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1. Introduction

Banach-Caccioppoli-Picard contraction principle, which is an extremely useful tool
in nonlinear analysis, says that any contraction f : (X, d) → (X, d), where (X, d) is
a complete metric space, has a unique fixed point x∗ and lim

n→∞
f [n](x) = x∗ for every

x ∈ X. Besides its great features (the uniqueness of the fixed point and the possibility
to approximate it by the means of Picard iteration) there exists a drawback of this
result, namely that the contraction condition is too strong.

The natural question if there exist contraction-type conditions that do no imply the
contraction condition and for which the existence and uniqueness of the fixed point
are assured was answered, among others, by V. Istrăţescu who introduced and studied
the convex contraction condition (see [5], [6] and [7]). More precisely, a continuous
function f : (X, d)→ (X, d), where (X, d) is a complete metric space, is called convex
contraction if there exist a, b ∈ (0, 1) such that a+ b < 1 and

d(f [2](x), f [2](y)) ≤ ad(f(x)), f(y)) + bd(x, y)

for every x, y ∈ X. Istrăţescu proved that any convex contraction has a unique fixed
point x∗ ∈ X (and lim

n→∞
f [n](x) = x∗ for every x ∈ X) and provided an example

of convex contraction which is not contraction. V. Ghorbanian, S. Rezapour and
N. Shahzad [8] generalized Istrăţescu’s results to complete ordered metric spaces.
M. A. Miandaragh, M. Postolache and S. Rezapour [16] introduced the concept of
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generalized convex contraction and proved some theorems about approximate fixed
points of these contractions. Extending these results, A. Latif, W. Sintunavarat and
A. Ninsri [12] introduced a new concept called partial generalized convex contraction
and established some approximate fixed point results for such mappings in α-complete
metric spaces. For more results along these lines of generalization one can also see
[10].

Let us recall that an iterated function system on a complete metric space (X, d),
denoted by

S = (X, (fk)k∈{1,2,...,n}),

consists of a finite family of contractions (fk)k∈{1,2,...,n}, where fk : X → X. The
function FS : K(X)→ K(X) defined by

FS(C) =
n
∪
k=1

fk(C),

for all C ∈ K(X) -the set of non-empty compact subsets of X-, which is called the set
function associated to S, turns out to be a contraction (with respect to the Hausdorff-
Pompeiu distance) and its unique fixed point, denoted by AS , is called the attractor
of the system S. As iterated function systems represent one of the main tools to
generate fractals, the extending problem of the notion of iterated function system
was treated by several authors. Let us mention some contributions along these lines
of research. Given a complete metric space (X, d) and a finite family of functions
f1, f2, ..., fn : X → X, L. Máté [15] proved the existence of a unique A ∈ K(X) such
that

A =
n
∪
i=1
fi(A)

under weaker contractivity conditions (for example d(fi(x), fi(y)) ≤ ϕ(d(x, y)), where
ϕ : [0,∞)→ [0,∞) is an upper continuous non-decreasing function with the property
that ϕ(t) < t for each t > 0). K. Leśniak [13] presented a multivalued approach of
infinite iterated function systems. A. Petruşel [21] proved that each finite family of
single-valued and multi-valued operators satisfying some Meir-Keeler type conditions
has a self-similar set (see also [4]). Let (X, d) be a metric space and f1, f2, ..., fn :
X → Pcl(X) be set-valued mappings on X, where Pcl(X) designates the family of all
nonempty closed subsets of X. The system F = (f1, f2, ..., fn) is called an iterated

multifunction system and the operator F̂ : Pcl(X)→ Pcl(X) given by

F̂ (Y ) =
n
∪
i=1
fi(Y ),

where
fi(Y ) = ∪

x∈Y
fi(x)

for each i ∈ {1, 2, ..., n}, is called the Barnsley-Hutchinson operator generated by
F . A fixed point of this operator is called a multivalued large fractal. C. Chifu
and A. Petruşel [3] obtained existence and uniqueness results for multivalued large
fractals (see also [20]. G. Gwóźdź- Lukowska and J. Jachymski [9] developed the
Hutchinson-Barnsley theory for finite families of mappings on a metric space endowed
with a directed graph. E. Llorens-Fuster, A. Petruşel and J.-C. Yao [14] gave exis-
tence and uniqueness results for self-similar sets of a mixed iterated function system.
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M. Boriceanu, M. Bota and A. Petruşel [2] extended the Hutchinson-Barnsley theory
to the case of set-valued mappings on a b-metric space. For other related results see
[1], [11], [17], [19], [22], [23], [25] and [26].

