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1. Introduction

The order-theoretic fixed point theory has its applications to a wide range of various
fields such as, e.g., ordinary differential equations, integral equations, (single and
multi-valued) non-local discontinuous partial differential equations of various types,
mathematical economics, game theory and so on. In all these topics we are faced with
the central problem of handling the loss of continuity of mappings on their underlying
domain of definition. It is significant that, in particular, for proving the existence of
certain optimal strategies in game theory, there is a need for order-related fixed point
results in partially ordered sets (po-sets) that are neither convex nor they have lattice
structure, and in which the fixed point operator may not be continuous.

The existence of fixed points in partially ordered sets has been considered in [18],
where some applications to matrix equations are presented. Many generalizations have
been made in ordered structure of metric spaces. The weak contractions in ordered
metric spaces were introduced by Turinici in [21], and after that many researchers
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invested their efforts to generalize and extend fixed and coincidence points results by
using weak contractions.

In [13] the author established some fixed point results in ordered complete metric
spaces for set-valued operators. Some results of [13] have been generalized in [1, 12].
In their setting the multivalued operators are compact valued. Many results for
fixed and coincidence points of multivalued mappings are available in the literature,
and in most of them the distance function δ(A,B) = Dist (A,B) is used to obtain
distance between two sets A and B of the metric space X. Some fixed point results
by using the Hausdorff metric on C(X) (compact subsets of the metric space X under
consideration) are also available in the literature to deal with weak contractions (see
[2, 9]).

The cone metric spaces were properly introduced in [14] by replacing the set of
real numbers by an ordered Banach space in which the convergence and order are
defined. Later on it was discovered that to work with normal cones is redundant
and the real generalization is to work in cone metric spaces with non-normal cones.
Many researchers generalized and extended a variety of results in cone metric space
endowed with a partial order on X. A number of these results are concerning single
valued mappings and with normal and non-normal cones (see [4, 5, 6, 11, 15, 19]).

The Hausdorff distance function for a cone metric space was invented by authors
in [10]. Clearly, this Hausdorff distance function is a generalization of the Hausdorff
metric H(·, ·) on CB(X) defined in [17]. In [7, 16, 20] the authors have used this
Hausdorff distance function to generalize the results for set-valued mappings in cone
metric spaces. We use the Hausdorff distance function for multivalued mappings in
ordered cone metric spaces.

In this article we establish some multivalued fixed point theorems with weak con-
tractions using the Hausdorff distance function on the closed and bounded subsets
of a given cone metric space. We define approximative valued mappings and provide
their applications in ordered cone metric spaces. We deduce a few corollaries and
generalize many results in the literature. To prove the validity and novelty of our
main result, we have given a non-trivial example. As an application we provide a
theorem for the existence of a certain type of differential inclusion using our main
result.

2. Preliminaries

Let E be a real Banach space with its zero element θ. A non-empty subset K of E
is called a cone if

(a) K is non-empty closed and K 6= {θ};
(b) K ∩ (−K) = {θ};
(c) if α, β are nonnegative real numbers and x, y ∈ K, then αx+ βy ∈ K.
For a given cone K ⊆ E we define a partial ordering 4 with respect to K by x 4 y

if and only if y − x ∈ K; x ≺ y stands for x 4 y and x 6= y, while x � y stands for
y − x ∈ intK, where intK denotes the interior of K. The cone K is said to be solid
if it has non-empty interior.

The following definitions and lemmas will be used to prove our main results.
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Definition 2.1. ([14]) Let X be a non-empty set. A vector-valued function d :
X ×X → E is said to be a cone metric if the following conditions hold:

(CM1) θ 4 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(CM2) d(x, y) = d(y, x) for all x, y ∈ X;
(CM3) d(x, z) 4 d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d) is then called a cone metric space.

Definition 2.2. ([14]) Let(X, d) be a cone metric space, x ∈ X and let {xn} be a
sequence in X. Then:

(i) {xn} converges to x, denoted lim
n→∞

xn = x, if for every ε ∈ E with θ � ε there

is a natural number n0 such that d(xn, x) � ε for all n ≥ n0. A set A ⊂ (X, d) is
called closed if for any sequence {xn} ⊂ A converging to x we have x ∈ A.

(ii) {xn} is a Cauchy sequence if for every ε ∈ E with θ � ε there is a natural
number n0 such that d(xn, xm)� ε for all n,m ≥ n0;

(iii) (X, d) is complete if every Cauchy sequence in X is convergent.

Remark 2.3. ([15]) The cone metric is not continuous in the general case, i.e. from
xn → x, yn → y it need not follow that d(xn, yn)→ d(x, y).

