. Let x, y ∈ X and λ ∈ [0, 1]. We write λx⊕ (1− λ)y for the unique point z in
the geodesic segment joining from x to y such that

d(z, x) = (1− λ)d(x, y) and d(z, y) = λd(x, y). (2.1)

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] = {λx⊕ (1− λ)y : λ ∈ [0, 1]}.

A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C. The metric
space X is said to satisfy the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 6 d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is known [3, Corollary 3] that a geodesically connected metric
space is CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

The concept of ∆-convergence introduced by Lim [17] in 1976 was shown by Kirk
and Panyanak [15] in CAT(0) spaces to be very similar to the weak convergence in
Hilbert space setting. Next, we give the concept of ∆-convergence and collect some
basic properties. Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X,
we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).
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The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known from Proposition 7 of [9] that in a CAT(0) space, A({xn}) consists of
exactly one point.
A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk

}) = {x} for every
subsequence {xnk

} of {xn}. Uniqueness of asymptotic center implies that CAT(0)
spaceX satisfies Opial’s property, i.e., for given {xn} ⊂ X such that {xn}∆-converges
to x and given y ∈ X with y 6= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y). (2.2)

We need following lemmas in the sequel.

Lemma 2.1. [15] Every bounded sequence in a complete CAT(0) space always has a
∆-convergent subsequence.

Lemma 2.2. [10] If C is a closed convex subset of a complete CAT(0) space and if
{xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.3. [13] Let X be a complete CAT(0) space, {xn} be a sequence in X and
x ∈ X. Then {xn} ∆-converges to x if and only if lim supn→∞〈−−→xxn,−→xy〉 ≤ 0 for all
y ∈ X.

Lemma 2.4. [11, Lemma 2.5] A geodesic space X is a CAT(0) space if and only if
the following inequality

d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y), (2.3)

is satisfied for all x, y, z ∈ X and λ ∈ [0, 1].

Let C be a nonempty closed convex subset of a complete CAT(0) space X. It is
known that for any x ∈ X there exists a unique point u ∈ C such that

d(x, u) = inf
y∈C

d(x, y).

The mapping PC : X → C defined by PCx = u is called the metric projection from
X onto C. It follows from Proposition 2.4 of [4] that PC is nonexpansive and for each
x ∈ X,

PC [λPCx⊕ (1− λ)x] = PCx. (2.4)

Recently, Dehghan and Rooin [8] obtained the following characterization of metric
projection in CAT(0) metric spaces.

Theorem 2.5. [8, Theorem 2.2] Let C be a nonempty convex subset of a complete
CAT(0) space X, x ∈ X and u ∈ C. Then

u = PCx if and only if 〈−→ux,−→yu〉 ≥ 0, for all y ∈ C.
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3. Inverse-strongly monotone mappings in CAT(0) metric spaces

In this section, we present an appropriate definition of inverse-strongly monotone
mappings in metric space. We prove that the fixed points set of such mappings is
nonempty closed and convex, which will be useful to study an existence of solutions
of variational inequalities in the next section.

Let C be a nonempty subset of a metric space X. Then a mapping T : C → X is
called nonexpansive if

d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ C. A point x ∈ C is called a fixed point of T if x = Tx. We denote
by F (T ) the set of all fixed points of T . Kirk [16, Theorem 5.1] showed that every
nonexpansive self-mapping defined on a bounded closed convex subset of a complete
CAT(0) space always has a fixed point. Also, F (T ) is closed and convex.

To obtain an appropriate definition for inverse-strongly monotone mappings in
metric spaces, we first recall their definition in Hilbert spaces. Let H be a real
Hilbert space with an inner product 〈·, ·〉 and a norm ‖ · ‖ and C be a nonempty
subset of H. A mapping A : C → H is called an α-inverse-strongly monotone [5, 18]
if there exists a positive real number α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C. (3.1)

Putting T = I−A, where I is identity map on C, we see that I−T is α-inverse-strongly
monotone.