In this paper we introduce the concept of iterated function system consisting of
convex contractions and prove the existence and uniqueness of the attractor of such
a system obtaining in this way a generalization of Istrăţescu’s convex contractions
fixed point theorem (see Theorem 3.2). Moreover we study the properties of the
canonical projection from the code space into the attractor of an iterated function
system consisting of convex contractions (see Theorem 3.6).

2. Preliminaries

Given a function f : X → X, by f [n] we mean the composition of f by itself n
times.

Given a set X and a family of functions (fi)i∈I , where fi : X → X, by fα1α2....αn

we mean fα1
◦ fα2

◦ ... ◦ fαn
and by Yα1α2....αn

we understand fα1α2....αn
(Y ), where

Y ⊆ X and α1, α2, ...., αn ∈ I.
Given a set X, by P∗(X) we denote the family of all nonempty subsets of X. For

a metric space (X, d), by K(X) we denote the set of non-empty compact subsets of
X and by BX(a, r) the set {x ∈ X | d(x, a) < r}, where a ∈ X and r > 0.

Given two sets A and B, by BA we mean the set of functions from A to B.
Given a set I, Λ(I) denotes IN

∗
and Λn(I) denotes I{1,2,...,n}. Hence the elements

of Λ(I) can be written as infinite words α = α1α2α3... and the elements of Λn(I) as
finite words α = α1α2....αn. By Λ∗(I) we denote the set of all finite words, namely

Λ∗(I) = ∪
n∈N∗

Λn(I) ∪ {λ},

where λ is the empty word. Λ(I) can be seen as a metric space with the distance dΛ

defined by dΛ(α, β) = 1
2n where n is the natural number having the property that

αk = βk for k < n and αn 6= βn if α = α1α2α3...αnαn+1... 6= β = β1β2β3...βnβn+1...
and dΛ(α, α) = 0. By αβ we understand the concatenation of the words α ∈ Λ∗ and

β ∈ Λ∪Λ∗. For α ∈ Λ∪Λn and m ≤ n, [α]m
def
= α1α2....αm. For i ∈ I, let us consider

the function Fi : Λ(I)→ Λ(I) given by Fi(α) = iα for all α ∈ Λ(I).

Definition 2.1. For a metric space (X, d), we consider on P∗(X) the generalized
Hausdorff-Pompeiu pseudometric h : P∗(X)× P∗(X)→ [0,+∞] defined by

h(A,B) = max(d(A,B), d(B,A)) = inf{η ∈ [0,∞] | A ⊆ Nη(B) and B ⊆ Nη(A)}
where

d(A,B) = sup
x∈A

d(x,B) = sup
x∈A

( inf
y∈B

d(x, y))

and
Nη(A) = {x ∈ X | there exists y ∈ X such that d(x, y) < η},

for every A,B ∈ P∗(X).

Proposition 2.2. (see [23]) If H and K are two nonempty subsets of the metric
space (X, d), then

h(H,K) = h(H,K).
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Proposition 2.3. (see [23]) If (Hi)i∈I and (Ki)i∈I are two families of nonempty
subsets of the metric space (X, d), then

h( ∪
i∈I
Hi, ∪

i∈I
Ki) = h( ∪

i∈I
Hi, ∪

i∈I
Ki) ≤ sup

i∈I
h(Hi,Ki).

Theorem 2.4. (see [23]) If the metric space (X, d) is complete, then (K(X), h) is a
complete metric space.

Definition 2.5. For a metric space (X, d), we consider on P∗(X) the function δ :
P∗(X)× P∗(X)→ [0,+∞] defined by

δ(A,B) = sup
x∈A,y∈B

d(x, y),

for all A,B ∈ P∗(X).

Remark 2.6. For every A,B ∈ P∗(X) we have

h(A,B) ≤ δ(A,B).

Proposition 2.7. Let (X, d) be a complete metric space, (Yn)n∈N ⊆ K(X) and Y a
closed subset of X such that lim

n→∞
h(Yn, Y ) = 0. Then Y ∈ K(X).