Let (X, d) be a cone metric space. The following properties will be used very often
(see [20]):

(P1) If u 4 v and v � w, then u� w;
(P2) If c ∈ intK, an ∈ E and an → θ, then there exists an n0 such that, for all

n > n0, we have an � c.

A partial order on a set X will be denoted by R, and elements x and y in X are
said to be comparable, denoted by x � y, if either xRy or yRx.

Let C(X) denotes the family of nonempty closed subsets of X.
We denote for p ∈ E:

s (p) = {q ∈ E : p 4 q}
and

s (a,B) =
⋃
b∈B

s (d (a, b)) =
⋃
b∈B

{x ∈ E : d (a, b) 4 x} for a ∈ X and B ∈ C(X).

For A,B ∈ C(X) we denote

s (A,B) =

(⋂
a∈A

s (a,B)

)⋂(⋂
b∈B

s (b, A)

)
.

3. Main results

Consider the following classes of functions:

• Ψ denotes the set of all functions ψ : K −→ K satisfying

(1) ψ is continuous and strongly monotone;
(2) ψ (t) = θ if and only if t = θ;
(3) t− ψ (t) ∈ intK for t ∈ intK;
(4) For a non-increasing sequence {sn} in K, lim

n→∞
ψ (sn) exists in K.
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• Φ denotes the set of all functions φ : K −→ K such that:

(1) φ is continuous and φ (θ) = θ.

Definition 3.1. Let X be a non-empty set. Then (X,R, d) is called an ordered cone
metric space if d is a cone metric on X and R is a partial order on X.

The following two definitions are generalizations to ordered cone metric spaces of
the corresponding notions for ordered metric spaces (see, for instance, [1]).

Definition 3.2. An ordered cone metric space is said to have the sequential limit
comparison property if for every non decreasing sequence {xn} in X with xn → x, we
have (xn, x) ∈ R.

Definition 3.3. An ordered cone metric space is said to have the subsequential limit
comparison property if for every non decreasing sequence {xn} in X with xn → x,
there exists a subsequence {xnk} of {xn} such that (xnk , x) ∈ R.

In [13], Hong introduced several notions which were very useful for obtaining some
fixed point results for multivalued mappings of ordered metric spaces. Following
Hong’s idea and the notion of approximative sets in cone metric spaces we introduce
similar notions for ordered cone metric spaces (see Definition 3.5).

Definition 3.4. Let X be a cone metric space. A subset W of X is said to be
approximative if

RW (x) := {y ∈W : s(d(x, y)) = s(x,W )} , x ∈ X,
is non-empty for all x ∈ X.

Definition 3.5. Let (X,R, d) be an ordered cone metric space. A multivalued
mapping T : X → 2X is said to have:

(i) approximative values, (AV for short), if Tx is approximative for each x ∈ X;
(ii) Comparable approximative values, CAV for short, if T is approximative and for

all w, x ∈ X there exists y ∈ RTw(x) such that y is comparable to w;
(iii) Upper comparable approximative values, UCAV for short (resp. lower compa-

rable approximative values, LCAV for short) if T is approximative and for each w ∈ X,
there exists y ∈ RTw(x) such that (w, y) ∈ R (resp. (y, w) ∈ R).

Definition 3.6. Let (X, d) be a cone metric space endowed with a partial order R on
X. A multivalued mapping T : X → C(X) is said to be a multi-valued R-contractive
mapping if there exists λ ∈ (0, 1) such that T is a UCAV mapping and

λd(x, y) ∈ s(Tx, Ty) for (x, y) ∈ R.

Definition 3.7. Let (X, d) be a cone metric space endowed with a partial order R.
A multivalued mapping T : X → C(X) is said to be Rψ,φ weakly L-contractive (resp.
Rψ,φ weakly U -contractive) if T is LCAV (resp. UCAV) and

ψ (d (x, y))− φ (d (x, y)) ∈ s (Tx, Ty) (3.1)

for some ψ ∈ Ψ, φ ∈ Φ and for all comparable x and y in X.
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Observe that the weakly contractive (single-valued) mappings have been introduced
and studied in [3], and in recent years extended and generalized in various directions.

Definition 3.8. For two subsets A and B of a cone metric space X we denote ARB
if for each a ∈ A and b ∈ B we have (a, b) ∈ R. A multivalued mapping T is said to
be nondecreasing (nonincreasing ) if (x, y) ∈ R implies that TxRTy (TyRTx).

Now we prove our main theorem.

