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Abstract. The Markov-Kakutani fixed point theorem has been considered as one of the most
remarkable theorems due to considerable diversity in its applications in the history of functional

analysis. Different approaches have been investigated to prove this theorem; however, the condition

of compactness of the underlying set is essentially used. In this paper, we develop a new method,
based on Zermelo’s well-ordering theorem, to weaken the compactness condition.
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One of the most celebrated results in the theory of common fixed points is a theorem
proved independently by Markov [6] and Kakutani [5]. The classical Markov-Kakutani
fixed point theorem states that every commuting family of continuous affine mappings
on a compact convex set C in a Hausdorff topological vector space X into itself has
a common fixed point. Several mathematicians have since tried to establish this
theorem under weaker assumptions, such as that C is not necessarily compact. In
this note, by appealing Zermelo’s well-ordering theorem, we suggest a new approach
to weaken the compactness condition in the Markov-Kakutani fixed point theorem, in
context of separated locally convex spaces. Instead, we use a weaker condition that is
called “property (C)” in the literature (see, e.g.,[8]). By giving an example, we show
that our result does not remain valid for Hausdorff topological vector spaces.

We recall that a separated locally convex space X is a topological vector space
whose topology is defined by a family of seminorms {pβ : β ∈ Γ} such that⋂

β∈Γ

{x ∈ X : pβ(x) = 0} = {0}.

Hereafter, we suppose that X is a separated locally convex space. A subset C of X
is said to have property (C), if every chain (by inclusion) of nonempty closed convex
bounded subsets of C has a nonempty intersection. A set I with an order relation
≺ is said to be well-ordered if every nonempty subset of I has a smallest element.
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Zermelo’s well-ordering theorem states that if I is a nonempty set, then there exists
an order relation on I under which I is well-ordered.

Main Theorem. Let X be a separated locally convex space, C be a nonempty bounded
closed convex subset of X that has property (C), and {Tα : α ∈ Λ} be a commuting
family of continuous affine mappings from C into C. Then, ∩α∈ΛFix(Tα) 6= ∅.

Proof. We first prove that C has the fpp for continuous affine mappings. For this
purpose, assume that T : C → C is a continuous affine mapping and fix some x0 ∈ C.
Define yn = 1

n (x0 +Tx0 + · · ·+Tnx0). Suppose that the topology on X is defined by
the family of seminorms {pβ : β ∈ Γ}. Take m ∈ N, and define

Km = {x ∈ C : pβ(Tx− x) ≤ 1

m
, ∀β ∈ Γ}.

We prove that Km 6= ∅. Defining

Km,β = {x ∈ C : pβ(T ix− T i−1x) ≤ 1

m
,∀i ∈ N},

for each β ∈ Γ, it is easy to check that Km,β is closed, convex and T -invariant.
Moreover, Km,β 6= ∅. Indeed, because C is bounded, for each β ∈ Γ, there exists a
scaler r such that

C − C ⊂ {z ∈ X : pβ(z) < r}.
Then, choosing n0 ∈ N with r/n0 < 1/m, we have

pβ(T iyn0
− T i−1yn0

) =
1

n0
pβ(Tn0+ix0 − T i−1x0) < r/n0 < 1/m, ∀i ∈ N.

This implies that y0 ∈ Km,β and then Km,β 6= ∅.
By Zermelo’s well-ordering theorem, Γ can be well-ordered for some relation ≺.

Let β0 be the smallest element of Γ and, for each γ ∈ Γ, put

Lγ =
⋂

β0�β�γ

Km,β .

We show that, for each γ ∈ Γ, Lγ 6= ∅. Suppose, for contradiction, that

Ω = {γ ∈ Γ : Lγ = ∅} 6= ∅.
Then, there exists a smallest element γ0 ∈ Ω. Obviously, β0 ≺ γ0, and Lγ 6= ∅, for
each γ ≺ γ0. Thus, by appealing the property (C),⋂

β0�γ≺γ0

Lγ 6= ∅.

The latter set is also closed, convex and T -invariant. Choosing some x ∈
⋂
β0�γ≺γ0 Lγ ,

and taking zn = 1
n (x+ Tx+ · · ·+ Tnx), we have zn ∈

⋂
β0�γ≺γ0 Lγ for each n, and

pγ0(T izn0 − T i−1zn0) =
1

n0
pγ0(Tn0+ix− T i−1x) < r/n0 < 1/m, ∀i ∈ N.

It yields that

zn0 ∈
⋂

β0�γ�γ0

Lγ = Lγ0 6= ∅,
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which is a contradiction. Hence, {Lγ : γ ∈ Γ} is a chain of nonempty closed convex
subsets of C. By applying the property (C), it follows that

Km ⊃
⋂
β∈Γ

Km,β =
⋂
γ∈Γ

Lγ 6= ∅.