Definition 3.1. Let C be a nonempty subset of a metric space X and T : C → X
be a mapping. Let us formally say that “I −T is inverse-strongly monotone” if there
exists a positive real number α > 0 such that

d2(x, y)− 〈
−−−→
TxTy,−→xy〉 ≥ α ΦT (x, y), ∀x, y ∈ C, (3.2)

where ΦT (x, y) = d2(x, y)+d2(Tx, Ty)−2〈
−−−→
TxTy,−→xy〉. If (3.2) holds, we also say that

I − T is a α-inverse-strongly monotone.

Note that I − T is just a symbol. Furthermore, the definition of inverse-strongly
monotone mapping finds its origin in Hilbert spaces. If X is a CAT(0) space the for
every mapping T : C → X and every x, y ∈ C, the quantity ΦT (x, y) is nonnegative
by the Cauchy-Schwarz and AGM inequality.

Example 3.2. Consider R2 with the usual Euclidean metric d. Let X = R2 be an
R-tree with the radial metric dr, where dr(x, y) = d(x, y) if x and y are situated on
a Euclidean straight line passing through the origin and dr(x, y) = d(x,0) + d(y,0)
otherwise (see [14] and [20, page 65]). We put p = (0, 1), q = (1, 0) and C = A∪B∪D,
where

A = {(0, t) : t ∈ [2/3, 1]}, B = {(t, 0) : t ∈ [2/3, 1]},
D = {(t, s) : t+ s = 1, t ∈ (0, 1)}
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and define T : C → C by

Tx =

 q x ∈ A,
p x ∈ B,
x x ∈ C.

We show that I − T is 1
4 -inverse-strongly monotone. For α = 1

4 the inequality (3.2)
is equivalent to

3d2
r(x, y) + d2

r(Tx, x) + d2
r(Ty, y) ≥ d2

r(Tx, Ty) + d2
r(Tx, y) + d2

r(x, Ty). (3.3)

It is easy to verify that (3.3) holds when both of x and y are in A, B or D.
In the case that x = (0, t) ∈ A and y = (s, 0) ∈ B, the inequality (3.3) turns to the
following valid inequality:

3(t+ s)2 + (1 + t)2 + (1 + s)2 ≥ 4 + (1− s)2 + (1− t)2.

If x = (0, t) ∈ A and y = (u, v) ∈ D, then the inequality (3.3) is equivalent to

2
(
t+
√
u2 + v2

)2

+ (1 + t)2 ≥ 2
(

1 +
√
u2 + v2

)2

,

which can be obtained by simple calculation. By the symmetry we conclude that T
is 1

4 -inverse-strongly monotone. Note that T is not a nonexpansive mapping. In fact,
if x = (0, 2/3) and y = (2/3, 0), then we have

dr(Tx, Ty) = dr(p, q) = 2 >
4

3
= dr(x, y).

Lemma 3.3. Let X be a CAT(0) space, a, b, c, d ∈ X and λ ∈ [0, 1]. Then

d2(λa⊕ (1− λ)b, λc⊕ (1− λ)d) ≤ λ2d2(a, c) + (1− λ)2d2(b, d)

+2λ(1− λ)〈−→ac,
−→
bd〉.

Proof. The assertion can be easily obtained by twice using (2.3). �

Proposition 3.4. Let C be a nonempty convex subset of a CAT(0) space X and
T : C → X be a mapping such that I−T is an α-inverse-strongly monotone. Assume
λ ∈ [0, 1] and define Tλ : C → X by Tλx = (1 − λ)x ⊕ λTx. If 0 < λ < 2α, then Tλ
is nonexpansive and F (Tλ) = F (T ).

