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Abstract. For a locally compact semigroup S, we study a general fixed point property in terms of

Banach left S-modules. We then use this property to give our main result which is a new charac-
terization for left amenability of a large class of locally compact semigroups; finally, we investigate

several examples which lead us to the conjecture that the main result remains true for all locally

compact semigroups.
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1. Introduction and preliminaries

The notion of left amenability of semigroups was initiated by Day [4] and pursed by
Lau and Takahashi [11, 12, 13], Namioka [14] and Saeidi [19] for discrete semigroups,
and by Dzinotyweyi [7], Holmes and Lau [8], Paterson [15], Riazi and Wong [18] and
Wong [22, 23, 24] for topological semigroups; see Berglund, Junghenn and Milnes [2],
Dales, Lau, and Strauss [3] and Pier [16] for more details; see also Desaulniers, Nemati
and the author [5] for a more general setting.

Let us recall that a locally compact semigroup S, is a semigroup with a locally
compact Hausdorff topology whose binary operation is jointly continuous. As usual,
let M(S) denote the Banach algebra of all complex Radon measures on S with the
convolution product ∗ and the total variation norm. The space of all measures µ in
M(S) for which the maps s 7→ δs ∗ |µ| and s 7→ |µ| ∗ δs from S into M(S) are weakly
continuous is denoted by Ma(S), where δs denotes the Dirac measure at s ∈ S. It
is known that Ma(S) is a closed two-sided L-ideal of M(S); see Baker and Baker
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[1], Dzinotyweyi [7] and Pourabbas and Riazi [17]. Denote by Mp(S) the set of all
probability measures in M(S) and set

P1(S) := Ma(S) ∩Mp(S).

The locally compact semigroup S is called foundation if the set F (S) is dense in S,
where

F (S) :=
⋃
{supp(υ) : υ ∈ P1(S)}.

In this section, we give a result on left invariant nets which is need in the sequel. In
the next section, we study a fixed point property in terms of Banach left S-modules
to characterize left amenability of foundation semigroups; we finally give several ex-
amples which lead us to the conjecture that this result is valid for arbitrary locally
compact semigroups.

Definition 1.1. Let S be a locally compact semigroup. For M ⊆ Mp(S), we say
that a net (υλ)λ∈Λ in Ma(S) is M-left invariant if

µ ∗ υλ − υλ → 0

for all µ ∈M in the norm topology of Ma(S).
Similarly, we define a weakly M-left invariant net; i.e., the convergence of the limit

in the definition of M-left invariance is only assumed to hold in the weak topology
instead of in the norm topology.

Proposition 1.2. Let S be a locally compact semigroup and let M ⊆ Mp(S). Then
the convex hull of any weakly M-left invariant net in P1(S) contains an M-left in-
variant net.

Proof. Let (υγ)γ∈Γ be a weakly M-left invariant net of measures in P1(S), and for
each finite subset F = {υ1, ..., υm} of Ma(S), set

CF := {(υ1 ∗ υ − υ, ..., υm ∗ υ − υ) : υ ∈ co({υγ : γ ∈ Γ}) },

where co({υγ : γ ∈ Γ}) denotes the convex hull of the set {υγ : γ ∈ Γ}. Now, consider
the m-times `1-direct sum `1-⊕mn=1Ma(S) of the Banach space Ma(S), and note that
0 is in the weak closure of CF in `1-⊕mn=1Ma(S); in fact, the net (υ ∗ υγ − υγ)γ∈Γ in
Ma(S) converges to zero weakly for all υ ∈ P1(S), and hence the net

((υ1 ∗ υγ − υγ , ..., υm ∗ υγ − υγ))γ∈Γ ⊆ CF

in `1-⊕mn=1Ma(S) converges to zero weakly. Since CF is convex, it follows that the
norm closure of CF in `1-⊕mn=1Ma(S) contains zero. Thus, for each ε > 0, there exists
a measure υ(ε,F) ∈ P1(S) such that for each υ ∈ F,

‖υ ∗ υ(ε,F) − υ(ε,F)‖ < ε.

Now, let Λ be the set of all λ := (ε,F) for which ε > 0 and F ⊆Ma(S) is a finite set.
Then Λ is a directed set by setting (ε′,F′) < (ε,F) if and only if ε′ ≤ ε and F′ ⊇ F.
So, the net (υλ)λ∈Λ is an M-left invariant net. �
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2. Left fixed points for S-modules

Let E be a Banach space, and let B(E∗∗) denote the Banach space of bounded
linear operators on E∗∗. By the weak∗ operator topology on B(E∗∗), we shall mean
the locally convex topology of B(E∗∗) determined by the family

T 7→ |〈T (Ψ), φ〉|

of seminorms on B(E∗∗), where Ψ ∈ E∗∗, φ ∈ E∗; this means that a net (Tγ) ⊆ B(E∗∗)
converges to zero in the weak∗ operator topology if and only if for each Ψ ∈ E∗∗ and
φ ∈ E∗,

〈Tγ(Ψ), φ〉 −→ 0.

