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1. Introduction

Fractional order semilinear equations are abstract formulations for many problems

arising in diffusion process, electrical science, electrochemistry, viscoelasticity, control

science, electro magnetic theory and several more. On the other hand, the nonlinear

fractional differential equations have been proved to be valuable tools in the modeling

of many phenomena in various fields of engineering, physics, medical and economics.

It draws a great application in nonlinear oscillations of earthquakes, many physical

phenomena such as seepage flow in porous media and in fluid dynamic traffic models.

Actually, fractional differential equations are considered as an alternative model to

integer differential equations. Some works have done on the qualitative properties

of solutions for these equations; see the monographs [7, 30, 29, 35, 39], the papers

[2, 3, 49] and the references therein.

Control theory is an area of application-oriented mathematics which deals with the

analysis and design of control systems. In particular, the concept of controllability

plays an important role in various areas of science and engineering. More precisely, the

problem of controllability deals with the existence of a control function, which steers

the solution of the system from its initial state to a final state, where the initial and

final states may vary over the entire space. Existence and control problems for various

types of differential systems and fractional differential systems have been studied by

many authors in [1, 4, 5, 6, 8, 9, 10, 16, 17, 18, 19, 21, 27, 25, 34, 37, 40, 41, 42, 43,

44, 45, 46, 48, 47, 51, 52, 53, 57, 58].

Recently, Chang [19] proved the controllability of semilinear mixed Volterra-

Fredholm type integro-differential inclusions in Banach spaces by using Bohnenblust-

Karlin’s fixed point theorem. In [6], Balachandran et al. studied the controllability

of fractional integrodifferential systems in Banach spaces by using fractional calcu-

lus, semigroup theory and the contraction mapping principle. In [21], Debbouche

et al. established the controllability result of a class of fractional evolution nonlocal

impulsive quasilinear delay integro-differential systems in a Banach space by using

the theory of fractional calculus and the contraction mapping principle. In [57], Yan

proved the controllability of fractional-order partial neutral functional integrodiffer-

ential inclusions with infinite delay in Banach spaces by using analytic semigroups

and fractional powers of closed operators and nonlinear alternative of Leray-Schauder

type for multivalued maps due to D. O’Regan. In [49], Wang et al. established the

existence and controllability results for fractional semilinear differential inclusions

by using fractional calculation, operator semigroups and Bohnenblust-Karlin’s fixed

point theorem. Very recently in [41], Ravichandran et al. established the controllabil-

ity problem for a class of mixed type impulsive fractional integro-differential equations

in Banach spaces by using Banach contraction theorem combined with the fractional

calculus theory and solution operator under some weak conditions.

Inspired by the above mentioned works, this paper establishes a set of sufficient

conditions for the controllability of fractional order functional differential inclusions
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with infinite delay in Banach spaces of the form

CDq
t [x(t)− g(t, xt)] ∈ Ax(t) + F (t, xt) +Bu(t), t ∈ J = [0, b] (1.1)

x0 = φ ∈ Bh, t ∈ (−∞, 0], (1.2)

where CDq
t is the Caputo fractional derivative of order 0 < q < 1, A is the infinitesimal

generator of a strongly continuous semigroup {T (t), t ≥ 0} in X, g : J × Bh → X

is an appropriate function, F : J × Bh → 2Bh is a nonempty, bounded, closed and

convex multivalued map, where Bh is a phase space defined in section 2. The histories

xt : (−∞, 0]→ X, defined by xt(s) = x(t+ s), s ≤ 0, belongs to some abstract phase

space Bh. The control function u(·) ∈ L2(J, U), a Banach space of admissible control

functions. Further, B is a bounded linear operator from U to X.

This paper is organized as follows. In Section 3, we establish a set of sufficient

conditions for the controllability for fractional order functional differential inclusions

in Banach spaces. In Section 4, we establish a set of sufficient conditions for the

controllability for fractional order functional differential inclusions with nonlocal con-

ditions. An example is presented in Section 5 to illustrate the theory of the obtained

results.

2. Preliminaries

In this section, we mention some notations, definitions, lemmas and preliminary

facts needed to establish our main results. Throughout this paper, we denote by X

a Banach space with the norm ‖ · ‖. Let Y be another Banach space, let Lb(X,Y )

denote the space of bounded linear operators from X to Y . We also use ‖f‖Lp(J,R+)

norm of f whenever f ∈ Lp(J,R+) for some p with 1 ≤ p ≤ ∞. Let Lp(J,X) denote

the Banach space of functions f : J → X which are Bochner integrable normed by

‖f‖Lp(J,X). Let C(J,X), be the Banach space of continuous functions from J into X

with the usual supremum norm ‖x‖C := supt∈J ‖x(t)‖, for x ∈ C.
In this paper, we assume that A : D(A) ⊂ X → X is the infinitesimal generator of

a strongly continuous semigroup T (·), then there exist a constant M ≥ 1 such that

‖T (t)‖ ≤ M for every t ∈ J . Let 0 ∈ ρ(A) is the resolvent set of A. Then it is

possible to define the fractional power Aα for 0 < α ≤ 1, as a closed linear operator

on its domain D(Aα) with inverse A−α (see [38, Chapter 2]). The following are basic

properties of Aα.

(i) D(Aα) is a Banach space with the norm ‖x‖α = ‖Aαx‖ for x ∈ D(Aα).

(ii) T (t) : X → Xα for t ≥ 0.

(iii) AαT (t)x = T (t)Aαx for each x ∈ D(Aα) and t ≥ 0.

(iv) For every t > 0, AαT (t) is bounded on X and there exist Mα > 0 such that

‖AαT (t)‖ ≤ Mα

tα
.

(v) A−α is a bounded linear operator for 0 ≤ α ≤ 1 in X.
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Now we define the abstract phase space Bh, which has been used in [56, 41, 25].

Assume that h : (−∞, 0]→ (0,+∞) is a continuous function with

l =

∫ 0

−∞
h(t)dt < +∞.