Proof. By Lemma 3.3 and the fact that ΦT (x, y) is nonnegative, we have

d2(Tλx, Tλy) = d2((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy)

≤ (1− λ)2d2(x, y) + λ2d2(Tx, Ty) + 2λ(1− λ)〈−→xy,
−−−→
TxTy〉

= d2(x, y) + λ2
[
d2(x, y) + d2(Tx, Ty)− 2〈

−−−→
TxTy,−→xy〉

]
−2λ

[
d2(x, y)− 〈

−−−→
TxTy,−→xy〉

]
≤ d2(x, y) + λ2

[
d2(x, y) + d2(Tx, Ty)− 2〈

−−−→
TxTy,−→xy〉

]
−2αλΦT (x, y)

= d2(x, y)− λ [2α− λ] ΦT (x, y)

≤ d2(x, y).
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Thus, Tλ is nonexpansive. Since

d(x, Tλx) = λd(x, Tx), (3.4)

then Tλx = x if and only if Tx = x. �
If I−T is α-inverse-strongly monotone and p ∈ F (T ), then by a simple computation

we have

d2(Tx, p) ≤ d2(x, p) + (1− 2α)d2 (x, Tx) , (3.5)

for all x ∈ C.

Lemma 3.5. Let T : C → X be a mapping such that I − T is an α-inverse-strongly
monotone. If F (T ) 6= ∅, then F (PCT ) = F (T ).

Proof. Clearly, F (T ) ⊂ F (PCT ). Thus, we only need to show the converse inclusion.
Assume that x = PCTx, then for p ∈ F (T ) it follows from Theorem 2.5 that

d2(Tx, p) = d2(Tx, x) + d2(p, x) + 2〈
−−→
Txx,−→xp〉

= d2(Tx, x) + d2(p, x) + 2〈
−−−−−−−→
Tx(PCTx),

−−−−−−→
(PCTx)p〉

≥ d2(Tx, x) + d2(p, x). (3.6)

On the other hand, by (3.5), we have

d2(Tx, p) ≤ d2(x, p) + (1− 2α)d2(Tx, x).

This together with (3.6) implies that

2αd2(Tx, x) ≤ 0.

Therefore, x = Tx. �

Remark 3.6. The Lemma 3.5 is valid for nonexpansive mapping.

Theorem 3.7. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X and T : C → X be a mapping such that I − T is an α-inverse-
strongly monotone. Then, F (T ) is nonempty, closed and convex.

Proof. Let λ ∈ [1− 2α, 1) ∩ [0, 1). Using Proposition 3.4 and Remark 3.6, we have

F (T ) = F (Tλ) = F (PCTλ).

Since PC and Tλ are nonexpansive, then PCTλ is a nonexpansive self-mapping of C.
Therefore, Theorem 5.1 of [16] guarantees that F (PCTλ) 6= ∅. It is an easy task to
prove that F (S) is closed and convex for nonexpansive mapping S : C → C. �

Since it is not possible to formulate the concept of demiclosedness in a CAT(0)
setting, as stated in linear spaces, let us formally say that “I − T is demiclosed at
zero” if the conditions, {xn} ⊆ C, ∆- converges to x∗ and d(xn, Txn) → 0 imply
x∗ ∈ F (T ).

Theorem 3.8. Let C be a nonempty closed convex subset of a complete CAT(0) space
X and T : C → X be a mapping. If I − T is an α-inverse-strongly monotone, then
I − T is demiclosed at zero.
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Proof. Let {xn} ⊆ C is ∆-convergent to x∗ and d(xn, Txn) → 0. It follows respec-
tively from Lemma 2.2 and (3.4) that x∗ ∈ C and

d(xn, Tλxn) = (1− λ)d(xn, Txn)→ 0, (3.7)

where Tλ is as in Proposition 3.4. If x∗ 6= Tλx
∗, then by Opial’s property (2.2), we

have

lim sup
n→∞

d(xn, x
∗) < lim sup

n→∞
d(xn, Tλx

∗)

≤ lim sup
n→∞

[d(xn, Tλxn) + d(Tλxn, Tλx
∗)]

≤ lim sup
n→∞

d(xn, x
∗),

which is a contradiction. Hence, x∗ = Tλx
∗ and then by Proposition 3.4 x∗ = Tx∗. �

4. Existence and convergence theorems

Consider the variational inequality of finding a point x∗ with the property

x∗ ∈ C and 〈
−−−−→
x∗Tx∗,

−−→
xx∗〉 ≥ 0, ∀x ∈ C, (4.1)

where C is a closed convex subset of a complete CAT(0) metric space X and T : C →
X is a mapping such that I − T is an α-inverse-strongly monotone.