Theorem 3.9. Let (X,R) be an ordered complete cone metric space. Let T : X −→
C(X) be a Rψ,φ weakly U -contractive mapping. If X has sequential limit comparison
property, then T has a fixed point in X.
Proof. Let x0 ∈ X be an arbitrary but fixed point. If x0 ∈ Tx0 then we are done.
Otherwise, as T is UCAV, there exists some x1 ∈ RTx0

(x0) with (x0, x1) ∈ R, such
that

s(d(x0, x1)) = s(x0, Tx0).

From (3.1) we have

ψ (d (x0, x1))− φ (d (x0, x1)) ∈ s (Tx0, Tx1)

which implies

ψ (d (x0, x1))− φ (d (x0, x1)) ∈ s (x1, Tx1) .

By a similar argumentation we find a point x2 ∈ Tx1 with (x1, x2) ∈ R such that

ψ (d (x1, x2))− φ (d (x1, x2)) ∈ s(x2, Tx2).

Continuing in the same way we will get the sequence {xn} in X so that

(xn, xn+1) ∈ R, and xn+1 ∈ Txn for n ≥ 0.

Further, we have

ψ (d (xn−1, xn))− φ (d (xn−1, xn)) ∈ s (d(xn, xn+1)),

which implies

d(xn, xn+1) 4 ψ (d (xn−1, xn))− φ (d (xn−1, xn)) , (a)

and

d(xn, xn+1) 4 ψ (d (xn−1, xn)) ,

d(xn, xn+1) 4 d (xn−1, xn) .

Thus {d(xn, xn+1)}∞n=0 is a nonincreasing sequence in K so that, by definition of ψ,

lim
n→∞

ψ(d(xn, xn+1)) = r, for some r ∈ intK. (b)

If r = θ, then d(xn, xn+1) → θ, as n → ∞, so that supposing that r � θ and using
(a) and properties of ψ we have

ψ(d(xn, xn+1))� d(xn, xn+1) 4 ψ (d (xn−1, xn))− φ (d (xn−1, xn)) .

From (b) we have

r � r − lim
n→∞

φ (d (xn−1, xn)) ,
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which implies

lim
n→∞

φ (d (xn−1, xn))� θ.

Using definition of φ we have

d (xn−1, xn)→ θ, as n→∞. (c)

Choose m (j) < n (j). Using transitivity of R we have
(
xm(j), xn(j)

)
∈ R so that we

get

ψ(d(xm(j), xn(j)))− φ(d(xm(j), xn(j))) ∈ s(Txm(j), Txn(j)).

Since xn(j)+1 ∈ Txn(j) and T is UCAV, we can find some xm(j)+1 ∈ Txm(j), such that

d
(
xm(j)+1, xn(j)+1

)
4 ψ

(
d
(
xm(j), xn(j)

))
− φ

(
d
(
xm(j), xn(j)

))
, (d)

and by virtue of transitivity of R we have (xm(j)+1, xn(j)+1) ∈ R.
Next, we show that {xn} is a Cauchy sequence in X. Suppose that {xn} is not

a Cauchy sequence; then there exists an ε � 0 for which we can find two sequences
of positive integers (say) {m (j)} and {n (j)} such that for all positive integers j,
n (j) > m (j) > j and d(xm(j), xn(j)) < ε. Assume that n (j) is the smallest positive
integer such that

d(xm(j), xn(j)) < ε and d(xm(j), xn(j)−1)� ε.

Now

ε 4 d
(
xm(j), xn(j)

)
4 d

(
xm(j), xn(j)−1

)
+ d

(
xn(j)−1, xn(j)

)
� ε+ d

(
xn(j)−1, xn(j)

)
.

Letting j →∞ in the above inequality and using (c), we get

lim
j→∞

d(xm(j), xn(j)) = ε. (e)

Consider, by using the triangular property of cone metric space,

d(xm(j)+1, xn(j)+1) 4 d(xm(j)+1, xm(j)) + d(xm(j), xn(j)) + d(xn(j), xn(j)+1)

and

d(xm(j), xn(j)) 4 d(xm(j), xm(j)+1) + d(xm(j)+1, xn(j)+1) + d(xn(j)+1, xn(j)).

Letting j →∞ in the above inequalities and using (c) and (e), we get

lim
j→∞

d(xm(j)+1, xn(j)+1) = ε. (f)

Consider form (d):

ψ
(
d
(
xm(j)+1, xn(j)+1

))
� d

(
xm(j)+1, xn(j)+1

)
4 ψ

(
d
(
xm(j), xn(j)

))
− φ

(
d
(
xm(j), xn(j)

))
.

