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and Karapinar and Roldán-López-de-Hierro (J. Inequal. Appl. 2014:522(2014), 12 pages) besides
some others.

Key Words and Phrases: R-continuity; locally T -transitive binary relations; ϕ-contractions;

R-connected sets; fixed point.
2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

A variety of generalizations of the classical Banach contraction principle [4] is
available in the existing literature of metric fixed point theory. These generalizations
are obtained in the different directions such as:

(1) enlarging the class of ambient spaces,
(2) improving the underlying contraction condition,
(3) weakening the involved metrical notions (e.g. completeness, continuity etc).

Recently, Alam and Imdad [2, 3] obtained an interesting generalization of classical
Banach contraction principle by using an amorphous (arbitrary) binary relation. In
doing so, the authors introduced the relation-theoretic analogues of certain involved
metrical notions such as: contraction, completeness, continuity etc. In fact, under
the universal relation, such newly defined notions reduce to their corresponding usual
notions and henceforth relation-theoretic metrical fixed/coincidence point theorems
reduce to their corresponding classical fixed/coincidence point theorems (under the
universal relation).

Recall that given a nonempty set X, a subset R of X2 is called a binary relation
on X. For simplicity, we sometimes write xRy instead of (x, y) ∈ R. Given E ⊆ X
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and a binary relation R on X, the restriction of R to E, denoted by R|E , is defined
to be the set R ∩ E2 (i.e., R|E := R ∩ E2). Indeed, R|E is a relation on E induced
by R.

Out of various classes of binary relations in practice, the following ones are relevant
in the present context.

A binary relation R on a nonempty set X is called
• amorphous if R has no specific property at all,
• universal if R = X2,
• empty if R = ∅,
• reflexive if (x, x) ∈ R ∀ x ∈ X,
• symmetric if whenever (x, y) ∈ R then (y, x) ∈ R,
• antisymmetric if whenever (x, y) ∈ R and (y, x) ∈ R then x = y,
• transitive if whenever (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R,
• complete if (x, y) ∈ R or (y, x) ∈ R ∀ x, y ∈ X,
• partial order if R is reflexive, antisymmetric and transitive.

Throughout this paper, R stands for a nonempty binary relation but for the sake
of simplicity, we write only ‘binary relation’ instead of ‘nonempty binary relation’.
Also, N stands for the set of natural numbers, while N0 for the set of whole numbers
(i.e., N0 := N ∪ {0}).

The following family of control functions is introduced by Lakshmikantham and
Ćirić [13].

Φ =
{
ϕ : [0,∞)→ [0,∞) : ϕ(t) < t for each t > 0 and lim

r→t+
ϕ(r) < t for each t > 0

}
.

With a view to have a self-contained presentation, we recall two fixed point the-
orems involving nonlinear contractions for class Φ using partial order and transitive
binary relations respectively, which have inspired our results in the present paper. In
order to understand such results better, we recall firstly the relevant definitions and
thereafter state the corresponding results.
Definition 1.1 [15, 22, 7]. Let X be a nonempty set equipped with a partial order
�. A self-mapping T on X is called increasing or isotone or order-preserving if for
any x, y ∈ X,

x � y ⇒ T (x) � T (y).

The following notion is formulated by using a suitable property with a view to
avoid the necessity of the continuity requirement on the involved mapping specially
in the hypotheses of a fixed point theorem due to Nieto and Rodŕıguez-López [16].
Definition 1.2 [1]. Let (X, d) be a metric space equipped with a partial order
�. We say that (X, d,�) has ICU (increasing-convergence-upper bound) property if
every increasing convergent sequence in X is bounded above by its limit (as an upper
bound).

The following result, a variant of fixed point theorem of Nieto and Rodŕıguez-López
[16] under ϕ-contraction, is contained in many papers ( e.g.Wu and Liu ([27], Theorem
2.1), Samet et al. ([18], Remark 1.3), Kutbi et al. ([12], Theorem 5), Karapinar et al.
([9], Theorem 10) and Karapinar and Roldán-López-de-Hierro ([10], Theorem 1.2)).
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Theorem 1.3. Let (X, d) be a metric space equipped with a partial order � and T a
self-mapping on X. Suppose that the following conditions hold:

(a) (X, d) is complete,
(b) T is increasing,
(c) either T is continuous or (X, d,�) has ICU property,
(d) there exists x0 ∈ X such that x0 � T (x0),
(e) there exists ϕ ∈ Φ such that

d(Tx, Ty) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with x � y.
Then T has a fixed point. Moreover, if for all x, y ∈ X, there exists z ∈ X such that
x � z and y � z, then we obtain uniqueness of the fixed point.