The purpose for this section is to prove an existence theorem for VI (4.1) and
to introduce an iterative algorithm to approximate common element of the set of
solutions of the VI (4.1) and the set of fixed points of a nonexpansive mapping. To
proceed in this direction, we need the following interesting lemma which can be used
for an arbitrary mapping T : C → X.

Lemma 4.1. Let C be a nonempty convex subset of a complete CAT(0) space X and
T : C → X be a mapping. Then,

V I(C, T ) = V I(C, Tλ),

where λ ∈ (0, 1] and Tλ : C → X is a mapping defined by Tλx = (1− λ)x⊕ λTx for
all x ∈ C.

Proof. Let u ∈ V I(C, Tλ). For each x ∈ C, it follows from (2.1) and (2.3) that

0 ≤ 2〈
−−−→
uTλu,

−→xu〉 = d2(Tλu, x)− d2(u, x)− d2(Tλu, u)

≤ (1− λ)d2(u, x) + λd2(Tu, x)− λ(1− λ)d2(u, Tu)− d2(u, x)− λ2d2(Tu, u)

= λ
[
d2(Tu, x)− d2(u, x)− d2(u, Tu)

]
= 2λ〈

−−→
uTu,−→xu〉,

which implies that u ∈ V I(C, T ).
For the converse let u ∈ V I(C, T ). Using Theorem 2.5, we conclude that u = PCTu.
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It follows from (2.4) that

PCTλu = PC [(1− λ)u⊕ λTu]

= PC [(1− λ)PCTu⊕ λTu]

= PCTu

= u.

Again by Theorem 2.5, we have u ∈ V I(C, Tλ). �

The following theorem guarantees the existence of solution for VI (4.1).

Theorem 4.2. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X and T : C → X be an α-inverse-strongly monotone. Then V I(C, T )
is nonempty, closed and convex.

Proof. Let 0 < λ ≤ 2α. It follows from Lemma 4.1 and Theorem 2.5 that

V I(C, T ) = V I(C, Tλ) = F (PCTλ),

where the last term is nonempty, closed and convex as mentioned in the second
paragraph of Section 3. �

Note that we may conclude Theorem 4.2 from Lemma 3.5, Theorems 2.5 and 3.7
by a similar way.

Next, we introduce an iterative scheme to approximate solutions of VI (4.1). Our
algorithm generates a sequence {xn} through the recursive formula{

yn = PC [βnxn ⊕ (1− βn)Txn]
xn+1 = PC [αnxn ⊕ (1− αn)Syn], n ≥ 0,

(4.2)

where the initial guess x0 is arbitrary and {αn} and {βn} are real control sequences
in the interval (0, 1).

To prove convergence theorem of (4.2),we need the following lemma.

Lemma 4.3. Let C be a nonempty closed convex subset of a complete CAT(0) space
X and {zn} be a sequence in X such that

d(zn+1, z) ≤ d(zn, z),

for all z ∈ C and n ≥ 0. Then, PCzn converges to some u ∈ C.

Proof. Put un = PCzn. For any m > n ≥ 1, we have

d2(um, un) = d2(zm, un)− d2(zm, um)− 2〈−−−→zmum,
−−−→umun〉.

By Theorem 2.5, we know that 〈−−−→zmum,
−−−→umun〉 ≥ 0. Thus,

d2(um, un) ≤ d2(zm, un)− d2(zm, um)

≤ d2(zn, un)− d2(zm, um). (4.3)

On the other hand,

d2(zm, um) ≤ d2(zm, un) ≤ d2(zn, un),

which implies that limn→∞ d2(zn, un) exists. Therefore, it follows from (4.3) that
{un} is Cauchy sequence and so converges to some u ∈ C. �



∆-CONVERGENCE THEOREMS 53

Theorem 4.4. Let C be a nonempty closed convex subset of a complete CAT(0) space
X, T : C → X be a mapping such that I − T is an α-inverse-strongly monotone and
S : C → X be a nonexpansive mapping such that F (S) ∩ V I(C, T ) 6= ∅. Let {xn} be
the sequence generated by (4.2). If αn ⊂ [α, γ] for some α, γ ∈ (0, 1) and βn ⊂ [β, δ]
for some β, δ ∈ (1− 2α, 1), then {xn} is ∆-convergent to q ∈ F (S)∩V I(C, T ), where
q = limn→∞ PF (S)∩V I(C,T )xn.