Letting j → ∞ in the above inequalities, using (b), (e) and the continuity of φ, we
obtain

r � r − limj→∞ φ
(
d
(
xn(j), xm(j)

))
φ(limj→∞ d

(
xn(j), xm(j)

)
)� θ ,

φ(ε)� θ.
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A contradiction, so by definition of φ we have

lim
j→∞

d
(
xn(j), xm(j)

)
= θ.

Thus {xn} is a Cauchy sequence in X. Therefore, there exists x ∈ X such that
lim
n→∞

xn = x. Using (P1) and (P2) choose a natural number k1 such that d (xn, x)� c
2

for all n ≥ k1.
By sequential limit comparison property of X we have, (xn, x) ∈ R for all n ∈ N.
Now consider

ψ (d (xn, x))− φ (d (xn, x)) ∈ s (Txn, Tx) .

For xn+1 ∈ Txn, as T is Rψ,φ weakly U -contractive mapping, we can choose zn ∈ Tx
such that (xn+1, zn) ∈ R, and

ψ (d (xn, x))− φ (d (xn, x)) ∈ s (d(xn+1, zn)),

which implies

d(xn+1, zn) 4 ψ (d (xn, x))− φ (d (xn, x)) 4 ψ (d (xn, x)) ≺ d (xn, x) .

Next

d(x, zn) 4 d(x, xn+1) + d(xn+1, zn) ≺ d(x, xn+1) + d (xn, x)� c

for all n ≥ k1.
This implies zn → x, and since Tx is closed we have x ∈ Tx. This completes the

proof.

The following theorem is to find a fixed point of the Rψ,φ weakly L-contractive
mapping and can be proved by using the similar steps of the above theorem.

Theorem 3.10. Let (X,R) be a complete cone metric space endowed with a partial
order R on X. Let T : X −→ C(X) be Rψ,φ weakly L-contractive mapping. If X has
sequential limit comparison property, then T has a fixed point in X.

For approximative multivalued mappings we have the following theorem.

Theorem 3.11. Let (X,R) be a complete cone metric space endowed with a partial
order R on X. Let T : X −→ C(X) be an AV multivalued nondecreasing mapping
satisfying (3.1), and let X have sequential limit comparison property. If there exists
x0 ∈ X such that {x0}RTx0, then T has a fixed point in X.
Proof. Let x0 ∈ X. If x0 ∈ Tx0, then there is nothing to prove. If not, then choose
some x1 ∈ Tx0 with (x0, x1) ∈ R. Working as in the proof of Theorem 3.9 and using
the fact that T is AV and nondecreasing (instead of the fact from Theorem 3.9 that
T is UCAV) we find a point x2 ∈ Tx1 with (x1, x2) ∈ R such that

d (x1, x2) 4 ψ (d (x0, x1))− φ (d (x0, x1)) .

The remaining portion of the proof coincides with the proof of Theorem 3.9.

An other interesting way to generalize the results under assumption that the con-
secutive terms in the constructed sequence are comparable, we have the following
theorem.
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Theorem 3.12. Let (X,R) be a complete cone metric space endowed with a partial
order R on X. Let T : X −→ C(X) be CAV satisfying (3.1). If {xn} is a sequence
whose consecutive terms are comparable and xn → x as n → ∞, and there exists a
subsequence {xnk} of {xn} such that every its term is comparable to the limit u, then
T has a fixed point in X.
Proof. Let x0 ∈ X be an arbitrary but fixed point. If x0 ∈ Tx0, then we are done. If
not, then (as Tx0 is CAV) there exists some x1 ∈ RTx0(x0) with x0 � x1, such that

s(d(x0, x1)) = s(x0, Tx0).

From (3.1) we have

ψ (d (x0, x1))− φ (d (x0, x1)) ∈ s (Tx0, Tx1) .

As x1 ∈ Tx0, then

ψ (d (x0, x1))− φ (d (x0, x1)) ∈ s (x1, Tx1) .

Using the fact that T is CAV there exists some x2 ∈ Tx1 with x1 � x2 such that

s(d(x1, x2)) = s(x1, Tx1).

So we have
ψ (d (x0, x1))− φ (d (x0, x1)) ∈ s (d (x1, x2)) ,

which implies
d (x1, x2) 4 ψ (d (x0, x1))− φ (d (x0, x1)) .

Similarly, for x2 ∈ Tx1, there exists some x3 ∈ Tx2 with x2 � x3 such that

ψ (d (x1, x2))− φ (d (x1, x2)) ∈ s (d(x2, x3)).

Continuing in the same way we will get the sequence {xn} in X such that

xn � xn+1, such that xn+1 ∈ Txn for n ≥ 0.