Now, let E be a Banach left S-module; that is, a Banach space E equipped with a
map from S × E into E, denoted by (s, ξ) 7→ s · ξ (s ∈ S, ξ ∈ E) such that

s · (t · ξ) = (st) · ξ

for all s, t ∈ S and ξ ∈ E, the map s 7→ s · ξ is continuous of S into E for all ξ ∈ E,
and the map ξ 7→ s · ξ is a bounded linear operator on E for all s ∈ S; i.e., there is a
constant C > 0 with

‖s · ξ‖ ≤ C ‖ξ‖

for all s ∈ S and ξ ∈ E. In this case, we define

〈φ · µ, ξ〉 =

∫
S

〈φ, s · ξ〉 dµ(s)

and

〈µ ·Ψ, φ〉 = 〈Ψ, φ · µ〉

for all ξ ∈ E, φ ∈ E∗, Ψ ∈ E∗∗ and µ ∈ M(S). Any Banach left S-module E
equipped with the map

(µ, ξ) 7→ µ · ξ

for all µ ∈M(S) and ξ ∈ E can be considered as a Banach left M(S)-module.
We denote by P(S,E∗∗) the closure of the set

{Tυ : υ ∈ P1(S)}

in the weak∗ operator topology of B(E∗∗), where the operator Tυ ∈ B(E∗∗) for each
Ψ ∈ E∗∗ is defined by

Tυ(Ψ) = υ ·Ψ.

Let us remark that P1(S) with the convolution multiplication is a semigroup. In
particular, the set

{Tυ : υ ∈ P1(S)}

is a subsemigroup of the semigroup B(E∗∗) with the ordinary multiplication of linear
operators, and as easily verified, so is its closure P(S,E∗∗) in the weak∗ operator
topology of B(E∗∗).
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Definition 2.1. Let S be a locally compact semigroup, let E be a Banach left S-
module, and let M ⊆Mp(S). We say that E has an M-left fixed point if there exists
T ∈ P(S,E∗∗) such that

TµT = T (µ ∈M);

we call such an operator T an M-left fixed point for E .

It should be noted that the notion of left fixed point is already in Holmes and Lau
[8] which establishes a fixed point theorem for semigroups of certain mappings on a
compact convex subset of a locally convex space.

Lemma 2.2. Let S be a locally compact semigroup and let M ⊆ Mp(S). If there
exists an M-left invariant net in P1(S), then every left Banach S-module E has an
M-left fixed point.

Proof. Choose a constant C > 0 satisfying

‖ s · ξ ‖≤ C ‖ ξ ‖

for all s ∈ S and ξ ∈ E, and note that for each υ ∈ P1(S) and Ψ ∈ E∗∗,

‖Tυ(Ψ)‖ = ‖υ ·Ψ‖ ≤ C ‖Ψ‖.

Hence, the set

{Tυ : υ ∈ P1(S)} ⊆ B(E∗∗)

is bounded by C, and therefore its closure P(S,E∗∗) is also bounded by C.
Now, let (υλ)λ∈Λ be an M-left invariant net in P1(S). Then, without loss of

generality, we may assume that there exists an operator T ∈ P(S,E∗∗) such that

Tυλ − T → 0

in the weak∗ operator topology of B(E∗∗). Indeed, considering the projective tensor
product E∗∗⊗̂E∗, we make the canonical identification of the dual space (E∗∗⊗̂E∗)∗
of E∗∗⊗̂E∗ with the Banach space B(E∗∗); moreover, the weak∗ operator topology
of B(E∗∗) coincides with the weak∗ topology of (E∗∗⊗̂E∗)∗ on bounded subsets of
B(E∗∗); since P(S,E∗∗) is a bounded subset of B(E∗∗), it is compact in the weak∗

operator topology of B(E∗∗) by the Banach-Alaoglu theorem; see for example [6],
Corollary VIII.2.2; in particular, the net

(Tυλ) ⊆ P(S,E∗∗)

has a cluster point T ∈ P(S,E∗∗) in the weak∗ operator topology of B(E∗∗).
Next, let µ ∈ M and let T ∗µ : E∗∗∗ −→ E∗∗∗ denote the adjoint operator of

Tµ ∈ B(E∗∗). Then for each φ ∈ E∗ and Ψ ∈ E∗∗,

〈T ∗µ(φ),Ψ〉 = 〈φ, Tµ(Ψ)〉
= 〈φ, µ ·Ψ〉
= 〈φ · µ,Ψ〉,

whence

T ∗µ(φ) = φ · µ.
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In particular, T ∗µ(φ) ∈ E∗. This shows that

〈(TµTυλ − TµT )(Ψ), φ〉 = 〈(Tυλ − T )(Ψ), T ∗µ(φ)〉 −→ 0.