The above result seems natural but the partial order relation is very restrictive.
Samet and Vetro [20] introduced the notion of F -invariant set and utilized the same
to prove some coupled fixed point results for generalized linear contractions in metric
spaces without partial order. In 2012, Sintunaravat et al. [21] introduced the notion
of transitive property and utilized the same to extend some Samet-Vetro coupled
fixed point theorems for nonlinear contractions. On the other hand, Kutbi et al. [12]
weakened the notion of F -invariant sets by introducing the notion of F -closed sets.
Recently, Karapinar et al. [9] proved some unidimensional versions of earlier coupled
fixed point results involving F -closed sets and then obtained such coupled fixed point
results as easy by using their corresponding (unidimensional) fixed point results. As
noticed in Alam and Imdad [3], the relation-theoretic metrical fixed/coincidence point
theorems combine the idea contained in Karapinar et al. [9] because the set M (utilized
by Karapinar et al. [9]) being subset of X2 is in fact a binary relation on X.

The following notions are unidimensional formulations of transitive property and
F -closed sets.
Definition 1.4 [9, 17]. We say that a nonempty subset M⊆ X2 is
• transitive if (x, z) ∈ M for all x, y, z ∈ X such that (x, y), (y, z) ∈ M .

Given a mapping T : X → X, we say that M is
• T -transitive if (Tx, Ty) ∈ M for all x, y, z ∈ X such that (Tx, Ty), (Ty, Tz) ∈ M ,
• T -closed if (Tx, Ty) ∈ M for all x, y ∈ X such that (x, y) ∈ M .

Definition 1.5 [9]. Let (X, d) be a metric space and let M⊆ X2 be a subset. We

say that (X, d,M ) is regular if for all sequence {xn} ⊆ X such that xn
d−→ x and

(xn, xn+1) ∈ M for all n ∈ N, we have (xn, x) ∈ M for all n ∈ N.
The following fixed point theorem indicated in Karapinar and Roldán-López-de-

Hierro [10] is a unidimensional version of coupled fixed point theorem of Sintunaravat
et al. [21].
Theorem 1.6 [10]. Let (X, d) be a metric space, let T : X → X be a mapping and
let M⊆ X2 be a subset such that

(a) (X, d) is complete,
(b) M is T -closed and transitive,
(c) either T is continuous or (X, d,M ) is regular,
(d) there exists x0 ∈ X such that (x0, Tx0) ∈ M ,
(e) there exists ϕ ∈ Φ such that

d(Tx, Ty) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with (x, y) ∈ M .
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Then T has, at least, a fixed point.
The aim of this paper is to extend the Alam-Imdad relation-theoretic fixed point

theorem [2] for nonlinear contractions. Our results improve Theorems 1.3 and 1.6 in
the following respects:

(i) the underlying binary relations (partial order or transitive) are replaced by an
optimal condition of transitivity namely: locally T -transitive binary relation,

(ii) the nonlinear contractive class Φ is replaced by relatively enlarger class due
to Boyd and Wong [6],

(iii) the involved metrical notions namely: completeness and continuity are re-
placed by their R-analogues,

(iv) the ICU property and the regularity of X are replaced by relatively weaker
notion namely: d-self-closedness.

2. Relation-theoretic notions and auxiliary results

In this section, for the sake of completeness, we summarize some necessary defini-
tions and basic results related to our main results.
Definition 2.1 [2]. Let R be a binary relation on a nonempty set X and x, y ∈ X.
We say that x and y are R-comparative if either (x, y) ∈ R or (y, x) ∈ R. We denote
it by [x, y] ∈ R.
Definition 2.2 [14]. Let X be a nonempty set and R a binary relation on X.

(1) The inverse or transpose or dual relation of R, denoted by R−1, is defined by
R−1 = {(x, y) ∈ X2 : (y, x) ∈ R}.

(2) The symmetric closure of R, denoted by Rs, is defined to be the set R∪R−1
(i.e., Rs := R ∪ R−1). Indeed, Rs is the smallest symmetric relation on X
containing R.