Proof. It is enough to prove that Y is precompact. To this aim, let us note that for
each ε > 0 there exists nε ∈ N such that h(Ynε

, Y ) < ε
2 , so Y ⊆ N ε

2
(Ynε

). Since

Ynε ∈ K(X) there exist x1, ..., xm ∈ X such that Ynε ⊆
m
∪
i=1
B(xi,

ε
2 ) and therefore

Y ⊆
m
∪
i=1
B(xi, ε). �

Proposition 2.8. Let (X, d) be a complete metric space, (Yn)n∈N ⊆ K(X) and

Y ∈ K(X) such that lim
n→∞

h(Yn, Y ) = 0. Then H
def
= Y ∪ (

∞
∪
n=0

Yn) ∈ K(X).

Proof. First of all we prove that H is a closed subset of X.
Indeed, if x ∈ H, then there exists a sequence (xk)k∈N ⊆ H such that lim

k→∞
xk = x.

If {k ∈ N |xk ∈ Y } is infinite, then there exists a subsequence (xkp)p∈N of (xk)k∈N
such that xkp ∈ Y for every p ∈ N. Since Y ∈ K(X) there exists a subsequence
(xkpq )q∈N of (xkp)p∈N and y ∈ Y such that lim

q→∞
xkpq = y. Consequently, as lim

q→∞
xkpq =

x, we conclude that x = y ∈ Y ⊆ H.
If there exists n0 ∈ N such that {k ∈ N |xk ∈ Yn0

} is infinite, a similar argument
shows that x ∈ H.

If none of the above described two cases is valid, then there exist an increasing
sequence (kp)p∈N ⊆ N, xkp ∈ Ykp and ykp ∈ Y such that

d(xkp , ykp) < h(Ykp , Y ) +
1

p
.
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Since Y ∈ K(X) there exists (ykpq )q∈N a subsequence of (ykp)p∈N and y ∈ Y such that
lim
q→∞

ykpq = y. As

d(xkpq , y) < d(xkpq , ykpq ) + d(ykpq , y) ≤ h(Ykpq , Y ) +
1

pq
+ d(ykpq , y)

and

lim
q→∞

h(Ykpq , Y ) = lim
q→∞

1

pq
= lim
q→∞

d(ykpq , y) = 0,

we infer that lim
q→∞

xkpq = y. Consequently, as lim
q→∞

xkpq = x, we get x = y ∈ Y ⊆ H.

Now we prove that

lim
m→∞

h(
m
∪
i=0
Yi, H) = 0.

Indeed

h(
m
∪
i=0
Yi, H) = h((

m
∪
i=0
Yi) ∪ (

∞
∪

i=m+1
Ym) ∪ Ym, (

m
∪
i=0
Yi) ∪ (

∞
∪

i=m+1
Yi) ∪ Y ))

Proposition 2.3

≤

≤ sup{h(Ym, Y ), h(Ym, Ym+1), h(Ym, Ym+2), ...}

for every m ∈ N. As lim
m→∞

h(Ym, Y ) = 0, we conclude that lim
m→∞

h(
m
∪
i=0
Yi, H) = 0.

Because
m
∪
i=0
Yi ∈ K(X) for every m ∈ N and H is closed, using Proposition 2.7, we

obtain that H is compact. �

3. The main results

Definition 3.1. An iterated function system consisting of convex contractions on a
complete metric space (X, d) is given by a finite family of continuous functions (fi)i∈I ,
fi : X → X, such that for every i, j ∈ I there exist aij , bij , cij ∈ [0,∞) satisfying the
following two properties:

α) aij + bij + cij
def
= dij and max

i,j∈I
dij

def
= d < 1;

β) d((fi ◦ fj)(x), (fi ◦ fj)(y)) ≤ aijd(x, y) + bijd(fi(x), fi(y)) + cijd(fj(x), fj(y))
for every i, j ∈ I and every x, y ∈ X.

We denote such a system by

S = ((X, d), (fi)i∈I).

One can associate to the system S the function FS : K(X)→ K(X) given by

FS(B) = ∪
i∈I
fi(B)

for all B ∈ K(X).