By a similar procedure of Theorem 3.9, we can construct a Cauchy sequence {xn} in
X, such that xn → x as n→∞ or lim

n→∞
xn = x.

By assumptions we have {xnk}, a subsequence of {xn}, with xnk � x for all k ∈ N.
Choose a natural number k1 such that d (xnk , x)� c

2 for all n ≥ k1. Now consider

ψ (d (xnk , x))− φ (d (xnk , x)) ∈ s (Txnk , Tx) .

For xnk+1
∈ Txnk , as T is a CAV mapping, we can choose znk ∈ Tx such that

xnk � znk . We have

ψ (d (xnk , x))− φ (d (xnk , x)) ∈ s
(
d(xnk+1

, znk
)
),

which implies

d(xnk+1
, znk) 4 ψ (d (xnk , x))− φ (d (xnk , x))

4 ψ (d (xnk , x)) ≺ d (xnk , x) .

Now consider

d(x, znk) 4 d(x, xnk+1
) + d(xnk+1

, znk)

≺ d(x, xnk+1
) + d (xnk , x)

� c for all k1(c) ≥ n.
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Hence znk → x, and since Tx is closed, x ∈ Tx.

Example 3.13. Let X = [0, 1] be the closed unit interval with the usual partial
order ≤, and E be the set of all real valued functions on X which also have continuous
derivatives on X. Then E is a real vector space under the following operations:

(x+ y) (t) = x (t) + y (t) , (αx) (t) = αx (t) ,

for all x, y ∈ E, α ∈ R. That is, E = C1
R[0, 1] with norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ , and

K = {x ∈ E : θ � x}, where θ(t) = 0 for all t ∈ X,
is a non-normal cone in E. Define d : X ×X → E as follows:

(d (x, y)) (t) = |x− y| et.
Then (X, d) is a complete cone metric space.

Let T : X → CB(X) be such that

Tx =
[
0,

x

10π

]
;

then we have for x ≤ y

s(Tx, Ty) = s
(∣∣∣ x

10π
− y

10π

∣∣∣ et) .
Since ∣∣∣ x

10π
− y

10π

∣∣∣ et ≤ 1

2π
|x− y| et − 1

4π
|x− y| et,

we have
1

2π
|x− y| et − 1

4π
|x− y| et ∈ s

(∣∣∣ x
10π
− y

10π

∣∣∣ et) .
Thus for ψ(t) = t

2π and φ(t) = t
4π we have

ψ (d (x, y))− φ (d (x, y)) ∈ s (Tx, Ty) .

All conditions of our main theorem are satisfied, so T has a fixed point.

If we take φ(t) = θ for all t ∈ K, then we have the following corollary:

Corollary 3.14. Let (X,R) be a complete cone metric space endowed with partial
order R on X. Let T : X −→ C(X) be an AV multivalued nondecreasing mapping
satisfying

ψ (d (x, y)) ∈ s (Tx, Ty) .

If X has sequential limit comparison property, and there exists x0 ∈ X such that
{x0}RTx0, then T has a fixed point in X.

If we take φ(t) = θ for all t ∈ K and ψ (t) = kt, for k ∈ [0, 1), then we have the
following corollary:

Corollary 3.15. Let (X,R) be a complete cone metric space endowed with a partial
order R on X. Let T : X −→ C(X) be a Nadler type R-contractive mapping. If X
has sequential limit comparison property, then T has a fixed point in X.

Remark 3.16. ([10]) Let (X, d) be a cone metric space. If E = R and K = [0,+∞),
then (X, d) is a metric space. Moreover, for A,B ∈ CB(X), H(A,B) = inf s(A,B) is
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the Hausdorff distance induced by d, and inf s(a,B) = d(a,B). Also, s ({x}, {y}) =
s (d (x, y)) for all x, y ∈ X.

Using the above remark all the related terms and definitions can be defined in
metric spaces and we have the following corollaries:

Corollary 3.17. Let (X,R) be a complete metric space endowed with a partial order
R on X. Let T : X −→ C(X) be a Rψ,φ weakly U -contractive(resp. L-contractive)
mapping. If X has sequential limit comparison property, then T has a fixed point in
X.

Corollary 3.18. Let (X,R) be a complete metric space endowed with a partial order
R on X. Let T : X −→ C(X) be an AV multivalued nondecreasing mapping satisfying;

ψ (d (x, y)) ∈ s (Tx, Ty) .

If X has sequential limit comparison property, and there exists x0 ∈ X such that
{x0}RTx0, then T has a fixed point in X.