For any a > 0, we define

B = {ψ : [−a, 0]→ X such that ψ(t) is bounded and measurable},

and equip the space B with the norm

‖ψ‖[−a,0] = sup
s∈[−a,0]

||ψ(s)||, ∀ ψ ∈ B.

Let us define

Bh = {ψ : (−∞, 0]→ X such that for any c > 0, ψ|[−c,0] ∈ B

and ∫ 0

−∞
h(s)‖ψ‖[s,0]ds < +∞}.

If Bh is endowed with the norm

‖ψ‖Bh =

∫ 0

−∞
h(s)‖ψ‖[s,0]ds, ∀ ψ ∈ Bh,

then it is clear that (Bh, ‖ · ‖Bh) is a Banach space.

Now we consider the space

B′h = {x : (−∞, b]→ X such that x|J ∈ C(J,X), x0 = φ ∈ Bh}.

Set ‖ · ‖b be a seminorm in B′h defined by

‖x‖b = ‖φ‖Bh + sup{||x(s)|| : s ∈ [0, b]}, x ∈ B′h.

Lemma 2.1. (See[56]) Assume x ∈ B′h, then for t ∈ J, xt ∈ Bh. Moreover,

l|x(t)| ≤ ‖xt‖Bh ≤ ‖φ‖Bh + l sup
s∈[0,t]

|x(s)|,

where l =
∫ 0

−∞ h(t)dt < +∞.

Let us recall the following known definitions. For more details see [39, Chapter 1],

[35, Chapter 3] and [29, Chapter 2].

Definition 2.2. The fractional integral of order α with the lower limit zero for a

function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, t > 0, α > 0,

provided the right hand-side is point-wise defined on [0,∞), where Γ(·) is the gamma

function, which is defined by Γ(α) =
∫∞

0
tα−1e−tdt.
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Definition 2.3. The Riemann-Liouville fractional derivative of order α > 0, n−1 <

α < n, n ∈ N , is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.4. The Caputo derivative of order α for a function f : [0,∞)→ R can

be written as

Dαf(t) = Dα

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < α < n.

Remark 2.5. (i) If f(t) ∈ Cn[0,∞), then

CDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds = In−αf (n)(t), t > 0, n− 1 < α < n.

(ii) The Caputo derivative of a constant is equal to zero.

(iii) If f is an abstract function with values in X, then integrals which appear in

Definition 2.1 and 2.2 are taken in Bochner’s sense.

We also introduce some basic definitions and results of multivalued maps. For more

details on multivalued maps, see the books of Deimling [22] and Hu and Papageorgiou

[28].

A multivalued map G : X → 2X \ {∅} is convex (closed) valued if G(x) is convex

(closed) for all x ∈ X. G is bounded on bounded sets if G(C) =
⋃
x∈C G(x) is

bounded in X for any bounded set C of X, i.e., supx∈C

{
sup{‖y‖ : y ∈ G(x)}

}
<∞.

Definition 2.6. G is called upper semicontinuous (u.s.c. for short) on X if for each

x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for each open set C of

X containing G(x0), there exists an open neighborhood V of x0 such that G(V ) ⊆ C.

Definition 2.7. G is called completely continuous if G(C) is relatively compact for

every bounded subset C of X.

If the multivalued map G is completely continuous with nonempty values, then G

is u.s.c., if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ Gxn imply

y∗ ∈ Gx∗. G has a fixed point if there is a x ∈ X such that x ∈ G(x). In the following,

BCC(X) denotes the set of all nonempty, bounded, closed and convex subset of X.

Definition 2.8. A multi-valued map G : J → BCC(X) is said to be measurable if,

for each x ∈ X, the function v : J → R, defined by

v(t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)},

belongs to L1(J,R).

Definition 2.9. The multi-valued map F : J × X → BCC(X) is said to be L1-

Caratheodory if



778 YONG ZHOU, V. VIJAYAKUMAR, C. RAVICHANDRAN AND R. MURUGESU

(i) t→ F (t, u) is measurable for each u ∈ X,

(ii) u→ F (t, u) is upper semi continuous for almost all t ∈ J ,

(iii) for each r > 0, there exists lr ∈ L1(J,R) such that

‖F (t, u)‖ = sup{|f | : f(t) ∈ F (t, u)} ≤ lr(t)

for almost all t ∈ J and all ‖u‖ ∈ Bh ≤ r.

Lemma 2.10. [31, Lasota and Opial] Let J be a compact real interval, BCC(X)

be the set of all nonempty, bounded, closed and convex subset of X and F be a L1-

Caratheodory multivalued map with SF,x 6= ∅, where

SF,x =
{
f ∈ L1(J,X) : f(t) ∈ F (t, xt), for a.e. t ∈ J

}
is nonempty. Let F be a linear continuous from L1(J,X) to C, then the operator

F ◦ SF : C → BCC(C), x→ (F ◦ SF )(x) = F (SF,x),

is a closed graph operator in C × C.

Definition 2.11. A continuous function x : (−∞, b]→ X is said to be a mild solution

of (1.1)− (1.2) if x0 = φ ∈ Bh on (−∞, 0]; the restriction of x(·) to the interval [0, b]

is continuous, for s ∈ [0, t), the function (t−s)q−1AS (t−s)g(s, xs) is integrable such

that

x(t) = T (t)[φ(0)− g(0, φ(0))] + g(t, xt) +

∫ t

0

(t− s)q−1AS (t− s)g(s, xs)ds

+

∫ t

0

(t− s)q−1S (t− s)f(s)ds+

∫ t

0

(t− s)q−1S (t− s)Bu(s)ds, t ∈ J,

where T (·) and S (·) are called characteristic solution operators and given by

T =

∫ ∞
0

ξq(θ)T (tqθ)dθ, S = q

∫ ∞
0

θξq(θ)T (tqθ)dθ,

and for θ ∈ (0,∞)

ξq(θ) =
1

q
θ−1− 1

qwq(θ
− 1
q ) ≥ 0,

wq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nq−1 Γ(nq + 1)

n!
sin(nπq).