It follows that

TµTυλ − TµT → 0

in the weak∗ operator topology of B(E∗∗). Moreover, for each λ ∈ Λ,

‖TµTυλ − Tυλ‖ ≤ C ‖µ ∗ υλ − υλ‖

which shows that

TµTυλ − Tυλ → 0

in the norm topology and of course in the weak∗ operator topology of B(E∗∗). But,
for each λ ∈ Λ,

TµT − T = (TµT − TµTυλ) + (TµTυλ − Tυλ) + (Tυλ − T )

whence TµT = T as required. �
Let us recall that Ma(S)∗∗ with the first Arens product � defined by

〈F � G, f〉 = 〈F,G f〉

for f ∈ Ma(S)∗ and F,G ∈ Ma(S)∗∗ is a Banach algebra, where Gf ∈ Ma(S)∗ is
defined by

〈Gf, υ〉 = 〈G, f υ〉
for all υ ∈Ma(S); here, fµ ∈Ma(S)∗ is defined by

〈fµ, υ〉 = 〈f, µ ∗ υ〉

for all µ ∈M(S) and υ ∈Ma(S). For each υ ∈Ma(S), let υ also denote the functional
in Ma(S)∗∗ defined by the formula

f 7→ 〈f, υ〉 (f ∈Ma(S)∗);

this induces a linear isometric embedding of Ma(S) into Ma(S)∗∗. In particular,
F � υ, σ � F and σ � υ are make sense as elements of Ma(S)∗∗ for all σ, υ ∈Ma(S) and
F ∈Ma(S)∗∗; moreover, σ � υ = σ ∗ υ.

An element M in the second dual Ma(S)∗∗ of Ma(S) is said to be a mean on Ma(S)∗

if

‖M‖ = 〈M, ϕ1〉 = 1,

where ϕ1 ∈Ma(S)∗ is defined for each υ ∈Ma(S) by

〈ϕ1, υ〉 = υ(S).

Definition 2.3. Let S be a locally compact semigroup. For M ⊆ Mp(S), we say
that a mean M on Ma(S)∗ is M-left invariant if

〈M, fµ〉 = 〈M, f〉

for all µ ∈M and f ∈ Ma(S)∗; we also say that S is M-left amenable if there exists
an M-left invariant mean on Ma(S)∗.
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Before we give the main result of this paper, let us remark that Ma(S) equipped
with the map

(s, υ) 7→ s · υ
defined by

s · υ = δs ∗ υ (υ ∈Ma(S), s ∈ S),

is a Banach left S-module; note that in this case we have

f · µ = fµ and υ · F = υ � F
for all µ ∈M(S), υ ∈Ma(S), f ∈Ma(S)∗ and F ∈Ma(S)∗∗.

Theorem 2.4. Let S be a foundation semigroup with identity and let M ⊆ Mp(S).
Then the following assertions are equivalent.

(a) S is M-left amenable.
(b) Every Banach left S-module E has an M-left fixed point.
(c) The Banach left S-module Ma(S) has an M-left fixed point.

Proof. Suppose that (a) holds, and let M be an M-left invariant mean on Ma(S)∗.
Since S is a foundation semigroup with identity, it follows from [20] that Ma(S) is
the predual of a von Neumann algebra; see also [21]. Thus P1(S) is weak∗ dense in
the set of all means on Ma(S)∗; see [9], Lemma 2.1. So, there is a net (υγ)γ∈Γ in
P1(S) such that υγ → M in the weak∗ topology of Ma(S)∗∗. For each µ ∈ M and
f ∈Ma(S)∗ we have

〈µ ∗ υγ − υγ , f〉 = 〈υγ , fµ− f〉
→ 〈M, fµ− f〉

Therefore, for each µ ∈M,
µ ∗ υγ − υγ → 0

in the weak topology of Ma(S). That is, (υγ)γ∈Γ is a weakly M-left invariant net in
P1(S), and hence there is an M-left invariant net in the set

co({υγ : γ ∈ Γ}) ⊆ P1(S)

by Proposition 1.2. Now, appeal to Lemma 2.2 to conclude that (b) holds.
That (b) implies (c) is trivial.
Now, suppose that (c) holds. To prove (a) choose an element T of P(S,Ma(S)∗∗)

with
TµT = T

for all µ ∈M, and find a net (σβ)β∈i in P1(S) such that

〈Tσβ
(F), f〉 → 〈T (F), f〉

for all F ∈Ma(S)∗∗ and f ∈Ma(S)∗. Without loss of generality, we may assume that
(σβ)β∈i converges to a mean M in Ma(S)∗∗.