Corollary 3.19. Let (X,R) be a complete metric space endowed with a partial order
R on X. Let T : X −→ C(X) be an AV multivalued nondecreasing mapping and there
exists k ∈ [0, 1) such that

kd (x, y) ∈ s (Tx, Ty) .

If X has sequential limit comparison property, and there exists x0 ∈ X, such that
{x0}RTx0, then T has a fixed point in X.

If T is a single valued mapping we have the following results:

Theorem 3.20. Let (X,R) be a complete cone metric space endowed with a partial
order R on X. Let T : X −→ X be a mapping satisfying;

d (Tx, Ty) 4 ψ (d (x, y))− φ (d (x, y)) .

If X has sequential limit comparison property, and one of the following conditions is
satisfied:

(a) x 4 Tx for all x ∈ X;
(b) Tx 4 x for all x ∈ X;
(c) T is increasing and there exists x0 ∈ X such that x0 4 Tx0;
(d) Tx is comparable with each x ∈ X (X satisfies subsequential limit comparison

property instead of sequential limit comparison property),
then T has a fixed point in X.
Proof. Case (a): It is easy to construct a sequence {xn} in X such that xn 4 Txn =
xn+1 for n = 0, 1, 2, 3 · · · Also

d(xn, xn−1)→ θ, as n→∞. (g)

We need to show that {xn} is a Cauchy sequence. Suppose contrary that {xn} is not
a Cauchy sequence; then there exists an ε � 0 for which we can find two sequences
of positive integers (say) {m (j)} and {n (j)} such that for all positive integers j,
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n (j) > m (j) > j and d(xm(j), xn(j)) < ε. Assuming that n (j) is the smallest such
positive integer, we get

d(xm(j), xn(j)) < ε

and
d(xm(j), xn(j)−1)� ε.

Now

ε 4 d
(
xm(j), xn(j)

)
4 d

(
xm(j), xn(j)−1

)
+ d

(
xn(j)−1, xn(j)

)
� ε+ d

(
xn(j)−1, xn(j)

)
.

Letting j →∞ in the above inequality and using (g), we get

lim
j→∞

d(xm(j), xn(j)) = ε. (h)

Consider, by using the triangular property of cone metric space,

d(xm(j)+1, xn(j)+1) 4 d(xm(j)+1, xm(j)) + d(xm(j), xn(j)) + d(xn(j), xn(j)+1)

and

d(xm(j), xn(j)) 4 d(xm(j), xm(j)+1) + d(xm(j)+1, xn(j)+1) + d(xn(j)+1, xn(j)).

Letting j →∞ in the above inequalities and using (g) and (h), we get

lim
j→∞

d(xm(j)+1, xn(j)+1) = ε. (i)

By transitivity of R we have xm(j)+1 4 xn(j)+1, hence we have

ψ
(
d
(
xm(j)+1, xn(j)+1

))
� d

(
xm(j)+1, xn(j)+1

)
4 ψ

(
d
(
xm(j), xn(j)

))
− φ

(
d
(
xm(j), xn(j)

))
.

Letting j → ∞ in the above inequalities, using (b), (h) and the continuity of φ, we
obtain

r � r − lim
j→∞

φ
(
d
(
xn(j), xm(j)

))
θ � φ( lim

j→∞
d
(
xn(j), xm(j)

)
),

φ(ε) � θ

which is a contradiction. By definition of φ we have

lim
j→∞

d
(
xn(j), xm(j)

)
= θ.

Thus {xn} is a Cauchy sequence. By completeness of X there exists z ∈ X such that
xn → z. Choose k(c) ∈ N such that for θ � c, we have d (xn, z)� c

2 for all n ≥ k(c).
By virtue of sequential limit comparison property of X we have xn 4 z for all n ∈ N.
Consider

d (xn+1, T z) = d (Txn, T z) 4 ψ (d (xn, z))− φ (d (xn, z))

4 ψ (d (xn, z))− φ (d (xn, z))

4 ψ (d (xn, z))� d (xn, z) . (3.2)

Now

d(z, Tz) 4 d(z, xn+1) + d(xn+1, T z)� d(z, xn+1) + d (xn, z) (using (3.2)) � c
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for all n ≥ k(c).
Thus z = Tz is the fixed point of T .
Case (b): As Tx 4 x, then form a sequence xn+1 = Txn 4 xn for n = 0, 1, 2, 3 · · ·

Also d(xn, xn−1)→ θ, as n→∞. The remaining proof is similar to the above part.
Case (c): As x0 4 Tx0 = x1 and T is increasing, one can form a sequence xn 4 xn+1

and the proof coincides with proof of Case (a).
Case (d): As x � Tx we can construct a sequence xn+1 � xn for n = 0, 1, 2, · · ·

It is easy to prove that {xn} is a Cauchy sequence, so that xn → z ∈ X. By
subsequential limit property of X we get a subsequence {xnk} of {xn} consisting of
terms comparable to z. Therefore for each k

d(xnk+1
, T z) = d(Txnk , T z) 4 ψ (d (xnk , z))− φ (d (xnk , z))� d (xnk , z) .

