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1. Introduction

Let X be a Banach space with the dual space X∗. Let S(X) = {x ∈ X : ‖x‖ = 1}
and B(X) = {x ∈ X : ‖x‖ ≤ 1} be the unit sphere and the closed unit ball of X,
respectively.
Definition 1.1. ([2]) A nonempty bounded and convex subset K of a Banach space
X is said to have normal structure if for every convex subset H of K that contains
more than one point there is a point x0 ∈ H such that

sup{‖x0 − y‖ : y ∈ H} < diamH,

where diamH = sup{‖x− y‖ : x, y ∈ H} denotes the diameter of H. A Banach space
X is said to have normal structure if every bounded convex subset of X has normal
structure. A Banach space X is said to have weak normal structure if for each weakly
compact convex set K of X that contains more than one point has normal structure.
We also say that X have uniform normal structure if there exists 0 < c < 1 such that
for any subset K as above, there exists x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} < c · diamK.
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Remark 1.2. For a reflexive Banach space, normal structure and weak normal
structure coincide. Moreover, if a space have uniform normal structure, then it is
reflexive.
Definition 1.3. A Banach space X is said to have the fixed point property if every
nonexpansive mapping T : C → C, that is, ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C,
always has a fixed point whenever C is a bounded closed convex subset C of X. If
“closed convex” above is replaced by “weakly compact”, then we say that X has the
weak fixed point property.

In [8], Kirk proved that if a Banach space has weak normal structure, then it has
the weak fixed point property. Since then many geometric properties guaranteeing the
existence of a fixed point of nonexpansive mappings have been widely investigated.

The purpose of this paper is two-fold: (1) to extend Jimenez-Melado’s result and
(2) to improve a sufficient condition for uniform normal structure in terms of the
slices of X.

2. Extension of Jimenez-Melado’s result

Let us recall the concept of ultraproduct of a Banach space X which has been
viewed as a standard tool in this area (for more detail, we refer to [3], [12]).

Let N be the set of natural numbers, and U be a ultrafilter on N. We say that a
sequence {xn} in X converges to x ∈ X with respect to U if {n ∈ N : ‖xn−x‖ < ε} ∈ U
for every ε > 0. In this case, we write x = limU xn. Let `∞(X) denotes the space of
bounded sequences {xn} in X equipped with the norm ‖{xn}‖ := sup{‖xn‖ : n ∈ N}.
For an ultrafilter U on N let NU = {{xn} ∈ `∞(X) : limU ‖xn‖ = 0}. The ultraproduct
of X is the quotient space XU := l∞(X)/NU equipped with the quotient norm | · |. We
write [zn] for the equivalence class of {zn} ∈ `∞(X) and it is not difficult to see that
|[zn]| = limU ‖zn‖. We can also consider x ∈ X as an element in XU by identifying x
with the equivalence class of a constant sequence {x, x, . . . }. Moreover, for a subset
C of X and a nonexpansive mapping T : C → C, we also write [C] := {[xn] : xn ∈
C for all n} and let [T ] be the mapping on [C] defined by [T ]([xn]) := [Txn]. In this
case, |[T ]([xn]) − [T ]([yn])| = limU ‖Txn − Tyn‖ ≤ limU ‖xn − yn‖ = |[xn] − [yn]| for
all [xn], [yn] ∈ [C], that is, [T ] is also nonexpansive.

The following two lemmas are known as Goebel–Karlovitz’s lemma (see [6]) and
Lin’s lemma [9], respectively.
Lemma 2.1. (Goebel–Karlovitz) Let X be a Banach space and let K be a minimal
weakly compact convex subset of X whcih is invariant under a nonexpansive mapping
T . If {xn} is a sequence in K such that limn ‖xn − Txn‖ = 0, then

lim
n→∞

‖xn − x‖ = diamK ∀x ∈ K.

Lemma 2.2. (Lin) Let X be a Banach space and let K be a minimal weakly compact
convex subset of X which is invariant under a nonexpansive mapping T . If W is a
nonempty closed convex subset of [K] which is invariant under [T ], then

sup{|[wn]− x| : [wn] ∈W} = diamK ∀x ∈ K.
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In [13], Sims introduced the following parameter to Banach spaces:

w(X) = sup{λ > 0 : λ lim inf
n→∞

‖xn + x‖ ≤ lim inf
n→∞

‖xn − x‖}

where the supremum is taken over all weakly null sequences {xn} in X and for all
elements x ∈ X. Clearly, 1

3 ≤ w(X) ≤ 1 for all Banach spaces X. Moreover, a
Banach space X has WORTH property if and only if w(X) = 1. We prefer to use the
reciprocal µ(X) of w(X), namely µ(X) = 1

w(X) .