We show that M is an M-left invariant mean on Ma(S)∗. For this end, recall from
the assumption that S is a foundation semigroup with identity, and hence Ma(S) has
a bounded approximate identity (uι)ι∈I of measures in P1(S); see [20], Theorem 5.16.
Let U be a weak∗ cluster point of (uι)ι∈I in Ma(S)∗∗. Then

σ � U = σ
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for all σ ∈ Ma(S) by the weak∗ continuity properties of the first Arens product �,
and hence for each µ ∈M and f ∈Ma(S)∗ we have

〈M, fµ〉 = lim
β
〈µ ∗ σβ � U, f〉

= lim
β
〈(TµTσβ

)(U), f〉

= 〈(TµT )(U), f〉
= 〈T (U), f〉
= lim

β
〈Tσβ

(U), f〉

= lim
β
〈σβ � U, f〉

= lim
β
〈σβ , f〉

= 〈M, f〉.

That is, M is an M-left invariant mean on Ma(S)∗ as required. �
We say that a Banach left S-module E has a left fixed point if it has a δS-left fixed

point, where

δS := {δs : s ∈ S};
recall that S is called left amenable if there exists a left invariant mean on Ma(S)∗;
that is, a δS-left invariant mean on Ma(S)∗.

Our last result is the following consequence of Theorem 2.4.

Corollary 2.5. Let S be a foundation semigroup with identity. Then the following
assertions are equivalent.

(a) S is left amenable.
(b) Every Banach left S-module E has a left fixed point.
(c) The Banach left S-module Ma(S) has a left fixed point.

This result should be compared with Theorem 5.1 of Lau and Paterson [10] in the
case where S is a locally compact group.

We now give some motivating examples of foundation or non-foundation semi-
groups with or without identity for which our main result is valid.

Example 2.6. Let S be the set [0, 1] with the locally compact Hausdorff topology
induced from the real line and let M ⊆Mp(S) .

(a) A foundation semigroup with identity. Endow S with the operation xy =
min{x + y, 1} for all x, y ∈ S and note that S is a locally compact semigroup with
identity. Since

Ma(S) = L1([0, 1])⊕ C δ1,
it follows that S is foundation. Moreover,

P1(S) = {f ∈ L1([0, 1]) : f ≥ 0, ‖f‖1 = 1} ∪ {δ1}

and

Tδ1 ∈ P(S,E∗∗),
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for all Banach left S-modules E. Therefore, E has an M-left fixed point and S is
M-left amenable. In fact, Tδ1 is an M-left fixed point for E and δ1 is an M-left
invariant mean on Ma(S)∗.

(b) A foundation semigroup without identity. Endow S with the operation xy = 0
for all x, y ∈ S and note that S is a locally compact semigroup without identity. Since

Ma(S) = M(S),

it follows that S is foundation. Moreover,

P1(S) = Mp(S) and P(S,E∗∗) = {0}

for all Banach left S-modules E. Therefore, E has no M-left fixed point and S is not
M-left amenable.

(c) A non-foundation semigroup with identity. Endow S with the usual multipli-
cation and note that S is a locally compact semigroup with identity. Since

Ma(S) = C δ0,

it follows that S is non-foundation. Moreover,

P1(S) = {δ0} and P(S,E∗∗) = {Tδ0}

for all Banach left S-modules E. Therefore, E has an M-left fixed point and S is
M-left amenable. In fact, Tδ0 is an M-left fixed point for E and δ0 is an M-left
invariant mean on Ma(S)∗.

(d) A non-foundation semigroup without identity. Endow S with the operation
xy = y for all x, y ∈ S and note that S is a locally compact semigroup without
identity. Since

Ma(S) = {0},

it follows that S is non-foundation. Moreover,

P1(S) = ∅ and P(S,E∗∗) = ∅

for all Banach left S-modules E. That is, E has no M-left fixed point and S is not
M-left amenable.

Motivated by these examples, we give the following conjecture.

Conjecture 2.7. Let S be an arbitrary locally compact semigroup and M ⊆Mp(S).
Does M-left amenability of S is equivalent to that every Banach left S-module E has
an M-left fixed point?
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