Here, ξq is a probability density function defined on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞
0

ξq(θ)dθ = 1.

Definition 2.12. The system (1.1)-(1.2) is said to be controllable on the interval

J if, for every continuous initial function φ ∈ Bh, x1 ∈ X, there exists a control

u ∈ L2(J, U) such that a mild solution x(t) of (1.1)-(1.2) satisfies x(b) = x1.

The following results of T (·) and S (·) will be used throughout this paper.
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Remark 2.13. (See[51]) It is not difficult to verify that for ν ∈ [0, 1].∫ ∞
0

θνξq(θ)dθ =

∫ ∞
0

θ−qνwq(θ)dθ =
Γ(1 + ν)

Γ(1 + qν)
.

Lemma 2.14. (See[58, 51]) The operators T and S have the following properties:

(i) For any fixed t ≥ 0, T and S are linear and bounded operators, that is for

any x ∈ X,

‖T (t)x‖ ≤M‖x‖ and ‖S (t)x‖ ≤ qM

Γ(1 + q)
‖x‖.

(ii) {T (t), t ≥ 0} and {S (t), t ≥ 0} are strongly continuous.

(iii) For t ∈ J and any bounded subsets D ⊂ X, t → {T (t)x : x ∈ D} and

t→ {S (t)x : x ∈ D} are equicontinuous if ‖T (tq2(θ))x− T (tq1(θ))x‖ → 0 with

respect to x ∈ D as t2 → t1 for each fixed θ ∈ [0,∞].

(iv) For any x ∈ X, α, β ∈ (0, 1), we have

ATq(t)x = A1−βTq(t)A
βx, t ∈ J,

‖AαTq(t)‖ ≤
qMαΓ(2− α)

Γ(1 + q(1− α))
t−αq, 0 < t ≤ b.

Lemma 2.15. [11, Bohnenblust and Karlin]. Let D be a nonempty subset of X,

which is bounded, closed, and convex. Suppose G : D → 2X \{∅} is u.s.c. with closed,

convex values, and such that G(D) ⊆ D and G(D) is compact. Then G has a fixed

point.

3. Controllability results

In this section, first we establish a set of sufficient conditions for the controllability

of fractional order neutral functional differential inclusions in Banach spaces by using

Bohnenblust-Karlin’s fixed point theorem. In order to establish the result, we need

the following hypotheses:

H1 (i) The strongly continuous semigroup of bounded linear operators T (t) gen-

erated by A is compact when t > 0 and there exists a constant M ≥ 1

such that supt∈J ‖T (t)‖ ≤M .

(ii) For all bounded subsets D ⊂ X and x ∈ D, ‖T (tq2θ)x− T (tq1θ)x‖ → 0 as

t2 → t1 for each fixed θ ∈ (0,∞).

H2 The function g : J × Bh is continuous and there exists a constant H1 > 0,

0 < α < 1 such that g is Xα valued and

‖Aβg(t, x)−Aβg(t, y)‖ ≤ H1‖x− y‖Bh , x, y ∈ Bh,

‖Aβg(t, x)‖ ≤ H1(1 + ‖x‖Bh).

H3 The multivalued map F : J×Bh → BCC(X) is an L1-Caratheodory function

which satisfies the following condition
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For each t ∈ J , the function F (t, ·) is u.s.c; and for each x ∈ Bh, the function

F (·, x) is measurable. And for each fixed x ∈ Bh, the set

SF,x =
{
f ∈ L1(J,X) : f(t) ∈ F (t, xt), for a.e. t ∈ J

}
is nonempty.

H4 For each positive number r and x ∈ C with ‖x‖C ≤ r, there exists a positive

function lr : J → R+ such that

sup
{
‖f‖ : f(t) ∈ F (t, xt)

}
≤ lr(t),

for a.e. t ∈ J .

H5 The function s → (t − s)q−1lr(s) ∈ L1(J,R+) and there exists a γ > 0 such

that

lim
r→∞

∫ t
0
(t− s)q−1lr(s)ds

r
= γ < +∞.

H6 The linear operator B : L2(J, U)→ L1(J,X) is bounded, W : L2(J, U)→ X

defined by

Wu =

∫ b

0

(b− s)q−1S (b− s)Bu(s)ds

has an inverse operator W−1 which takes values in L2(J, U)/kerW , where

the kernel space of W is defined by kerW = {x ∈ L2(J, U) : Wx = 0} and

there exist two positive constants M2,M3 > 0 such that ‖B‖Lb(U,X) ≤ M2

and ‖W−1‖Lb(X,L2(J,U)/kerW ) ≤M3.

Let us now explain and prove the following theorem about the controllability for

(1.1)-(1.2).

Theorem 3.1. Suppose that the hypotheses H1-H6 are satisfied. Then (1.1)-(1.2) is

controllable on J provided that(
1 +

MM2M3b
q

Γ(1 + q)

)[(
Mg‖A−β‖+K(q, β)Mg

bqβ

qβ

)
l +

qM

Γ(1 + q)
γ

]
< 1. (3.1)

Proof. Using the assumption H6 for an arbitrary function x(·) define the control

u(t) = W−1

[
xb −T (b)[φ(0)− g(0, φ(0))]+g(b, xb)+

∫ b

0

(b−s)q−1AS (b−s)g(s, xs)ds

−
∫ b

0

(b− s)q−1S (b− s)f(s)ds

]
(t).
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For any ε > 0, we consider the operator Φε : B′h → 2B
′
h defined by Φεx the set of

z ∈ B′h such that

z(t) =



φ(t), t ∈ (−∞, 0],

T (t)[φ(0)− g(0, φ(0))] + g(t, xt) +
∫ t

0
(t− s)q−1AS (t− s)g(s, xs)ds

+
∫ t

0
(t− s)q−1S (t− s)BW−1

[
xb −T (b)g(0, φ(0))− g(b, xb)

−
∫ b

0
(b− η)q−1AS (b− η)g(η, xη)ds−

∫ b
0

(b− η)q−1S (b− η)f(η)dη

]
(s)ds

+
∫ t

0
(t− s)q−1S (t− s)F (s, xs)ds, t ∈ J,

where f ∈ SF,x. We shall show that the operator Φε has fixed points, which are then

a solution of (1.1)-(1.2). Clearly, x1 = x(b) ∈ (Φεx)(b), which means that (1.1)-(1.2)

is controllable.