Proposition 2.3 [2]. For a binary relation R defined on a nonempty set X,

(x, y) ∈ Rs ⇐⇒ [x, y] ∈ R.

Definition 2.4 [2]. Let X be a nonempty set and R a binary relation on X.
A sequence {xn} ⊂ X is called R-preserving if

(xn, xn+1) ∈ R ∀ n ∈ N0.

Definition 2.5 [2]. Let X be a nonempty set and T a self-mapping on X. A binary
relation R on X is called T -closed if for any x, y ∈ X,

(x, y) ∈ R ⇒ (Tx, Ty) ∈ R.

Proposition 2.6 [2]. Let X be a nonempty set, R a binary relation on X and T a
self-mapping on X. If R is T -closed, then Rs is also T -closed.
Proposition 2.7. Let X be a nonempty set, R a binary relation on X and T a
self-mapping on X. If R is T -closed, then, for all n ∈ N0, R is also Tn-closed, where
Tn denotes nth iterate of T .
Definition 2.8 [3]. Let (X, d) be a metric space and R a binary relation on X. We
say that (X, d) is R-complete if every R-preserving Cauchy sequence in X converges.
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Clearly, every complete metric space is R-complete, for any binary relation R.
Particularly, under the universal relation the notion of R-completeness coincides with
usual completeness.
Definition 2.9 [3]. Let (X, d) be a metric space, R a binary relation on X and
x ∈ X. A self-mapping T on X is called R-continuous at x if for any R-preserving

sequence {xn} such that xn
d−→ x, we have T (xn)

d−→ T (x). Moreover, T is called
R-continuous if it is R-continuous at each point of X.

Clearly, every continuous mapping is R-continuous, for any binary relation R.
Particularly, under the universal relation the notion of R-continuity coincides with
usual continuity.

The following notion is a generalization of d-self-closedness of a partial order rela-
tion (�) (defined by Turinici [23, 24]).
Definition 2.10 [2]. Let (X, d) be a metric space. A binary relation R on X is called

d-self-closed if for any R-preserving sequence {xn} such that xn
d−→ x, there exists a

subsequence {xnk
} of {xn} with [xnk

, x] ∈ R ∀ k ∈ N0.
Definition 2.11 [19]. Let X be a nonempty set and R a binary relation on X. A
subset E of X is called R-directed if for each pair x, y ∈ E, there exists z ∈ X such
that (x, z) ∈ R and (y, z) ∈ R.
Definition 2.12 [11]. Let X be a nonempty set and R a binary relation on X. For
x, y ∈ X, a path of length k (where k is a natural number) in R from x to y is a finite
sequence {z0, z1, z2, ..., zk} ⊂ X satisfying the following conditions:

(i) z0 = x and zk = y,
(ii) (zi, zi+1) ∈ R for each i (0 ≤ i ≤ k − 1).

Notice that a path of length k involves k + 1 elements of X, although they are not
necessarily distinct.
Definition 2.13 [3]. Let X be a nonempty set and R a binary relation on X. A
subset E of X is called R-connected if for each pair x, y ∈ E, there exists a path in
R from x to y.
Given a binary relation R and a self-mapping T on a nonempty set X, we use the
following notations.

(i) F (T ):=the set of all fixed points of T ,
(ii) X(T,R) := {x ∈ X : (x, Tx) ∈ R}.

The following result is the relation-theoretic version of Banach contraction principle.
Theorem 2.14 [2, 3]. Let (X, d) be a metric space, R a binary relation on X and T
a self-mapping on X. Suppose that the following conditions hold:

(a) (X, d) is R-complete,
(b) R is T -closed,
(c) either T is R-continuous or R is d-self-closed,
(d) X(T,R) is nonempty,
(e) there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) ∀ x, y ∈ X with (x, y) ∈ R.
Then T has a fixed point. Moreover if X is Rs-connected then T has a unique fixed
point.
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Now, we re-define the notion of T -transitivity employed in Definition 1.4 in the
framework of binary relation.
Definition 2.15. Let X be a nonempty set and T a self-mapping on X. A binary
relation R on X is called T -transitive if for any x, y, z ∈ X,

(Tx, Ty), (Ty, Tz) ∈ R ⇒ (Tx, Tz) ∈ R.