We use → and ⇀ to denote strong and weak convergence, respectively. By modi-
fication a proof given in [7], we obtain the following result:
Theorem 2.3. A Banach space X with B(X∗) is weak∗ sequentially compact has
the weak fixed point property whenever(

1− 1

2µ(X)

)(
1− δ

(
1

1− 1
2µ(X)

))
+
µ(X)

2
< 1.

Proof. Suppose that X fails the weak fixed point property. Then by a classical
argument there exist a nonempty convex and weakly compact subset K of X and a
nonexpansive mapping T : K → K such that T is fixed-point free and K is minimal for
T . By dilation, we may assume that diam(K) = 1. Let {xn} be an approximate fixed
point sequence for T , that is, xn − Txn → 0. We may also assume that xn ⇀ 0 ∈ K
by translation. Applying the Goebel–Karlovitz’s lemma [6], we have

lim
n→∞

‖xn − xn+1‖ = lim
n→∞

‖xn − y‖ = 1 ∀y ∈ K.

Then

lim
n→∞

‖xn + xn+1‖ ≤ µ := µ(X) and lim
n→∞

‖xn + y‖ ≤ µ ∀y ∈ K.

In particular, we have limn→∞ ‖xn‖ = 1.

Claim 2.4.

lim
n→∞

∥∥∥∥ 1

2µ
xn −

(
1− 1

2µ

)
xn+1

∥∥∥∥ = lim
n→∞

∥∥∥∥ 1

2µ
xn+1 −

(
1− 1

2µ

)
xn

∥∥∥∥ = 1− 1

2µ
.

We first observe that

lim sup
n→∞

∥∥∥∥ 1

2µ
xn −

(
1− 1

2µ

)
xn+1

∥∥∥∥
= lim sup

n→∞

∥∥∥∥ 1

2µ
(xn − xn+1)−

(
1− 1

µ

)
xn+1

∥∥∥∥
≤ 1

2µ
lim sup
n→∞

‖xn − xn+1‖+

(
1− 1

µ

)
lim sup
n→∞

‖xn+1‖ = 1− 1

2µ
.
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On the other hand,

lim inf
n→∞

∥∥∥∥ 1

2µ
xn −

(
1− 1

2µ

)
xn+1

∥∥∥∥
≥ lim inf

n→∞

〈
1

2µ
xn −

(
1− 1

2µ

)
xn+1,−fn+1

〉
= 1− 1

2µ
.

The second assertion follows similarly, so the proof is omitted. Hence the claim is
proved.

Define

W := {[zn] ∈ [K] : |[zn]− [xn]| ≤ 1− 1

2µ
,

|[zn]− [xn+1]| ≤ 1− 1

2µ
, |[zn]− x| ≤ 1

2µ
for some x ∈ K}.

Note that [
xn + xn+1

2µ

]
∈W 6= ∅.

Moreover, W is closed, convex and [T ]-invariant. It follows from Lin’s lemma [1] and
[9] that

sup{|[zn]| : [zn] ∈W} = 1.

We are going to find a contradiction. Let [zn] ∈W . This implies that there exists an
x ∈ K such that

|[zn]− [xn]| ≤ 1− 1

2µ
, |[zn]− [xn+1]| ≤ 1− 1

2µ
, |[zn]− x| ≤ 1

2µ
.

Put

x̃1 =
[zn]− [xn]

1− 1
2µ

, x̃2 =
[zn]− [xn+1]

1− 1
2µ

, x̃3 =
[zn]− x
1− 1

2µ

.

Then |x̃i| ≤ 1 for all i = 1, 2, 3. Notice that

|x̃1 − x̃2| = |x̃2 − x̃3| = |x̃1 − x̃3| =
1

1− 1
2µ

.

Next, we consider the following estimates:

|[zn]− 1

3
([xn] + [xn+1] + x)|

=
1− 1

2µ

3
|x̃1 + x̃2 + x̃3|

≤
(

1− 1

2µ

)(
1− δ

(
1

1− 1
2µ

))
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and
1

3
|[xn] + [xn+1] + x| = 1

6
|([xn] + [xn+1]) + ([xn] + x) + ([xn+1] + x)|

≤ 1

6
(|[xn] + [xn+1]|+ |[xn] + x|+ |[xn+1] + x|)

≤ µ

6
(|[xn]− [xn+1]|+ |[xn]− x|+ |[xn+1]− x|) =

µ

2
.

Then

|[zn]| ≤ |[zn]− 1

3
([xn] + [xn+1] + x)|+ 1

3
|[xn] + [xn+1] + x|

≤
(

1− 1

2µ

)(
1− δ

(
1

1− 1
2µ

))
+
µ

2
.