For φ ∈ Bh, we define φ̂ by

φ̂(t) =

{
φ(t), t ∈ (−∞, 0],

T (t)φ(0), t ∈ J,

then φ̂ ∈ B′h. Let x(t) = y(t) + φ̂(t), −∞ < t ≤ b. It is easy to see that x satisfies

definition 2.11 if and only if y satisfies y0 = 0 and

y(t) = −T (t)g(0, φ(0)) + g(t, yt + φ̂t) +

∫ t

0

(t− s)q−1AS (t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)q−1S (t− s)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη−
∫ b

0

(b−η)q−1S (b−η)f(η)dη
]
(s)ds

+

∫ t

0

(t− s)q−1S (t− s)f(s)ds, t ∈ J.

Let B′′h = {y ∈ B′h : y0 = 0 ∈ Bh}. For any y ∈ B′′h,

‖y‖b = ‖y0‖Bh + sup{‖y(s)‖ : 0 ≤ s ≤ b}
= sup{‖y(s)‖ : 0 ≤ s ≤ b},

thus (B′′h, ‖ · ‖b) is a Banach space. Set Br = {y ∈ B′′h : ‖y‖b ≤ r} for some r > 0,

then Br ⊆ B′′h is uniformly bounded, and for y ∈ Br, from Lemma 2.1, we have

‖yt + φ̂t‖Bh ≤ ‖yt‖Bh + ‖φ̂t‖Bh
≤ l(r +M1|φ(0)|) + ‖φ‖Bh = r′. (3.2)
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Define the multivalued map Ψ : B′′h → B′′h defined by Ψy the set of z ∈ B′′h such that

z(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ(0)) + g(t, yt + φ̂t) +
∫ t

0
(t− s)q−1AS (t− s)g(s, ys + φ̂s)ds

+
∫ t

0
(t− s)q−1S (t− s)BW−1

[
x1−T (b)[φ(0)−g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0
(b−η)q−1AS (b−η)g(η, yη+φ̂η)dη−

∫ b
0

(b−η)q−1S (b−η)f(η)dη
]
(s)ds

+
∫ t

0
(t− s)q−1S (t− s)f(s)ds, t ∈ J.

Obviously, the operator Φε has a fixed point if and only if Ψ has a fixed point. So,

our aim is to show that Ψ has a fixed point. For the sake of convenience, we subdivide

the proof into in several steps.

Step 1. Ψ is convex for each x ∈ Br. In fact, if ϕ1, ϕ2 belong to Ψ(x), then there

exist f1, f2 ∈ SF,x such that for each t ∈ J , we have

ϕi(t) = −T (t)g(0, φ(0)) + g(t, yt + φ̂t) +

∫ t

0

(t− s)q−1AS (t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)q−1S (t− s)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0

(b−η)q−1AS (b−η)g(η, yη+ φ̂η)dη −
∫ b

0

(b− η)q−1S (b−η)fi(η)dη
]
(s)ds

+

∫ t

0

(t− s)q−1S (t− s)fi(s)ds, i = 1, 2.

Let λ ∈ [0, 1]. Then for each t ∈ J , we get

(λϕ1 + (1− λ)ϕ2)(t) = −T (t)g(0, φ(0)) + g(t, yt + φ̂t)

+

∫ t

0

(t− s)q−1AS (t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]

− g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)[λf1(η) + (1− λ)f2(η)]dη

]
(s)ds

+

∫ t

0

(t− s)q−1S (t− s)[λf1(s) + (1− λ)f2(s)]ds.

It is easy to see that SF,x is convex since F has convex values.

So, λf1 + (1− λ)f2 ∈ SF,x. Thus,

λϕ1 + (1− λ)ϕ2 ∈ Ψ(x).
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Step 2. We show that there exists some r > 0 such that Ψ(Br) ⊆ Br. If it is not

true, then there exists ε > 0 such that for every positive number r and t ∈ J , there

exists a function xr ∈ Br, but Ψ(xr) /∈ Br, that is,

‖Ψ(xr)(t)‖ = sup{‖ϕr‖b : ϕr ∈ Ψ(xr)} ≥ r.

For such ε > 0, an elementary inequality can show that

r ≤ ‖(Ψyr)(t)‖

≤ ‖ −T (t)g(0, φ(0))‖+ ‖g(t, yrt + φ̂t)‖+
∥∥∥∫ t

0

(t− s)q−1AS (t− s)g(s, yrs + φ̂s)ds
∥∥∥

+
∥∥∥∫ t

0

(t− s)q−1S (t− s)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

− g(b, yrb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yrη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)fr(η)dη
]
(s)ds

∥∥∥+
∥∥∥∫ t

0

(t− s)q−1S (t− s)fr(s)ds
∥∥∥

= I1 + I2 + I3 + I4 + I5.