Inspired by Turinici [25, 26], we introduce the following notion by localizing the
notion of transitivity.
Definition 2.16. A binary relation R on a nonempty set X is called locally transitive
if for each (effectively) R-preserving sequence {xn} ⊂ X (with range E := {xn : n ∈
N0}), the binary relation R|E is transitive.

Henceforth, the notions of T -transitivity and locally transitivity both are relatively
weaker than the notion of transitivity but they are independent of each others. In
order to make them compatible, we introduce the following notion of transitivity.
Definition 2.17. Let X be a nonempty set and T a self-mapping on X. A binary
relation R on X is called locally T -transitive if for each (effectively) R-preserving
sequence {xn} ⊂ T (X) (with range E := {xn : n ∈ N0}), the binary relation R|E is
transitive.

The following result establishes the superiority of locally T -transitivity over other
types of transitivity.
Proposition 2.18. Let X be a nonempty set, R a binary relation on X and T a
self-mapping on X. Then

(i) R is T -transitive ⇔ R|T (X) is transitive.
(ii) R is locally T -transitive ⇔ R|T (X) is locally transitive.

(iii) R is transitive ⇒ R is locally transitive ⇒ R is locally T -transitive.
(iv) R is transitive ⇒ R is T -transitive ⇒ R is locally T -transitive.

The following family of control functions is indicated in Boyd and Wong [6] but
was later used in Jotic [8].

Ω=
{
ϕ : [0,∞)→ [0,∞) : ϕ(t) < t for each t>0 and lim sup

r→t+
ϕ(r) < t for each t>0

}
.

It is clear that the class Ω enlarges the class Φ, i.e., Φ ⊂ Ω.
Proposition 2.19. If (X, d) is a metric space, R is a binary relation on X, T
is a self-mapping on X and ϕ ∈ Ω, then the following contractivity conditions are
equivalent:

(I) d(Tx, Ty) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with (x, y) ∈ R,
(II) d(Tx, Ty) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with [x, y] ∈ R.

We skip the proof of above proposition as it is similar to that of Proposition 2.3
[2].

Finally, we record the following known results, which are needed in the proof of
our main results.
Lemma 2.20 [1]. Let ϕ ∈ Ω. If {an} ⊂ (0,∞) is a sequence such that an+1 ≤
ϕ(an) ∀ n ∈ N0, then lim

n→∞
an = 0.

Lemma 2.21 [5, 26]. Let (X, d) be a metric space and {xn} a sequence in X. If
{xn} is not a Cauchy, then there exist ε > 0 and two subsequences {xnk

} and {xmk
}
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of {xn} such that
(i) k ≤ mk < nk ∀ k ∈ N,
(ii) d(xmk

, xnk
) > ε ∀ k ∈ N,

(iii) d(xmk
, xnk−1

) ≤ ε ∀ k ∈ N.
Moreover, suppose that lim

n→∞
d(xn, xn+1) = 0, then

(iv) lim
k→∞

d(xmk
, xnk

) = ε,

(v) lim
k→∞

d(xmk+1, xnk+1) = ε.

3. Fixed point theorems

Firstly, we prove a result on the existence of fixed points under ϕ-contractivity
condition, which runs as follows.
Theorem 3.1. Let (X, d) be a metric space, R a binary relation on X and T a
self-mapping on X. Suppose that the following conditions hold:

(a) (X, d) is R-complete,
(b) R is T -closed and locally T -transitive,
(c) either T is R-continuous or R is d-self-closed,
(d) X(T,R) is nonempty,
(e) there exists ϕ ∈ Ω such that

d(Tx, Ty) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with (x, y) ∈ R.
Then T has a fixed point.
Proof. In view of assumption (d), take arbitrarily x0 ∈ X(T,R). Construct the
sequence {xn} of Picard iterates based at the initial point x0, i.e,

xn = Tn(x0) ∀ n ∈ N0. (3.1)

As (x0, Tx0) ∈ R, using T -closedness of R and Proposition 2.7, we obtain

(Tnx0, T
n+1x0) ∈ R

so that

(xn, xn+1) ∈ R ∀ n ∈ N0. (3.2)

Thus the sequence {xn} is R-preserving. Applying the contractivity condition (e) to
(3.2), we deduce, for all n ∈ N0 that

d(xn+1, xn+2) ≤ ϕ(d(xn, xn+1)).

