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Abstract. In this paper, we first study the fixed point property for nonexpansive mappings of a
Banach space and some existing result in [7] is extended. We secondly study the relationship between
uniform normal structure and slices and some results in [11] are improved too.
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1. INTRODUCTION

Let X be a Banach space with the dual space X*. Let S(X) ={z € X : |jz| =1}
and B(X) = {z € X : ||z|| < 1} be the unit sphere and the closed unit ball of X,
respectively.

Definition 1.1. ([2]) A nonempty bounded and convex subset K of a Banach space
X is said to have normal structure if for every convex subset H of K that contains
more than one point there is a point g € H such that

sup{||zo — y| : y € H} < diam H,

where diam H = sup{||z —y|| : #,y € H} denotes the diameter of H. A Banach space
X is said to have normal structure if every bounded convex subset of X has normal
structure. A Banach space X is said to have weak normal structure if for each weakly
compact convex set K of X that contains more than one point has normal structure.
We also say that X have uniform normal structure if there exists 0 < ¢ < 1 such that
for any subset K as above, there exists zo € K such that

sup{||zo —y|| 1y € K} < ¢-diam K.
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Remark 1.2. For a reflexive Banach space, normal structure and weak normal
structure coincide. Moreover, if a space have uniform normal structure, then it is
reflexive.

Definition 1.3. A Banach space X is said to have the fized point property if every
nonexpansive mapping T : C' — C, that is, [Tz — Ty|| < ||z — y|| for all z,y € C,
always has a fixed point whenever C' is a bounded closed convex subset C' of X. If
“closed convex” above is replaced by “weakly compact”, then we say that X has the
weak fixed point property.

In [8], Kirk proved that if a Banach space has weak normal structure, then it has
the weak fixed point property. Since then many geometric properties guaranteeing the
existence of a fixed point of nonexpansive mappings have been widely investigated.

The purpose of this paper is two-fold: (1) to extend Jimenez-Melado’s result and
(2) to improve a sufficient condition for uniform normal structure in terms of the
slices of X.

2. EXTENSION OF JIMENEZ-MELADO’S RESULT

Let us recall the concept of ultraproduct of a Banach space X which has been
viewed as a standard tool in this area (for more detail, we refer to [3], [12]).

Let N be the set of natural numbers, and U be a ultrafilter on N. We say that a
sequence {z, } in X converges to x € X with respect toU it {n € N: ||w,—z| <e} €U
for every € > 0. In this case, we write = limy, x,,. Let o (X) denotes the space of
bounded sequences {x, } in X equipped with the norm ||{x,}|| := sup{||zx| : n € N}.
For an ultrafilter U on Nlet Ny = {{x,} € loo(X) : limy ||| = 0}. The ultraproduct
of X is the quotient space Xy := loo(X)/Ny equipped with the quotient norm |-|. We
write [z,,] for the equivalence class of {z,} € £ (X) and it is not difficult to see that
[[zn]] = limy ||z |]. We can also consider z € X as an element in X;; by identifying x
with the equivalence class of a constant sequence {z,z,...}. Moreover, for a subset
C of X and a nonexpansive mapping T : C — C, we also write [C] := {[zy] : ©n €
C for all n} and let [T] be the mapping on [C] defined by [T)([z,]) := [Tzy]. In this
case, |[T)([za]) — (7] ([gal)| = limng, [T — Tyll < limg 2 — | = [[n] — [y]] for
all [z,], [yn] € [C], that is, [T] is also nonexpansive.

The following two lemmas are known as Goebel-Karlovitz’s lemma (see [6]) and
Lin’s lemma [9], respectively.