Let us estimate each term above Ii, i = 1, · · · , 5. By Lemma 2.1 and assumptions

H1-H2, we have

I1 ≤M‖A−β‖‖Aβg(0, φ)‖ ≤MMg‖A−β‖(1 + ‖φ‖Bh),

I2 ≤‖A−β‖‖Aβg(t, yrt + φ̂t)‖ ≤Mg‖A−β‖(1 + ‖yrt + φ̂t‖Bh) ≤Mg‖A−β‖(1 + r′),

By a standard calculation involving Lemma 2.14, assumption H2, Eq. (3.2) and the

Holder inequality, we can deduce that

I3 ≤
∫ t

0

∥∥∥(t− s)q−1A1−βS (t− s)Aβg(s, yrs + φ̂s)
∥∥∥ds

≤ qM1−βΓ(1 + β)

Γ(1 + qβ)

∫ t

0

(t− s)q−1(t− s)−(1−β)q‖Aβg(s, yrs + φ̂s)‖ds

≤ K(q, β)

∫ t

0

(t− s)qβ−1Mg(1 + ‖yrs + φ̂s‖Bh)ds

≤ K(q, β)Mg
bqβ

qβ
(1 + r′)

where K(q, β) =
qM1−βΓ(1+β)

Γ(1+qβ) .
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A similar argument involves Lemma 2.14 and assumptions H3 and H4; we obtain

I4 ≤
qM

Γ(1 + q)

∫ t

0

(t− s)q−1BW−1

∥∥∥∥∥
[
x1 + T (t)g(0, φ(0)) + g(t, yrt + φ̂t)

+

∫ t

0

(t− s)q−1AS (t− s)g(s, yrs + φ̂s)ds+

∫ t

0

(t− s)q−1S (t− s)fr(s)ds

]∥∥∥∥∥ds
≤ MM2M3b

q

Γ(1 + q)

[
‖x1‖+MMg‖A−β‖(1 + ‖φ‖Bh) +Mg‖A−β‖(1 + r′)

+K(q, β)Mg
bqβ

qβ
(1 + r′) +

qM

Γ(1 + q)

∫ t

0

(t− s)α−1lr(s)ds

]
On the other hand,

I5 ≤
∫ t

0

(t− s)α−1‖S (t− s)fr(s)‖ds

≤ qM

Γ(1 + q)

∫ t

0

(t− s)α−1lr(s)ds

Combining I1-I5 yields

r ≤ MM2M3b
q

Γ(1 + q)
‖x1‖+

(
1 +

MM2M3b
q

Γ(1 + q)

)[
MMg‖A−β‖(1 + ‖φ‖Bh)

+Mg‖A−β‖(1 + r′) +K(q, β)Mg
bqβ

qβ
(1 + r′) +

qM

Γ(1 + q)

∫ t

0

(t− s)α−1lr(s)ds

]
(3.3)

Dividing both sides of (3.3) by r and taking r →∞, we obtain that(
1 +

MM2M3b
q

Γ(1 + q)

)[(
Mg‖A−β‖+K(q, β)Mg

bqβ

qβ

)
l +

qM

Γ(1 + q)
γ

]
≥ 1

which is a contradiction to our assumption. Thus for q > 0, for some positive number

r and some f ∈ SF,x, Ψ(Br) ⊆ Br.
Step 3. Ψ(Br) is equicontinuous. Indeed, let ε > 0 be small, 0 < t1 < t2 ≤ b. For

each y ∈ Br and z belong to Ψ1y, there exists f ∈ SF,x such that for each t ∈ J , we

have

‖z(t2)− z(t1)‖ = ‖ − (T (t2)−T (t1))g(0, φ)‖+ ‖g(t2, yt2 + φ̂t2)− g(t1, yt1 + φ̂t1)‖

+
∥∥∥∫ t2

t1

(t2 − s)q−1AS (t2 − s)g(s, ys + φ̂s)ds
∥∥∥

+
∥∥∥∫ t1

t1−ε
(t2 − s)q−1A[S (t2 − s)−S (t1 − s)]g(s, ys + φ̂s)ds

∥∥∥
+
∥∥∥∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]AS (t1 − s)g(s, ys + φ̂s)ds

∥∥∥
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+
∥∥∥∫ t1−ε

0

(t2 − s)q−1A[S (t2 − s)−S (t1 − s)]g(s, ys + φ̂s)ds
∥∥∥

+
∥∥∥∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]AS (t1 − s)g(s, ys + φ̂s)ds
∥∥∥

+
∥∥∥∫ t2

t1

(t2 − s)q−1S (t2 − s)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥
+
∥∥∥∫ t1

t1−ε
(t2 − s)q−1[S (t2 − s)−S (t1 − s)]BW−1

[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥
+
∥∥∥∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]S (t1 − s)BW−1

[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥
+
∥∥∥∫ t1−ε

0

(t2 − s)q−1[S (t2 − s)−S (t1 − s)]BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥
+
∥∥∥∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]S (t1 − s)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥
+
∥∥∥∫ t2

t1

(t2 − s)q−1S (t2 − s)f(s)ds
∥∥∥

+
∥∥∥∫ t1

t1−ε
(t2 − s)q−1[S (t2 − s)−S (t1 − s)]f(s)ds

∥∥∥
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+
∥∥∥ ∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]S (t1 − s)f(s)ds

∥∥∥
+
∥∥∥∫ t1−ε

0

(t2 − s)q−1[S (t2 − s)−S (t1 − s)]f(s)ds
∥∥∥

+
∥∥∥∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]S (t1 − s)f(s)ds
∥∥∥.

Applying Lemma 2.14 and the Holder’s inequality, we obtain

‖z(t2)− z(t1)‖ = ‖(T (t2)−T (t1))‖‖g(0, φ)‖+ ‖g(t2, yt2 + φ̂t2)− g(t1, yt1 + φ̂t1)‖

+K(q, β)

∫ t2

t1

(t2 − s)qβ−1‖Aβg(s, ys + φ̂s)‖ds

+

∫ t1

t1−ε
(t2 − s)qβ−1‖A1−β‖‖[S (t2 − s)−S (t1 − s)]‖‖Aβg(s, ys + φ̂s)‖ds

+K(q, β)

∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]‖Aβg(s, ys + φ̂s)‖ds

+

∫ t1−ε

0

(t2 − s)qβ−1‖A1−β‖‖S (t2 − s)−S (t1 − s)‖‖Aβg(s, ys + φ̂s)‖ds

+K(q, β)

∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]‖Aβg(s, ys + φ̂s)‖ds

+
qMM2M3

Γ(1 + q)