Therefore, {Km}m∈N is a descending sequence of nonempty closed convex subsets of
C. Accordingly, using property (C), it follows

Fix(T ) =
⋂
m

Km 6= ∅.

In this stage, we will show that ∩α∈ΛFix(Tα) 6= ∅. According to Zermelo’s well-
ordering theorem, there is a relation ≺ under which Λ is well-ordered. Let α0 be the
smallest element of Λ and, for each α ∈ Λ, let

Mα =
⋂

α0�β�α

Fix(Tβ).

Then, from the above assertion, Mα0
= Fix(Tα0

) 6= ∅. We show that Mα 6= ∅, for
each α ∈ Λ. Define

∆ = {α ∈ Λ : Mα = ∅}.
Suppose, for contradiction, that ∆ 6= ∅. Then, there exists a smallest element τ0 ∈ ∆.
Obviously, α0 ≺ τ0 and Mα 6= ∅, for each α ≺ τ0. Thus, {Mα : α0 � α ≺ τ0} is a
descending chain of nonempty closed convex subsets of C for which, by assumption,

M =
⋂

α0�α≺τ0

Mα 6= ∅.

On the other hand, M is Tτ0 -invariant. In fact, taking x ∈M, we obtain

Tα(Tτ0(x)) = Tτ0(Tα(x)) = Tτ0(x), ∀α0 � α ≺ τ0.
Therefore,

Tτ0(x) ∈
⋂

α0�α≺τ0

Fix(Tα) =M.

Hence, there exists some y ∈M such that Tτ0(y) = y; i.e.,

y ∈M∩ Fix(Tτ0) = Mτ0 ,

a contradiction. Therefore, ∆ = ∅, and so {Mα}α∈Λ is a descending chain of nonempty
closed convex subsets of C, which it follows by property (C) that⋂

α∈Λ

Fix(Tα) =
⋂
α∈Λ

Mα 6= ∅.

This completes the proof. �

In the following, we show that our theorem can not be generalized to a Hausdorff
topological vector space; however, the original Markov-Kakutani’s theorem is valid
for Hausdorff topological vector spaces, where the the underlying set is compact.
First, recall that in a locally convex space, every weakly bounded set is originally
bounded, and vice versa (see, e.g., Theorem 3.18 in [7]). Also, closed convex subsets
are weakly closed. Thus, property (C) for a subset C is equivalent to say that every
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chain of nonempty weakly closed convex weakly bounded subsets of C has a nonempty
intersection. Therefore our theorem may be stated as follows:

Let X be a separated locally convex space, C be a nonempty weakly bounded
closed convex subset of X that has property (C), in the sense that every chain
of nonempty weakly closed convex subsets of C has a nonempty intersection, and
{Tα : α ∈ Λ} be a commuting family of continuous affine mappings from C into C.
Then, ∩α∈ΛFix(Tα) 6= ∅.

On the other hand, the topological vector space

X = Lp[0, 1] = {f : [0, 1]→ R : f is measurable and

∫ 1

0

|f(t)|pdt <∞},

with 0 < p < 1, is not locally convex with the topology given by the complete metric

d(f, g) =

∫ 1

0

|f(t)− g(t)|pdt.

In fact, it is known that the only convex open set in Lp[0, 1] is the whole space; also,
It is well-known that Lp[0, 1]∗ = {0} (see [4, 1]). Then, since σ(X,X∗) = {∅, X}, X
is weakly bounded and has property (C) in the sense that every chain of nonempty
weakly closed convex subsets of X has a nonempty intersection. But, for any fixed
a 6= 0 in X, x 7→ x+ a is a continuous affine map without a fixed point.

It may be a question that whether the Markov-Kakutani theorem holds in a non-
separated locally convex space. The answer to this question is negative. In fact,
if X = Lp[0, 1], 0 < p < 1, then, since X∗ = Lp[0, 1]∗ = {0}, the weak topology
σ(X,X∗) is the trivial topology {∅, X}. Accordingly, (X,σ(X,X∗)) is a non-separated
locally convex space such that X is compact in the weak topology. However, for any
fixed a 6= 0 in X, x 7→ x + a is a continuous affine map without a fixed point. That
is, the Markov-Kakutani’s theorem dose not hold for the non-separated case.

It is known that each commutative semigroup is amenable [3]; moreover, the conclu-
sion of the Markov-Kakutani theorem holds when the family of maps is an amenable
semigroup [2]. However, the following problem is open to us:

Can we replace commutativity with amenability in our result?
Finally, we remark that our approach is based on a method using Zermelo’s well-

ordering theorem, directly; howevere, applying Zorn’s lemma, it is also possible to
obtain the same result.
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