Theorem 3.2. Let S = ((X, d), (fi)i∈I) be an iterated function system consisting of
convex contractions. Then:

i) There exists a unique A ∈ K(X) such that

lim
n→∞

h(F
[n]
S (B), A) = 0,

for every B ∈ K(X).
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ii) For each ω ∈ Λ(I) there exists aω ∈ X such that

lim
n→∞

h(f[ω]n(B), {aω}) = 0,

for every B ∈ K(X).
Moreover

lim
n→∞

sup
ω∈Λ(I)

h(f[ω]n(B), {aω}) = 0

for every B ∈ K(X).

iii) A = {aω | ω ∈ Λ(I)}.
iv) For every (Yn)n∈N ⊆ K(X) and Y ∈ K(X), the following implication is valid:

lim
n→∞

h(Yn, Y ) = 0⇒ lim
n→∞

h(FS(Yn), FS(Y )) = 0.

v) A is the unique fixed point of FS .
Proof. i) For fixed Y, Z ∈ K(X) we define

xn(Y,Z) = sup
ω∈Λn(I)

δ(fω(Y ), fω(Z))

and
yn(Y, Z) = max{xn−1(Y,Z), xn(Y,Z)}

for every n ∈ N∗. For the sake of simplicity we will denote xn(Y,Z) by xn and
yn(Y,Z) by yn.

We claim that the sequence (yn)n∈N∗ is decreasing.
Indeed, for n ∈ N∗ and ω ∈ Λn+1(I) there exist i, j ∈ I and ω0 ∈ Λn−1(I) such

that ω = ijω0. Then, for y ∈ Y and z ∈ Z, we have

d(fω(y), fω(z)) = d(fijω0(y), fijω0(z))

≤ aijd(fω0
(y), fω0

(z)) + bijd(fiω0
(y), fiω0

(z)) + cijd(fjω0
(y), fjω0

(z))

≤ aijxn−1 + bijxn + cijxn ≤ aijxn−1 + (bij + cij)xn

≤ dij max{xn−1, xn} = dijyn ≤ dyn < yn,

so
xn+1 = sup

ω∈Λn+1(I)

δ(fω(Y ), fω(Z)) ≤ dyn < yn. (3.1)

As
xn ≤ max{xn−1, xn} = yn, (3.2)

we get

yn+1 = max{xn, xn+1}
(3.1) and (3.2)

≤ yn.

Therefore we have

yn+2 = max{xn+1, xn+2}
(3.1)

≤ max{dyn, dyn+1} = dyn

and consequently
y2n−1 ≤ dn−1y1

and
y2n ≤ dn−1y1

for every n ∈ N∗.
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Thus the series
∑
n∈N∗

yn is convergent, so the series
∑
n∈N∗

xn is convergent (see (3.2)

and use the comparison test) and consequently lim
n→∞

xn = 0. Hence, as

h(F
[n]
S (Y ), F

[n]
S (Z)) = h( ∪

ω∈Λn(I)
fω(Y ), ∪

ω∈Λn(I)
fω(Z))

Proposition 2.3

≤

≤ sup
ω∈Λn(I)

h(fω(Y ), fω(Z))
Remark 2.6
≤ sup

ω∈Λn(I)

δ(fω(Y ), fω(Z)) = xn (3.3)

for every n ∈ N∗, we get that

lim
n→∞

h(F
[n]
S (Y ), F

[n]
S (Z)) = 0. (3.4)

In particular, for each Y ∈ K(X), considering Z = FS(Y ) ∈ K(X) and
taking into account the comparison test and (3.3), we infer that the series∑
n∈N∗

h(F
[n+1]
S (Y ), F

[n]
S (Y )) is convergent. Thus we conclude that the sequence

(F
[n+1]
S (Y ))n∈N∗ is Cauchy and, as (K(X), h) is complete (see Theorem 2.4), there

exists AY ∈ K(X) such that

lim
n→∞

h(F
[n]
S (Y ), AY ) = 0. (3.5)

In the same manner we can prove that if Z ∈ K(X), then

lim
n→∞

h(F
[n]
S (Z), AZ) = 0. (3.6)

From (3.4), (3.5) and (3.6) we obtain that AY = AZ
def
= A for every Y,Z ∈ K(X).