∫ t2

t1

(t2 − s)q−1

∥∥∥∥∥[x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]∥∥∥∥∥ds

+M2

∫ t1

t1−ε
(t2 − s)q−1‖S (t2 − s)−S (t1 − s)‖

∥∥∥∥∥[x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]∥∥∥∥∥ds

+
qMM2

Γ(1 + q)

∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]

∥∥∥∥∥[x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]∥∥∥∥∥ds
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+M2

∫ t1−ε

0

(t2 − s)q−1‖S (t2 − s)−S (t1 − s)‖

∥∥∥∥∥[x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]∥∥∥∥∥ds

+
qMM2

Γ(1 + q)

∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]

∥∥∥∥∥[x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]∥∥∥∥∥ds

+
qM

Γ(1 + q)

∫ t2

t1

(t2 − s)q−1lr(s)ds

+

∫ t1

t1−ε
(t2 − s)q−1‖S (t2 − s)−S (t1 − s)‖lr(s)ds

+
qM

Γ(1 + q)

∫ t1

t1−ε
[(t2 − s)q−1 − (t1 − s)q−1]lr(s)ds

+

∫ t1−ε

0

(t2 − s)q−1‖S (t2 − s)−S (t1 − s)‖lr(s)ds

+
qM

Γ(1 + q)

∫ t1−ε

0

[(t2 − s)q−1 − (t1 − s)q−1]lr(s)ds.

Therefore, for ε sufficiently small, we can verify that the right-hand side of the above

inequality tends to zero as t2 → t1. On the other hand, the compactness of S (t) for

t > 0 implies the continuity in the uniform operator topology. Thus Ψ maps Br into

an equicontinuous family of functions.

Step 4. The set V (t) = {(Ψ1y)(t) : y ∈ Br} is pre-compact in X. Obviously, V (t) is

pre-compact in B′′h for t = 0. Let 0 < t ≤ b be fixed and ε be a real number satisfying

0 < ε < t. For δ > 0 and y ∈ Br, define an operator Ψε,δ on Br by Ψε,δy ∈ B′′h the
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set of such that

zε,δ = −
∫ ∞
δ

ξq(θ)T (tqθ)g(0, φ(0))dθ + g(t− ε, yt−ε + φ̂t−ε)

+ q

∫ t−ε

0

(t− s)q−1A
(∫ ∞

δ

θξq(θ)T ((t− s)qθ)dθ
)
g(s, ys + φ̂s)ds

+ q

∫ t−ε

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

− g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

+ q

∫ t−ε

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s)dθds

= −T (εqδ)

∫ ∞
δ

ξq(θ)T (tqθ − εqδ)g(0, φ(0))dθ + g(t− ε, yt−ε + φ̂t−ε)

+ T (εqδ)q

∫ t−ε

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)AT ((t− s)qθ − εqδ)g(s, ys + φ̂s)dθds

+ T (εqδ)q

∫ t−ε

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)BW−1

[
x1

−T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

+ T (εqδ)q

∫ t−ε

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)f(s)dθds

f ∈ Sf,x. Since T (εqδ), (εqδ > 0), is a compact operator, then the set

V ε,δ(t) = {(Ψε,δ
1 y)(t) : y ∈ Br}

is pre-compact in X for every ε, 0 < ε < t and for all δ > 0. Moreover, for every

y ∈ Br, we have

‖z(t)−zε,δ(t)‖ ≤
∥∥∥∫ ∞

δ

ξq(θ)T (tqθ)g(0, φ(0))dθ
∥∥∥+
∥∥∥g(t, yt+φ̂t)−g(t−ε, yt−ε+φ̂t−ε)

∥∥∥
+q

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)q−1ξq(θ)AT ((t− s)qθ)g(s, ys + φ̂s)dθds

∥∥∥∥∥
+q

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)q−1ξq(θ)AT ((t− s)qθ)g(s, ys + φ̂s)dθds

∥∥∥∥∥
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+q

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

−g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥∥∥
+q

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)BW−1
[
x1 −T (b)[φ(0)

−g(0, φ(0))]− g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

∥∥∥∥∥
+q

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s)dθds

∥∥∥∥∥
+q

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s)dθds

∥∥∥∥∥
= J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8.

A similar argument as before can show that

J1 ≤M‖A−β‖‖Aβg(0, φ)‖
(∫ δ

0

ξq(θ)dθ
)
≤M‖A−β‖Mg‖(1 + ‖φ‖Bh)

(∫ δ

0

ξq(θ)dθ
)

J2 ≤ ‖A−β‖‖Aβg(t, yt + φ̂t)−Aβg(t− ε, yt−ε + φ̂t−ε)‖

≤ ‖A−β‖Mg

(
ε+ ‖(yt − yt−ε) + (φ̂t − φ̂t−ε)‖Bh

)
J3 ≤ q

∫ t

0

∫ δ

0

‖θ(t− s)q−1ξq(θ)A
1−βT ((t− s)qθ)Aβg(s, ys + φ̂s)‖dθds

≤ K(q, β)

∫ t

0

(t− s)q−1Mg(1 + r′)ds

∫ δ

0

θεq(θ)dθ

J4 ≤ q
∫ t

t−ε

∫ ∞
δ

‖θ(t− s)q−1ξq(θ)A
1−βT ((t− s)qθ)Aβg(s, ys + φ̂s)‖dθds

≤ K(q, β)

∫ t

t−ε
(t− s)qβ−1Mg(1 + r′)ds

∫ ∞
δ

θεq(θ)dθ
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J5 ≤ qM
∫ t

0

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

− g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

≤ qMM2M3

∫ t

0

(t− s)q−1

[
x1 −T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη

]
ds

∫ δ

0

θεq(θ)dθ

J6 ≤ q
∫ t

t−ε

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)BW−1
[
x1 −T (b)[φ(0)− g(0, φ(0))]

− g(b, yb + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη
]
(s)dθds

≤ qMM2M3

∫ t

t−ε
(t− s)q−1

[
x1 −T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, yη + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f(η)dη

]
ds

∫ ∞
δ

θεq(θ)dθ

J7 ≤ q
∫ t

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s)dθds

≤ qM
∫ t

0

(t− s)q−1lr(s)ds

∫ δ

0

θεq(θ)dθ

J8 ≤ q
∫ t

t−ε

∫ ∞
δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s)dθds

≤ qM
∫ t

t−ε
(t− s)q−1lr(s)ds

∫ ∞
δ

θεq(θ)dθ,

From J1 to J8, one can see that for each y ∈ Br,

‖z(t)− zε,δ(t)‖ → 0 as ε→ 0+, δ → 0+.
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Therefore, there are pre-compact sets arbitrary close to the set V (t), t > 0. Hence,

the set V (t), t > 0 is also pre-compact in X.