Lemma 2.1. (Goebel-Karlovitz) Let X be a Banach space and let K be a minimal
weakly compact convex subset of X whcih is invariant under a nonerpansive mapping
T. If {x,} is a sequence in K such that lim,, ||z, — Tx,|| =0, then

lim ||z, —z|| =diam K Vze K.
n—oo

Lemma 2.2. (Lin) Let X be a Banach space and let K be a minimal weakly compact
convex subset of X which is invariant under a nonexpansive mapping T. If W is a
nonempty closed convex subset of [K| which is invariant under [T], then

sup{|[wn] — z| : [wy,] € W} =diam K Vz € K.
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In [13], Sims introduced the following parameter to Banach spaces:
w(X) =sup{A>0: )\hrginf |zn + 2|l < lirginf lxn — ||}

where the supremum is taken over all weakly null sequences {z,} in X and for all
elements x € X. Clearly, % < w(X) < 1 for all Banach spaces X. Moreover, a
Banach space X has WORTH property if and only if w(X) = 1. We prefer to use the
reciprocal p(X) of w(X), namely u(X) = ﬁ

We use — and — to denote strong and weak convergence, respectively. By modi-
fication a proof given in [7], we obtain the following result:
Theorem 2.3. A Banach space X with B(X™*) is weak™ sequentially compact has
the weak fized point property whenever

_ 1t st 16.9)
(1 2u(X)><1 6<12u(1X)>>+ <L

Proof. Suppose that X fails the weak fixed point property. Then by a classical
argument there exist a nonempty convex and weakly compact subset K of X and a
nonexpansive mapping 7 : K — K such that T is fixed-point free and K is minimal for
T. By dilation, we may assume that diam(K) = 1. Let {z,,} be an approximate fixed
point sequence for T', that is, x, — T'z,, — 0. We may also assume that z, - 0 € K
by translation. Applying the Goebel-Karlovitz’s lemma [6], we have

lim ||zn — Tpt1]| = lm |z, —y||=1 Vye K.
n—oo n—oo
Then
lim [z, + 2o < pi= p(X) and Tim o, +yl <p Wy K.
In particular, we have lim,_, ||z,] = 1.
Claim 2.4.
. 1 1 . 1 1 1
nl;néo men — (1 — 2,U> Tptll] = nlLII;O H%xnﬂ — (1 — 2#) Toll =1 — ﬂ

We first observe that

1 1 1
5 Tn — — 5| Tn
2% % +1

1 1
= lim sup Hzﬂ(ffn —Tpy1) — <1 - M) Tpi1

n— oo

lim sup
n—oo

n—oo n—oo 2

1 1 1
< —1 n — 1—— |k =1- —.
< g timsup o, = il (13 ) timsup ol =1 5
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1 1 1
5 Tn — Y n
2 2 Tn+1

1 1 1
>liminf( —x, — [1— — | zps1, —fry1 ) =1— —.
The second assertion follows similarly, so the proof is omitted. Hence the claim is

proved.
Define

On the other hand,

lim inf
n—oo

Wi {(za] € K] 2] = oall S 1= 5

1 1
I[zn] — [Tns1]| < 1= 5 l[zn] — 2| < % for some z € K'}.

Note that
Tp + Tpia
2p
Moreover, W is closed, convex and [T]-invariant. It follows from Lin’s lemma [1] and
[9] that

]EW;AQ.

sup{|[zn]| : [zn] € W} = 1.

We are going to find a contradiction. Let [z,] € W. This implies that there exists an
x € K such that

1 1 1
] = ol S 1= g Hlan] = lomanll S 1= 500 Jlza) =2l < o
Put
ﬁ:w7 @:M, %:[zn]—la:
1— 2+ _ L L
20 Em M

Then |z;| <1 for all § =1,2,3. Notice that
1~ @) = [ - 53] = |7 — 73| =

Next, we consider the following estimates:

1

I[zn] = 5 ([#n] + [2n4a] + )]

_ 1
= —5 1@ + T2 + 7

()
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and
] + o] + 2l = 31 + o a) + (a] +2) + (204a] + )
< ]+ [onsall + ] + 2]+ [fzga] + 2)
< E(llea) = [onsall + llwa] = o] + lfwnsa] — o) = £
6 2
Then
lonll < llzn] = 5 (2] + rna] + )| + 3] + na] +

({5

It follows from Lin’s lemma [1] and [9] that |[z,]| can be arbitrarily closed to one and
this leads to a contradiction if

() 4

Remark 2.5. Very recently H. Fetter and B. Gamboa de Buen [5] proved that every
reflexive Banach space with WORTH property, that is, 4(X) = 1 enjoy the fixed point
property. Hence Jimenez-Melado’s result [7] holds without the presence of £¢(X) < 2.
Our result gives some more information when dealing with spaces in the absence of
the WORTH property.