Thus

lim
n→∞

h(F
[n]
S (B), A) = 0,

for every B ∈ K(X).
ii) For ω ∈ Λ(I) and Y,Z ∈ K(X) we have

h(f[ω]n(Y ), f[ω]n(Z))
Remark 2.6
≤ δ(f[ω]n(Y ), f[ω]n(Z)) ≤ sup

ω∈Λn(I)

δ(fω(Y ), fω(Z)) = xn

for every n ∈ N∗, so, as lim
n→∞

xn = 0, we deduce that

lim
n→∞

δ(f[ω]n(Y ), f[ω]n(Z)) = lim
n→∞

h(f[ω]n(Y ), f[ω]n(Z)) = 0. (3.7)

For Y ∈ K(X) we have

h(f[ω]n(Y ), f[ω]n+1
(Y ))

Remark 2.6
≤ δ(f[ω]n(Y ), f[ω]n+1

(Y ))

≤ δ(f[ω]n(Y ), f[ω]n(FS(Y ))) ≤ xn(Y, FS(Y ))

for each n ∈ N∗, hence, since -as we have seen in the proof of i)- the series∑
n∈N∗

xn(Y, FS(Y )) is convergent, using the comparison criterion, we infer that the

series
∑
n∈N∗

h(f[ω]n(Y ), f[ω]n+1
(Y )) is convergent. Thus we conclude that the sequence
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(f[ω]n(Y ))n∈N∗ is Cauchy and as, (K(X), h) is complete (see Theorem 2.4), there exists
Aω(Y ) ∈ K(X) such that

lim
n→∞

h(f[ω]n(Y ), Aω(Y )) = 0. (3.8)

In the same manner we can prove that if Z ∈ K(X), then there exists Aω(Z) ∈
K(X) such that

lim
n→∞

h(f[ω]n(Z), Aω(Z)) = 0. (3.9)

From (3.7), (3.8) and (3.9) we obtain that Aω(Y ) = Aω(Z)
def
= Aω for each Y, Z ∈

K(X). Thus
lim
n→∞

h(f[ω]n(B), Aω) = 0, (3.10)

for each B ∈ K(X).
Since

lim
n→∞

diam(f[ω]n(B)) = 0 (3.11)

for each B ∈ K(X) (see (3.7) for Y = Z = B), we get that

diam(Aω) = 0. (3.12)

Indeed, using (3.10) and (3.11), we infer that for each ε > 0 there exists nε ∈ N∗
such that

diam(f[ω]nε
(B)) < ε and h(f[ω]nε

(B), Aω) < ε.

Therefore there exists η0 ∈ (0, ε) such that

Aω ⊆ Nη0(f[ω]nε
(B)),

so
diam(Aω) ≤ 2η0 + diam(f[ω]nε

(B)) < 3ε.

As ε was arbitrarily chosen, we conclude that diam(Aω) = 0.
From (3.12) we conclude that there exists aω ∈ X such that Aω = {aω} and, from

(3.10), we get
lim
n→∞

h(f[ω]n(B), {aω}) = 0,

for each B ∈ K(X).
Note that the above limit is uniform with respect to ω ∈ Λ(I), i.e.

lim
n→∞

sup
ω∈Λ(I)

h(f[ω]n(B), {aω}) = 0.

Indeed,

h(f[ω]n(B), {aω}) ≤
m∑
k=n

h(f[ω]k(B), f[ω]k+1
(B)) + h(f[ω]m+1

(B), {aω})

for every m,n ∈ N, m ≥ n. By passing to limit as m→∞, we get

h(f[ω]n(B), {aω}) ≤
∑
k≥n

h(f[ω]k(B), f[ω]k+1
(B))

Remark 2.6
≤

≤
∑
k≥n

δ(f[ω]k(B), f[ω]k(FS(B))) ≤
∑
k≥n

xk(B,FS(B))
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for every ω ∈ Λ(I) and every n ∈ N, so

sup
ω∈Λ(I)

h(f[ω]n(B), {aω}) ≤
∑
k≥n

xk(B,FS(B))

for every n ∈ N. As the series
∑
n
xn(B,FS(B)) is convergent, we conclude that

lim
n→∞

sup
ω∈Λ(I)

h(f[ω]n(B), {aω}) = 0.

iii) As

h(F
[n]
S (B), {aω | ω ∈ Λ(I)})

= h( ∪
ω∈Λn(I)

∪
α∈Λ(I)

f[ωα]n(B), ∪
ω∈Λn(I)

∪
α∈Λ(I)