Step 5. Ψ has a closed graph.

Let yn → y∗ as n → ∞, zn ∈ Ψyn for each yn ∈ Br, and zn → z∗ as n → ∞. We

will show that z∗ ∈ Ψy∗. Since zn ∈ Ψyn, there exists a fn ∈ Sf,yn such that

zn(t) = T (t)g(0, φ(0)) + g(t, (yn)t + φ̂t) +

∫ t

0

(t− s)q−1AS (t− s)g(s, (yn)s + φ̂s)ds

+

∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]

− g(b, (yn)b + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, (yn)η + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)fn(η)dη

]
(s)ds+

∫ t

0

(t− s)q−1S (t− s)fn(s)ds, t ∈ J.

We must prove that there exists f∗ ∈ Sf,y∗ such that

z∗(t) = −T (t)g(0, φ(0)) + g(t, (y∗)t + φ̂t) +

∫ t

0

(t− s)q−1AS (t− s)g(s, (y∗)s + φ̂s)ds

+

∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]

− g(b, (y∗)b + φ̂b)−
∫ b

0

(b− η)q−1AS (b− η)g(η, (y∗)η + φ̂η)dη

−
∫ b

0

(b− η)q−1S (b− η)f∗(η)dη

]
(s)ds

+

∫ t

0

(t− s)q−1S (t− s)f∗(s)ds, t ∈ J.

Now, for every t ∈ J , since g is continuous, and from the definition of uε we get∥∥∥∥∥
(
zn(t) + T (t)g(0, φ(0))− g(t, (yn)t + φ̂t)−

∫ t

0

(t− s)q−1AS (t− s)g(s, (yn)s + φ̂s)ds

−
∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]− g(b, (yn)b + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, (yn)η + φ̂η)dη

]
(s)ds

)

−

(
z∗(t) + T (t)g(0, φ(0))− g(t, (y∗)t + φ̂t)−

∫ t

0

(t− s)q−1AS (t− s)g(s, (y∗)s + φ̂s)ds
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−
∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]− g(b, (y∗)b + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, (y∗)η + φ̂η)dη

]
(s)ds

)∥∥∥∥∥→ 0 as n→∞.

Consider the linear continuous operator Θ : L1(J,X)→ C(J,X),

(Θf)(t) =

∫ t

0

(t− s)q−1S (t− s)f(s)ds

−
∫ t

0

(t− s)q−1S (t− s)BW−1
(∫ b

0

(b− τ)q−1S (b− τ)f(τ)dτ
)
ds.

From Lemma 2.10, it follows that Θ ◦ SF is a closed graph operator. Also, from the

definition of Θ, we have that(
zn(t) + T (t)g(0, φ(0))− g(t, (yn)t + φ̂t)−

∫ t

0

(t− s)q−1AS (t− s)g(s, (yn)s + φ̂s)ds

−
∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]− g(b, (yn)b + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, (yn)η + φ̂η)dη

]
(s)ds

)
∈ Θ(SF,yn).

Since yn → y∗, for some y∗ ∈ SF,y∗ , it follows from 2.10 that(
z∗(t) + T (t)g(0, φ(0))− g(t, (y∗)t + φ̂t)−

∫ t

0

(t− s)q−1AS (t− s)g(s, (y∗)s + φ̂s)ds

−
∫ t

0

(t− s)q−1S (t− s)BW−1

[
xb −T (b)[φ(0)− g(0, φ(0))]− g(b, (y∗)b + φ̂b)

−
∫ b

0

(b− η)q−1AS (b− η)g(η, (y∗)η + φ̂η)dη

]
(s)ds

)
∈ Θ(SF,y∗)

therefore Ψ has a closed graph.

As a consequence of Step 1 to Step 5 together with the Arzela-Ascoli theorem,

we conclude that Ψ is a compact multivalued map, u.s.c. with convex closed values.

As a consequence of Lemma 2.15, we can deduce that Ψ has a fixed point x which is

a mild solution of (1.1)-(1.2). Therefore, (1.1)-(1.2) is controllable on J . �
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4. Fractional differential inclusions with nonlocal conditions

The study on nonlocal conditions are motivated by physical problems. For exam-

ple, it is used to determine the unknown physical parameters in some inverse heat

conduction problems [15]. The result concerning the existence and uniqueness of mild

solutions to abstract Cauchy problems with nonlocal initial conditions was first formu-

lated and proved by Byszewski, see [12]. Since the appearance of this paper, several

papers have addressed the issue of existence and uniqueness results for various types

of nonlinear differential equations [13, 14, 20, 36, 23, 33, 55]. Control problems for

various types of differential systems and fractional differential systems with nonlocal

initial conditions have been studied in [9, 26, 32, 33, 24, 45, 51].