Proof. It follows from Theorem 2.5 and Lemma 3.5 that V I(C, T ) = F (PCT ) = F (T ).
Let p ∈ F (S) ∩ V I(C, T ). It follows from (2.3), (3.5) and nonexpansiveness of PC
that

d2(yn, p) = d2(PC [βnxn ⊕ (1− βn)Txn], PCp)

≤ d2(βnxn ⊕ (1− βn)Txn, p)

≤ βnd
2(xn, p) + (1− βn)d2(Txn, p)− βn(1− βn)d2(xn, Txn)

≤ βnd
2(xn, p) + (1− βn)

[
d2(xn, p) + (1− 2α)d2 (xn, Txn)

]
−βn(1− βn)d2(xn, Txn)

= d2(xn, p)− (1− βn)(βn − (1− 2α))d2(xn, Txn). (4.4)

Since S is nonexpansive, using (2.3) and (4.4), we have

d2(xn+1, p) ≤ d2(αnxn ⊕ (1− αn)Syn, p)

≤ αnd2(xn, p) + (1− αn)d2(Syn, p)− αn(1− αn)d2(xn, Syn)

≤ αnd2(xn, p) + (1− αn)d2(yn, p)− αn(1− αn)d2(xn, Syn)

≤ αnd2(xn, p) + (1− αn)
[
d2(xn, p)− (1− βn)(βn − (1− 2α))d2(xn, Txn)

]
− αn(1− αn)d2(xn, Syn)

= d2(xn, p)− (1− αn)(1− βn)(βn − (1− 2α))d2(xn, Txn)

− αn(1− αn)d2(xn, Syn). (4.5)

Thus, by the conditions 0 < α ≤ αn ≤ γ < 1 and (1 − 2α) < β ≤ βn ≤ δ < 1 for all
n ≥ 0, we have d(xn+1, p) ≤ d(xn, p), that is, the sequence {d(xn, p)} is decreasing
and so limn→∞ d(xn, p) exists. Moreover, from (4.5), we have

(1−γ)(1−δ)(β−(1−2α))d2(xn, Txn) ≤ (1− αn)(1− βn)(βn − (1− 2α))d2(xn, Txn)

≤ d2(xn, p)− d2(xn+1, p)

and

α(1− γ)d2(xn, Syn) ≤ αn(1− αn)d2(xn, Syn)

≤ d2(xn, p)− d2(xn+1, p),

which imply that

lim
n→∞

d(xn, Txn) = 0 and lim
n→∞

d(xn, Syn) = 0. (4.6)

Using (2.1), we obtain d(yn, xn) = (1− βn)d(xn, Txn)→ 0. Therefore,

d(xn, Sxn) ≤ d(xn, Syn) + d(Syn, Sxn)

≤ d(xn, Syn) + d(yn, xn)→ 0. (4.7)
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Since {xn} is bounded, it follows from Lemma 2.1 that ω∆(xn) 6= ∅, where

ω∆(xn) = {x ∈ X : xni
∆-converges to x for some subsequence {ni} of {n}}.

Next, we show that ω∆(xn) ⊂ F (S) ∩ V I(C, T ) and it is singleton. Let p ∈ ω∆(xn).
Then there exists a subsequence {xni

} of {xn} which ∆-converges to p. Using (4.6),
(4.7) and Theorem 3.8 (demiclosedness of S and T ), we get p ∈ F (S) ∩ V I(C, T )
and so ω∆(xn) ⊂ F (S) ∩ V I(C, T ). Let p, q ∈ ω∆(xn) and let {xni} and {xnj} be
subsequences of {xn} which ∆-converge to p and q, respectively. If p 6= q, then from
(2.2) and the fact that limn→∞ d(xn, p) exists for all p ∈ F (S) ∩ V I(C, T ), we have

lim
n→∞

d(xn, p) = lim sup
i→∞

d(xni
, p) < lim sup

i→∞
d(xni

, q)