Now we have

d(Tz, z) 4 d(Tz, xnk+1
) + d(xnk+1

, z)� c

for all n ≥ k1. This completes the proof.

4. Applications

Consider the following differential inclusion:{
∂3u(t,x,y)
∂t∂x∂y ∈ F (t, x, y, u(t, x, y)) for (t, x, y) ∈ Ωa × Ωb × Ωc := Ωa,b,c with

u(t, x, 0) = η(t, x), u(t, o, y) = ζ(t, y), u(0, x, y) = ϑ(x, y), (t, x, y) ∈ Ωa,b,c,

(4.1)
where Ωa = [0, a] , Ωb = [0, b] and Ωc = [0, c].

Let F : Ωa,b,c × Rn → 2R
n

be a multivalued mapping and C(Ωa,b,c,Rn) be a
complete metric space with the metric

(d(u, v))(t, x, y) = sup {|u(t, x, y)− v(t, x, y)| : (t, x, y) ∈ Ωa,b,c}

for u, v ∈ C(Ωa,b,c,Rn).
For u, v ∈ C(Ωa,b,c,Rn) we define the partial order uRv if and only if u(t, x, y) ≤

v(t, x, y) for each (t, x, y) ∈ Ωa,b,c.
Let

K = {u(t, x, y) : u(t, x, y) ∈ C(Ωa,b,c,Rn), u(t, x, y) ≥ 0, for each (t, x, y) ∈ Ωa,b,c}

be the cone of C(Ωa,b,c,Rn).
Let L1(Ωa,b,c,Rn) be the Banach space of all measurable functions from Ωa,b,c to

Rn which are Lebesgue integrable with norm

‖u‖L =

a∫
0

b∫
0

c∫
0

|u(t, x, y)| dydxdt for u ∈ L1(Ωa,b,c,Rn).

Let F : Ωa,b,c × Rn → 2R
n

be a multivalued mapping having non-empty values. For
each u ∈ C(Ωa,b,c,Rn) denote and define the set of selections of F by

SF ,u =
{
v ∈ L1(Ωa,b,c,Rn) : v ∈ F (t, x, y, u(t, x, y)) a.e (t, x, y) ∈ Ωa,b,c

}
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and assign to F the multivalued operator N : C(Ωa,b,c,Rn)→ 2L
1(Ωa,b,c,Rn) by letting

N (u) =
{
w ∈ L1(Ωa,b,c,Rn) : w(t, x, y) ∈ F (t, x, y, u(t, x, y)), (t, x, y) ∈ Ωa,b,c

}
,

where N is the Niemytsky operator associated with F .
In order to state and verify our theorem, we need the continuous mapping L :

L1(Ωa,b,c,Rn)→ C(Ωa,b,c,Rn) defined by

L(u(t, x, y)) =

t∫
0

x∫
0

y∫
0

u(ν, s, τ)dνdsdτ.

Theorem 4.1. Suppose the multivalued mapping F : Ωa,b,c × Rn → 2R
n

satisfies the
following conditions:
L1: F (t, x, u) is compact subset for all (t, x, y, u) ∈ Ωa,b,c × C(Ωa,b,c,Rn). More-

over, SF ,u is non-empty for each u ∈ C(Ωa,b,c,Rn);
L2: For any u, v ∈ C(Ωa,b,c,Rn), if uRv then for each u1 ∈ F (t, x, y, u(t, x, y)

there exists u2 ∈ F (t, x, y, v(t, x, y)) such that

|u1(t, x, y)− u2(t, x, y)| ≤ l(t, x, y) ln(|u(t, x, y)− v(t, x, y)|+ e)

for a.e (t, x, y) ∈ Ωa,b,c, where l ∈ L1(Ωa,b,c,Rn) with ‖l‖L ≤ 1;
L3: For each u ∈ C(Ωa,b,c,Rn) implies