{aωα | α ∈ Λ(I)})
Proposition 2.3

≤

≤ sup
ω∈Λn(I)

sup
α∈Λ(I)

h(fω(B), {aωα}),

we have

h(A, {aω | ω ∈ Λ(I)}) ≤ h(A,F
[n]
S (B)) + h(F

[n]
S (B), {aω | ω ∈ Λ(I)})

≤ h(A,F
[n]
S (B)) + sup

ω∈Λn(I)

sup
α∈Λ(I)

h(fω(B), {aωα}) (3.13)

for all n ∈ N∗ and B ∈ K(X).
Since

lim
n→∞

h(F
[n]
S (B), A) = 0

(see i)) and
lim
n→∞

sup
ω∈Λn(I)

sup
α∈Λ(I)

h(fω(B), {aωα}) = 0

(see ii)), by passing to limit in (3.13), we obtain that

h(A, {aω | ω ∈ Λ(I)}) = 0,

i.e.
h(A, {aω | ω ∈ Λ(I)}) = 0

(see Proposition 2.2).
Hence

A = {aω | ω ∈ Λ(I)}.
iv) Let us consider (Yn)n∈N ⊆ K(X) and Y ∈ K(X) such that

lim
n→∞

h(Yn, Y ) = 0.

Using Proposition 2.8 we conclude that

H
def
= Y ∪ (

∞
∪
n=0

Yn) ∈ K(X).

Hence, as the functions fi are continuous, they are uniformly continuous on H, so for
each ε > 0 there exists δε > 0 such that

d(fi(x), fi(y)) <
ε

2

for every i ∈ I and every x, y ∈ H such that d(x, y) < δε.
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For each ε > 0 there exists nε ∈ N such that

h(Yn, Y ) <
δε
2

for every n ∈ N, n ≥ nε.
Let us consider i ∈ I and n ∈ N, n ≥ nε.
Since for every x ∈ Yn ⊆ H there exists y ∈ Y ⊆ H such that

d(x, y) < d(x, Y ) +
δε
2

,

we get that

d(x, y) < h(Yn, Y ) +
δε
2
<
δε
2

+
δε
2

= δε,

so
d(fi(x), fi(Y )) ≤ d(fi(x), fi(y)) <

ε

2
.

Consequently

d(fi(Yn), fi(Y )) ≤ ε

2
.

In the same manner, one can prove that

d(fi(Y ), fi(Yn)) ≤ ε

2
,

so
h(fi(Y ), fi(Yn)) ≤ ε

2
.

Hence

h(FS(Yn), FS(Y )) = h( ∪
i∈I
fi(Yn), ∪

i∈I
fi(Y ))

Proposition 2.3

≤

≤ max
i∈I

h(fi(Yn), fi(Y )) ≤ ε

2
< ε.

Thus for each ε > 0 there exists nε ∈ N such that h(FS(Yn), FS(Y )) < ε for every
n ∈ N, n ≥ nε, i.e.

lim
n→∞

h(FS(Yn), FS(Y )) = 0.

v) Since lim
n→∞

h(F
[n]
S (A), A) = 0 (see i) for B = A), using iv) for Yn = F

[n]
S (A) ∈

K(X) and Y = A ∈ K(X), we obtain that

lim
n→∞

h(F
[n+1]
S (A), FS(A)) = 0. (3.14)

Using i), for B = FS(A), we infer that

lim
n→∞

h(F
[n+1]
S (A), A) = 0. (3.15)

From (3.14) and (3.15) we conclude that

FS(A) = A.

Moreover, if for some A1 ∈ K(X) we have FS(A1) = A1, then F
[n]
S (A1) = A1

for each n ∈ N, so lim
n→∞

h(F
[n]
S (A1), A1) = 0. Since, according to i), we have

lim
n→∞

h(F
[n]
S (A1), A) = 0, we conclude that A = A1. �
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Let us note that, concerning the speed of convergence of the sequence (F
[n]
S (B))n∈N,

where B ∈ K(X), we have the following inequality:

h(F
[n]
S (B), A) ≤ 2

d[ n2 ]

1− d
y1(B,FS(B)),

for every n ∈ N.

Remark 3.3. By taking in the above Theorem a set I with one element, we get that
A has exactly one element which is the fixed point of the convex contraction that can
be approximated by means of Picard iteration. Consequently we obtain Istrăţescu’s
fixed point theorem for convex contractions.