= lim
n→∞

d(xn, q) = lim sup
j→∞

d(xnj
, q)

< lim sup
j→∞

d(xnj , p) = lim
n→∞

d(xn, p),

which is a contradiction. Hence, p = q and ω∆(xn) = {p}. Thus {xn} ∆-converges
to p.
Put un = PF (S)∩V I(C,T )xn. We show that p = limn→∞ un. Since p ∈ F (S)∩V I(C, T ),
it follows from Theorem 2.5 that

〈−−−→unxn,
−−→pun〉 ≥ 0.

By Lemma 4.3, {un} converges strongly to some u ∈ F (S) ∩ V I(C, T ). Also,

0 ≤ 〈−−−→unxn,
−−→pun〉

= 〈−−→unp,−−→pun〉+ 〈−−→pxn,−→pu〉+ 〈−−→pxn,−−→uun〉
≤ 〈−−→unp,−−→pun〉+ 〈−−→pxn,−→pu〉+ d(p, xn)d(u, un).

Taking lim supn→∞, using Lemma 2.3 and the fact that xn ∆-converges to p and
un → u, we obtain

0 ≤ 〈−→pu,−→up〉 = −d2(p, u),

which gives us p = u and the proof is complete. �

Definition 4.5. Let C be a nonempty subset of a CAT(0) space X. A mapping
T : C → X is called strict pseudo-contraction if there exists a constant 0 ≤ κ < 1
such that

d2(Tx, Ty) ≤ d2(x, y) + 4κd2

(
1

2
x⊕ 1

2
Ty,

1

2
y ⊕ 1

2
Tx

)
, (4.8)

for all x, y ∈ C. If (4.8) holds, we also say that T is a κ-strict pseudo-contraction.

By the definition of strict pseudo-contraction (4.8) and Lemma 3.3, we have

d2(Tx, Ty) ≤ d2(x, y) + 4κd2

(
1

2
x⊕ 1

2
Ty,

1

2
y ⊕ 1

2
Tx

)
≤ d2(x, y) + κd2(x, y) + κd2(Tx, Ty) + 2κ〈−→xy,

−−−→
TyTx〉,
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which is equivalent to

1− κ
2

(
d2(x, y) + d2(Tx, Ty)− 2〈

−−−→
TxTy,−→xy〉

)
≤ d2(x, y)− 〈

−−−→
TxTy,−→xy〉. (4.9)

Hence, I − T is 1−κ
2 -inverse-strongly monotone mapping and we have the following

corollary.

Corollary 4.6. Let C be a nonempty closed convex subset of a complete CAT(0) space
X, T : C → C be a κ-strict pseudo-contraction for some 0 ≤ κ < 1 and S : C → C
be a nonexpansive mapping such that F (S) ∩ F (T ) 6= ∅. Let {xn} be the sequence
generated by

xn+1 = αnxn ⊕ (1− αn)S[βnxn ⊕ (1− βn)Txn], n ≥ 0.

If αn ⊂ [α, γ] for some α, γ ∈ (0, 1) and βn ⊂ [β, δ] for some β, δ ∈ (κ, 1), then {xn}
converges weakly to q ∈ F (S) ∩ F (T ), where q = limn→∞ PF (S)∩F (T )xn.

Remark 4.7. From Theorem 4.4 and Corollary 4.6, we can respectively deduce The-
orem 3.1 and Theorem 4.1 of Takahashi and Toyoda [21] as a corollary.
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[21] W. Takahashi, T. Toyoda, Weak convergence theorems for nonexpansive mappings and mono-
tone mappings, J. Optim. Theory. Appl., 118(2003), 417-428.

[22] W. Takahashi, T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J.

Convex Anal., 5(1998), 45-56.
[23] H. Zhou, Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces,

Nonlinear Anal., 69(2008), 456-462.

Received: September 2, 2015; Accepted: February 12, 2016.