3. SLICES AND NORMAL STRUCTURE

Definition 3.1. ([4]) Let D be a bounded subset of a Banach space X and suppose
that 0 # f € X*. Let
M(D, f) i= sup{(a, f) : @ € D}.
If @ > 0, then the set
SD, f,a) ={z € D:(z, f) > MDD, f) —a}

is called the slice of D determined by f and «, or more briefly, a slice of D.
Recently, we introduced the following concepts in a Banach space X:
Definition 3.2. ([11]) Let X be a Banach space. Let f € S(X*) and € > 0. Define

sl(X,e) :=sup{diam(S(B(X), f,e)) : f € S(X™)},

and
slo(X) := lim si(X,e).
e—0t

We also proved the following results:
Theorem 3.3. ([11]) Let X be a Banach space.
o Ifsl(X,0) < 2, then X is uniformly nonsquare, therefore X is super-reflexive
and then reflexive.
o Ifsl(X,0) <1, then X has uniform normal structure.
o Ifsl(X, %) < 2, then X has uniform normal structure.
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We are going to include Theorem 3.3 into the following more general result.
Theorem 3.4. If a Banach space X satisfies the following condition:

2t 1 1
sl <X, 1+t) < 1 for some t € (0,2} ,
then X has uniform normal structure.
We need the following lemma from [10].

Lemma 3.5. Let X be a super-reflexive Banach space. If X does not have normal
structure, then for each ultrafilter U on N there exist y1,y2 € S(Xy) and g1,92 €
S((Xu))*) such that the following conditions hold true:

b |y1 - y2| =1;

b <ymgz> =1 fO’f‘ all i = 132;

e (yj,g:) =0 for alli# j.
Proof of Theorem 3.4. Assume that sl(X, %) < ﬁ for some t € (O, %} It follows
then that X is super-reflexive. Suppose that X does not have normal structure. Let
U be a given ultrafilter in N. Then there exist y1,y2 € S(Xy) and g1, 92 € S((Xu)*)
such that all the conditions in Lemma 3.5 are satisfied. Let Y = span{—ty; + y2}.
Then Y is a closed subspace of Xz;. Moreover, it is not hard to see that y; ¢ Y. By
Hahn—Banach Extension Theorem, there exists a bounded linear functional f on X,
such that

o [fl=1

o (y,fy=0forally €Y;

o (y1,f)=inf{jlyn —y|:ye Y}
For any scalar a € R, we have

ly1 — a(—tyr +y2)| = [(1 + at)ys — ays|
> max{|((1+ at)yr — ayz, g1)|, [{(1 + at)y1 — aya2, g2)|}
= max{|1 + «at|, |o|}.

It follows from some calculation that

1
(y1, f) > inf{max{|1 + at], |a|} : @ € R} = T+

Put
q 1-—-2t n t
T =Yy — and a9 = — P —
1=Y1— Y2 2 1—ty1 1—¢
It is clear that x1 and x5 belong to the unit ball of X;,. Moreover, it follows that
t 1

1t 1

Ya.

Tl — Ty = yQEY.

Hence (x1, f) = (x2, f). Since
tey + (1 —t)ze = (1 — t)y1,
we can conclude that

<l‘1,f>=<5€2,f>:(l—t)<y1,f>27: - —.
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Moreover, we also have

1 1 1

— | = ——tyr — yo| > ——(ty1 — Y2, —g2) = ——.
w1 = 22| = Tty —yal 2 Tty — 92, —g2) = T,

Consequently,

Th

2 2t 2t 1
(X, =) =sl ( Xy, —— ) > diamsl B =) >
§ ( ’1+t> 8 ( “’1+t)— s ( X“’f’1+t)_1—t

is is a contradiction. To conclude the uniform normal structure of the space, we

just invoke again the fact that our condition is closed under the taking of ultrapower.
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