Proposition 3.4. Let S = ((X, d), (fi)i∈I) be an iterated function system consisting
of convex contractions. Then, in the framework of Theorem 3.2, we have

lim
n→∞

diam(A[ω]n) = 0

for every ω ∈ Λ(I).
Proof. Take B = A in (3.11) from the proof of Theorem 3.2. �

Proposition 3.5. Let S = ((X, d), (fi)i∈I) be an iterated function system consisting
of convex contractions. Then, in the framework of Theorem 3.2, we have

∩
n∈N

A[ω]n = {aω}

for every ω ∈ Λ(I).
Proof. From FS(A) = A we infer that

A[ω]n+1
⊆ A[ω]n

for every n ∈ N. Then

lim
n→∞

h(A[ω]n , ∩
n∈N

A[ω]n) = 0

(see Theorem 1.14 from [23]) and taking into account Theorem 3.2, ii), we conclude
that ∩

n∈N
A[ω]n = {aω}. �

Using the above two Propositions, the same arguments as the ones used in the
proof of Theorem 4.1 from [18] give us the following:

Theorem 3.6. Let S = ((X, d), (fi)i∈I) be an iterated function system consisting of
convex contractions. Then, in the framework of Theorem 3.2, the function π : Λ(I)→
A defined by

π(ω) = aω,

for every ω ∈ Λ(I), which is called the canonical projection from Λ(I) to A, has the
following properties:

1) it is continuous;
2) it is onto;
3) π ◦ Fi = fi ◦ π,

for every i ∈ I.
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Proof. 1) For a fixed ω ∈ Λ(I) and ε > 0, taking into account Propositions 3.4 and
3.5, there exists m ∈ N such that A[ω]m ⊆ BX(π(ω), ε). Since

BΛ(I)(ω,
1

2m
) ⊆ {α ∈ Λ(I) | [α]m = [ω]m}

Proposition 3.5

⊆

π−1(A[ω]m) ⊆ π−1(BX(π(ω), ε)),

we have π(BΛ(I)(ω,
1

2m )) ⊆ BX(π(ω), ε). Consequently π is continuous.
2) It results from 1), Theorem 3.2, iii) and the fact that Λ(I) is compact (I being

finite).
3) Based on Proposition 3.5, it suffices to check that fi(π(ω)) ∈ ∩

n∈N
A[Fi(ω)]n for

every i ∈ I, n ∈ N and ω ∈ Λ(I). This is true since fi(π(ω)) ∈ fi(A) = Ai = A[Fi(ω)]1

and fi(π(ω))
Proposition 3.5

∈ fi(A[ω]n−1
) = AFi([ω]n−1) = A[Fi(ω)]n for every i ∈ I, n ∈ N

and ω ∈ Λ(I). �
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[2] M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J.

Math., 8(2010), 367-377.
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[9] G. Gwóźdź- Lukowska, J. Jachymski, IFS on a metric space with a graph structure and exten-

sions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356(2009), 453-463.

[10] N. Hussain, M.A. Kutbi, S. Khaleghizadeh, P. Salimi, Discussions on recent results for α–Ψ-
contractive mappings, Abstr. Appl. Anal., vol. 2014, Article ID 456482, 13 pages, 2014.

[11] M. Klimek, M. Kosek, Generalized iterated function systems, multifunctions and Cantor sets,

Ann. Polon. Math., 96(2009), 25-41.
[12] A. Latif, W. Sintunavarat, A. Ninsri, Approximate fixed point theorems for partial generalized

convex contraction mappings in α-complete metric spaces, Taiwanese J. Math., 19(2015), 315-

333.
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[22] N.A. Secelean, Iterated function systems consisting of F -contractions, Fixed Point Theory
Appl., 2013, 2013:277.

[23] N.A. Secelean, Countable Iterated Function Systems, Lambert Academic Publishing, 2013.

[24] N.A. Secelean, Generalized iterated function systems on the space l∞(X), J. Math. Anal. Appl.,
410(2014), 847-458.

[25] F. Strobin, J. Swaczyna, On a certain generalization of the iterated function system, Bull.

Australian Math. Soc., 87(2013), 37-54.
[26] F. Strobin, Attractors of generalized IFSs that are not attractors of IFSs, J. Math. Anal. Appl.,

422(2015), 99-108.

Received: May 14, 2015; Accepted: February 20, 2016.



702 RADU MICULESCU AND ALEXANDRU MIHAIL