Hence by Lemma 2.20, we obtain

lim
n→∞

d(xn, xn+1) = 0. (3.3)

Now, we show that {xn} is a Cauchy sequence. On contrary, suppose that {xn} is
not Cauchy. Therefore, owing to Lemma 2.21, there exist ε > 0 and two subsequences
{xnk

} and {xmk
} of {xn} such that

k ≤ mk < nk, d(xmk
, xnk

) > ε ≥ d(xmk
, xnk−1

) ∀ k ∈ N. (3.4)

Further, in view of (3.3), Lemma 2.21 assures us that

lim
k→∞

d(xmk
, xnk

) = lim
k→∞

d(xmk+1, xnk+1) = ε. (3.5)
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Denote rk := d(xmk
, xnk

). As {xn} is R-preserving (owing to (3.2)) and {xn} ⊂
T (X) (owing to (3.1)), by locally T -transitivity of R, we have (xmk

, xnk
) ∈ R. Hence,

applying contractivity condition (e), we obtain

d(xmk+1, xnk+1) = d(Txmk
, Txnk

)

≤ ϕ(d(xmk
, xnk

)).

= ϕ(rk)

so that

d(xmk+1, xnk+1) ≤ ϕ(rk). (3.6)

Using the facts that rk −→ ε in the real line as k → ∞ (owing to (3.5)) and rk >
ε ∀ k ∈ N (owing to (3.4)) and by the definition of Ω, we have

lim sup
k→∞

ϕ(rk) = lim sup
r→ε+

ϕ(r) < ε. (3.7)

On taking limit superior as k −→∞ in (3.6) and using (3.5) and (3.7), we obtain

ε = lim sup
k→∞

d(xmk+1, xnk+1) ≤ lim sup
k→∞

ϕ(rk) < ε,

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Hence, {xn} is
an R-preserving Cauchy sequence. By R-completeness of X, ∃ x ∈ X such that

xn
d−→ x.

Finally, we use assumption (c) to show that x is a fixed point of T . Suppose that

T is R-continuous. As {xn} is R-preserving with xn
d−→ x, R-continuity of T implies

that xn+1 = T (xn)
d−→ T (x). Using the uniqueness of limit, we obtain T (x) = x, i.e,

x is a fixed point of T .
Alternately, assume that R is d-self-closed. Again as {xn} is R-preserving such

that xn
d−→ x, d-self-closedness of R guarantees the existence of a subsequence {xnk

}
of {xn} with [xnk

, x] ∈ R ∀ k ∈ N0. On using the fact [xnk
, x] ∈ R, assumption (e)

and Proposition 2.19, we obtain

d(xnk+1, Tx) = d(Txnk
, Tx) ≤ ϕ(d(xnk

, x)) ∀ k ∈ N0.

We claim that

d(xnk+1, Tx) ≤ d(xnk
, x) ∀ k ∈ N. (3.8)

On account of two different possibilities arising here, we consider a partition {N0,N+}
of N, i.e., N0 ∪ N+ = N and N0 ∩ N+ = ∅ verifying that

(i) d(xnk
, x) = 0 ∀ k ∈ N0,

(ii) d(xnk
, x) > 0 ∀ k ∈ N+.

In case (i), we have d(Txnk
, Tx) = 0 ∀ k ∈ N0, which implies that d(xnk+1, Tx) =

0 ∀ k ∈ N0 and hence (3.8) holds for all k ∈ N0. In case (ii), by the definition of Ω,
we have d(xnk+1, Tx) ≤ ϕ(d(xnk

, x)) < d(xnk
, x) ∀ k ∈ N+ and hence (3.8) holds for

all k ∈ N+. Thus (3.8) holds for all k ∈ N.
Taking limit of (3.8) as k → ∞ and using xnk

d−→ x, we obtain xnk+1
d−→ T (x).