Recently in [51], Wang et al. proved sufficient conditions for nonlocal controllabil-

ity for fractional evolution systems by using Monch fixed point theorem and in [54]

discussed the existence and controllability results for nonlocal fractional impulsive dif-

ferential inclusions in Banach spaces by using theorem for contraction multivalued is

proved by Covitz and Nadler. In [45] Vijayakumar et al. established the nonlocal con-

trollability of mixed Volterra-Fredholm type fractional semilinear integro-differential

inclusions in Banach spaces by using Bohnenblust-Karlin’s fixed point theorem

Inspired by this consideration, we establishes a set of sufficient conditions for the

controllability of fractional order functional neutral differential inclusions with infinite

delay in Banach spaces with nonlocal condition of the form

CDq
t (x(t) + f(t, xt)) ∈ Ax(t) + g(t, xt), t ∈ [0, b] (4.1)

x0 ∈ φ+ q(xt1 , xt2 , xt3 , · · · , xtn) ∈ Bh, (4.2)

where 0 < t1 < t2 < t3 < · · · < tn ≤ b, q : Bnh → Bh is a given function which satisfies

the following condition:

H7 q : Bn → B is continuous and exist positive constants Li(q) such that

‖q(ψ1, ψ2, ψ3, · · · , ψn)− q(ϕ1, ϕ2, ϕ3, · · · , ϕn)‖ ≤
n∑
i=1

Li(q)‖ψi − ϕi‖B,

for every ψi, ϕi ∈ Bh and assume

Nq = sup{‖q(ψ1, ψt2 , ψt3 , · · · , ψtn)‖ : ψi ∈ Bh}.

Definition 4.1. A continuous function x : (−∞, b]→ X is said to be a mild solution

of (4.1)− (4.2) if x0 = φ ∈ Bh on (−∞, 0]; the restriction of x(·) to the interval [0, b]

is continuous, for s ∈ [0, t), the function (t−s)q−1AS (t−s)g(s, xs) is integrable such

that

x(t) = T (t)[φ(0)− g(0, φ(0)) + q(xt1 , xt2 , xt3 , · · · , xtn)(0)] + g(t, xt)

+

∫ t

0

(t− s)q−1AS (t− s)g(s, xs)ds+

∫ t

0

(t− s)q−1S (t− s)f(s)ds

+

∫ t

0

(t− s)q−1S (t− s)Bu(s)ds, t ∈ J,
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where T (·) and S (·) are defined in Definition 2.11.

Theorem 4.2. Suppose that the hypotheses H1-H7 are satisfied. Then (4.1)-(4.2) is

controllable on J provided that(
1 +

MM2M3b
q

Γ(1 + q)

)[(
Mg‖A−β‖+K(q, β)Mg

bqβ

qβ

)
l +

qM

Γ(1 + q)
γ

]
< 1. (4.3)

Proof. The proof is similar to the proof of Theorem 3.1. We can omit the proof. �

5. An example

Consider a control system governed by the fractional order neutral functional dif-

ferential inclusion of the form

CDq
t

[
z(t, η) +

∫ 0

−∞
b(θ, η)z(t, θ)dθ

]
∈ ∂2

∂η2
z(t, η) + µ̂(t, η)

+ µ
(
t,

∫ t

−∞
µ1(s− t)z(s, η)ds

)
, η ∈ [0, π], t ∈ [0, b], (5.1)

z(t, 0) =z(t, π) = 0, t ≥ 0, (5.2)

z(t, η) =ψ(t, η), 0 ≤ η ≤ π, t ∈ (−∞, 0], (5.3)

where CDq
t is a Caputo fractional partial derivative of order 0 < q < 1, ψ(t, η), µ and

µ1 are continuous.

To rewrite this system into the abstract form (1.1)-(1.2), Let X = L2(0, π) and

let A : X → X be defined by Ay = y′′, y ∈ D(A), where D(A) = {y ∈ X : y, y′

are absolutely continuous, y(0) = y(1) = 0}. Then A is the infinitesimal generator

of an analytic semigroup {T (t), t ≥ 0} in X. Furthermore, A has a discrete spec-

trum with eigenvalues of the form −n2, n = 0, 1, 2, · · · and corresponding normalized

eigenfunctions are given by zn(η) =
√

2
π sin(nπ). We also use the following properties:

(i) If y ∈ D(A), then Ay =

∞∑
n=1

n2〈y, zn〉zn.

(ii) For each y ∈ X, A−1/2y =

∞∑
n=1

1

n
〈y, zn〉zn. In particular, ‖A−1/2‖ = 1.

(iii) The operator A1/2 is given by A1/2y =

∞∑
n=1

n〈y, zn〉zn on the space

D(A1/2) = {y(·) ∈ X,
∞∑
n=1

n〈y, zn〉zn ∈ X}.

Now, we present a special phase space Bh. Let h(s) = e2s, s < 0. Then

l =

∫ 0

−∞
h(s)ds =

1

2
.
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Let

‖ϕ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(‖ϕ(θ)‖) 1

2 ds.

Then (Bh, ‖ · ‖Bh) is a Banach space.

For (t, ϕ) ∈ [0, b] × Bh, where ϕ(θ)(η) = ψ(θ, η) ∈ (−∞, 0] × [0, π], let z(t) = z(t, ·),
that is z(t)(η) = z(t, η).

Define an infinite-dimensional space U by

U =

{
u|u =

∞∑
n=2

unvn, with

∞∑
n=2

U2
n <∞

}
for each v ∈ X. The norm in U is defined by

‖u‖U =

∞∑
n=2

Un.

Now, define a continuous linear mapping B from X into X as

Bu = u2v1 +

∞∑
n=2

unvn for

∞∑
n=2

unvn ∈ U.

Define the bounded linear operator B : U → X by (Bu)(t)(η) = µ̂(t, η), 0 ≤ η ≤ π,

u ∈ U , g : J × Bh → L2([0, π]) and F : J × Bh → L(L2([0, π]), L2([0, π])) by

g(t, ϕ)(η) =

∫ 0

−∞
b(θ)ϕ(θ)(η)dη,

f(t, ϕ) = µ
(
t,

∫ t

−∞
µ1(θ)ϕ(θ)dθ

)
.

On the other hand, the linear system corresponding to (5.1)-(5.3) is controllable.

Thus, with the above choices, (5.1)-(5.3) can be written in the abstract form of (1.1)-

(1.2) and all the conditions of Theorem 3.5 are satisfied. Further, we can impose

some suitable conditions on the above-defined functions to verify the assumptions on

Theorem 3.5, we can conclude that (5.1)-(5.3) is controllable on [0, b].
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