It follows from Lin’s lemma [1] and [9] that |[zn]| can be arbitrarily closed to one and
this leads to a contradiction if(

1− 1

2µ

)(
1− δ

(
1

1− 1
2µ

))
+
µ

2
< 1.

Remark 2.5. Very recently H. Fetter and B. Gamboa de Buen [5] proved that every
reflexive Banach space with WORTH property, that is, µ(X) = 1 enjoy the fixed point
property. Hence Jimenez-Melado’s result [7] holds without the presence of ε0(X) < 2.
Our result gives some more information when dealing with spaces in the absence of
the WORTH property.

3. Slices and Normal structure

Definition 3.1. ([4]) Let D be a bounded subset of a Banach space X and suppose
that 0 6= f ∈ X∗. Let

M(D, f) := sup{〈x, f〉 : x ∈ D}.
If α > 0, then the set

S(D, f, α) := {x ∈ D : 〈x, f〉 > M(D, f)− α}
is called the slice of D determined by f and α, or more briefly, a slice of D.

Recently, we introduced the following concepts in a Banach space X:
Definition 3.2. ([11]) Let X be a Banach space. Let f ∈ S(X∗) and ε > 0. Define

sl(X, ε) := sup{diam(S(B(X), f, ε)) : f ∈ S(X∗)},
and

sl0(X) := lim
ε→0+

sl(X, ε).

We also proved the following results:
Theorem 3.3. ([11]) Let X be a Banach space.

• If sl(X, 0) < 2, then X is uniformly nonsquare, therefore X is super-reflexive
and then reflexive.

• If sl(X, 0) < 1, then X has uniform normal structure.
• If sl(X, 23 ) < 2, then X has uniform normal structure.
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We are going to include Theorem 3.3 into the following more general result.
Theorem 3.4. If a Banach space X satisfies the following condition:

sl

(
X,

2t

1 + t

)
<

1

1− t
for some t ∈

(
0,

1

2

]
,

then X has uniform normal structure.
We need the following lemma from [10].

Lemma 3.5. Let X be a super-reflexive Banach space. If X does not have normal
structure, then for each ultrafilter U on N there exist y1, y2 ∈ S(XU ) and g1, g2 ∈
S((XU ))∗) such that the following conditions hold true:

• |y1 − y2| = 1;
• 〈yi, gi〉 = 1 for all i = 1, 2;
• 〈yj , gi〉 = 0 for all i 6= j.

Proof of Theorem 3.4. Assume that sl(X, 2t
1+t ) <

1
1−t for some t ∈

(
0, 12
]
. It follows

then that X is super-reflexive. Suppose that X does not have normal structure. Let
U be a given ultrafilter in N. Then there exist y1, y2 ∈ S(XU ) and g1, g2 ∈ S((XU )∗)
such that all the conditions in Lemma 3.5 are satisfied. Let Y = span{−ty1 + y2}.
Then Y is a closed subspace of XU . Moreover, it is not hard to see that y1 /∈ Y . By
Hahn–Banach Extension Theorem, there exists a bounded linear functional f on XU
such that

• |f | = 1;
• 〈y, f〉 = 0 for all y ∈ Y ;
• 〈y1, f〉 = inf{|y1 − y| : y ∈ Y }.

For any scalar α ∈ R, we have

|y1 − α(−ty1 + y2)| = |(1 + αt)y1 − αy2|
≥ max{|〈(1 + αt)y1 − αy2, g1〉|, |〈(1 + αt)y1 − αy2, g2〉|}
= max{|1 + αt|, |α|}.

It follows from some calculation that

〈y1, f〉 ≥ inf{max{|1 + αt|, |α|} : α ∈ R} =
1

1 + t
.

Put

x1 = y1 − y2 and x2 =
1− 2t

1− t
y1 +

t

1− t
y2.

It is clear that x1 and x2 belong to the unit ball of XU . Moreover, it follows that

x1 − x2 =
t

1− t
y1 −

1

1− t
y2 ∈ Y.

Hence 〈x1, f〉 = 〈x2, f〉. Since

tx1 + (1− t)x2 = (1− t)y1,

we can conclude that

〈x1, f〉 = 〈x2, f〉 = (1− t)〈y1, f〉 ≥
1− t
1 + t

= 1− 2t

1− t
.
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Moreover, we also have

|x1 − x2| =
1

1− t
|ty1 − y2| ≥

1

1− t
〈ty1 − y2,−g2〉 =

1

1− t
.

Consequently,

sl

(
X,

2t

1 + t

)
= sl

(
XU ,

2t

1 + t

)
≥ diam sl

(
BXU , f,

2t

1 + t

)
≥ 1

1− t
.

This is a contradiction. To conclude the uniform normal structure of the space, we
just invoke again the fact that our condition is closed under the taking of ultrapower.
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