Owing to the uniqueness of limit, we obtain T (x) = x so that x is a fixed point of T .
Using Proposition 2.18, we obtain the following consequence of Theorem 3.1.
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Corollary 3.2. Theorem 3.1 remains true if locally T -transitivity of R (utilized in
assumption (b)) is replaced by any one of the following conditions (besides retaining
rest of the hypotheses):

(i) R is transitive,
(ii) R is T -transitive,
(iii) R is locally transitive.
Now, we prove a corresponding uniqueness result.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1, suppose that the fol-
lowing condition holds:

(u) T (X) is Rs-connected.
Then T has a unique fixed point.
Proof. In view of Theorem 3.1, F (T ) 6= ∅. Take x, y ∈ F (T ), then for all n ∈ N0, we
have

Tn(x) = x and Tn(y) = y. (3.9)

Clearly x, y ∈ T (X). By assumption (u), there exists a path (say {z0, z1, z2, ..., zk})
of some finite length k in Rs from x to y so that

z0 = x, zk = y and [zi, zi+1] ∈ R for each i (0 ≤ i ≤ k − 1). (3.10)

As R is T -closed, using Propositions 2.6 and 2.7, we have

[Tnzi, T
nzi+1] ∈ R for each i (0 ≤ i ≤ k − 1) and for each n ∈ N0. (3.11)

Now, for each n ∈ N0 and for each i (0 ≤ i ≤ k − 1), define tin := d(Tnzi, T
nzi+1).

We claim that

lim
n→∞

tin = 0. (3.12)

Fix i and distinguish two cases. Firstly, suppose that tin0
= d(Tn0zi, T

n0zi+1) = 0 for

some n0 ∈ N0, i.e., Tn0(zi) = Tn0(zi+1), which implies that Tn0+1(zi) = Tn0+1(zi+1).
Consequently, we get tin0+1 = d(Tn0+1zi, T

n0+1zi+1) = 0. Thus by induction, we get

tin = 0 ∀ n ≥ n0, yielding thereby lim
n→∞

tin = 0. On the other hand, suppose that

tn > 0 ∀ n ∈ N0, then on using (3.11), assumption (e) and Proposition 2.19, we
obtain

tin+1 = d(Tn+1zi, T
n+1zi+1)

≤ ϕ(d(Tnzi, T
nzi+1))

= ϕ(tin)

so that

tin+1 ≤ ϕ(tin).

Hence, on applying Lemma 2.20, we obtain lim
n→∞

tin = 0. Thus, in both the cases,

(3.12) is proved for each i (0 ≤ i ≤ k − 1).
Making use of (3.9), (3.10), (3.12) and the triangular inequality, we obtain

d(x, y) = d(Tnz0, T
nzk) ≤ t0n + t1n + · · ·+ tk−1n → 0 as n→∞

so that x = y. Hence T has a unique fixed point.
The following consequence of Theorem 3.3 is worth recording.
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Corollary 3.4. Theorem 3.3 remains true if we replace the condition (u) by one of
the following conditions (besides retaining rest of the hypotheses):

(u′) R|T (X) is complete,
(u′′) T (X) is Rs-directed.

Proof. If (u′) holds, then for each u, v ∈ T (X), [u, v] ∈ R, which amounts to say
that {u, v} is a path of length 1 in Rs from u to v. Hence T (X) is Rs-connected
consequently Theorem 3.3 gives rise the conclusion.
Otherwise, if (u′′) holds then for each u, v ∈ T (X), ∃ z ∈ X such that [u, z] ∈ R and
[v, z] ∈ R, which amounts to say that {u, z, v} is a path of length 2 in Rs from u to v.
Hence T (X) is Rs-connected and again by Theorem 3.3 the conclusion is immediate.

Now, we consider some special cases, wherein our results deduce several well-known
fixed point theorems of the existing literature.

(1) Under the universal relation (i.e., R = X2), Theorem 3.3 deduces the Jotic
fixed point theorem proved in [8], which is a generalization of Boyd-Wong
fixed point theorem [6].

(2) On setting R =�, the partial order in Theorem 3.1 as well as Corollary 3.4,
we obtain Theorem 1.3. Clearly, T -closedness of � is equivalent to increasing
property of T .

(3) Taking R =M, the transitive binary relation in Corollary 3.2, we obtain The-
orem 1.6.

Conclusion. In order to ensure the existence of fixed points for linear contraction
mapping T , the underlying binary relation is required to be T -closed (see Theorem
2.14). But whenever, we extend Theorem 2.14 from linear contractions to Boyd-Wong
type nonlinear contractions then this restriction on the underlying binary relation is
not enough. We additionally do require locally T -transitivity of R, which substan-
tiates the utility of this extension. As possible problems, authors encourage the
researchers of this domain to prove such results for other types of contractions.
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[16] J.J. Nieto, R. Rodŕıguez-López, Contractive mapping theorems in partially ordered sets and

applications to ordinary differential equations, Order, 22(2005), no. 3, 223-239.
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