L◦v(t, x, y)+ϑ(x, y)+η(t, x)−η(0, x)+ζ(t, y)−ζ(0, y)−ζ(t, 0)+ζ(0, 0) ∈ s(u(t, x, y))

for (t, x, y) ∈ Ωa,b,c and v ∈ SF ,u.
Then the problem (4.1) has a solution u∗ ∈ C(Ωa,b,c,Rn).
Proof. E =C(Ωa,b,c,Rn) is a complete metric space with metric

(d(u, v))(t, x) = sup {|u(t, x, y)− v(t, x, y)| : (t, x, y) ∈ Ωa,b,c}
and satisfies the sequential limit comparison property. The problem (4.1) is equivalent
to the following integral inclusion,

u(t, x, y) ∈


h ∈ E : h(t, x, y) = ϑ(x, y) + η(t, x)− η(0, x) + ζ(t, y)− ζ(0, y)

−ζ(t, 0) + ζ(0, 0) +
t∫
0

x∫
0

y∫
0

v(r, s, τ)drdsdτ for v ∈ SF ,u

 .

Define T : E→2E by

(Tu)(t, x, y) =

{
h ∈ E : h(t, x, y) = ϑ(x, y) + η(t, x)− η(0, x) + ζ(t, y)
−ζ(0, y)− ζ(t, 0) + ζ(0, 0) + L◦v(t, x, y) for v ∈ SF ,u

}
.

Prove (Tu)(t, x, y) is compact for each u ∈ E and v ∈ SF ,u. It is enough to show that
L ◦ SF ,u is compact. For this suppose u ∈ E and {un} is a sequence in SF ,u. Then
by definition of SF ,u we get un ∈ F (t, x, y, u(t, x, y)) a.e for all (t, x, y) ∈ Ωa,b,c. So
un(t, x, y) → v(t, x, y) for some v(t, x, y) ∈ F (t, x, y, u(t, x, y)), as F (t, x, y, u(t, x, y))
is compact. By continuity of L we get L◦un(t, x, y)→ L◦u(t, x, y) ∈ L ◦ SF ,u a.e for
all (t, x, y) ∈ Ωa,b,c, as required. Now let u, v ∈ K with uRv and let h1 ∈ Tu; then
there exists v1 ∈ SF ,u such that

h1(t, x, y) = ϑ(x, y) + η(t, x)− η(0, x) + ζ(t, y)− ζ(0, y)− ζ(t, 0)
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+ζ(0, 0) +

t∫
0

x∫
0

y∫
0

v1(r, s, τ)drdsdτ for (t, x, y) ∈ Ωa,b,y.

There exists w ∈ F (t, x, y, v(t, x, y)) with

|v1(t, x, y)− w| ≤ l(t, x, y) ln(|v(t, x, y)− u(t, x, y)|+ e).

Define the multivalued mapping

U(t, x, y) = {w ∈ Rn : |v1(t, x, y)− w| ≤ l(t, x, y) ln(|v(t, x, y)− u(t, x, y)|+ e)} ;

then the multivalued mapping

V (t, x, y) = U(t, x, y) ∩ SF ,u

has non-empty values and is a measurable selection [8]. So there exists v2 ∈ V with
v2 ∈ F (t, x, y, v(t, x, y)) for all (t, x, y) ∈ Ωa,b,c, satisfying

|v1(t, x, y)− v2(t, x, y)| ≤ l(t, x, y) ln(|v(t, x, y)− u(t, x, y)|+ e).

Define for each (t, x, y) ∈ Ωa,b,c,

h2(t, x) = ϑ(x, y) + η(t, x)− η(0, x) + ζ(t, y)− ζ(0, y)− ζ(t, 0)

+ζ(0, 0) +

t∫
0

x∫
0

y∫
0

v2(r, s, τ)drdsdτ ∈ (Tv)(t, x, y).

Then

|h2(t, x)− h1(t, x)| ≤
t∫
0

x∫
0

y∫
0

|v2(r, s, τ)− v1(r, s, τ)| drdsdτ

≤ ‖l‖L ln(d(u, v) + e)

= ‖l‖L [d(u, v)− (d(u, v)− ln(d(u, v) + e)]

= kd(u, v)− k(d(u, v)− ln(d(u, v) + e), where ‖l‖L = k.

Thus

kd(u, v)− k(d(u, v)− ln(d(u, v) + e) ∈ s(Tu, Tv).

Taking ψ(t) = kt, φ(t) = kt− k ln(t+ e) and f = I, we have

ψ(d(fu, fv))− φ(d(fu, fv)) ∈ s(Tu, Tv).

Thus all the conditions of Theorem 3.9 are satisfied to obtain u∗ ∈ E, such that
u∗ ∈ Tu∗, so a solution of (4.1) exists.

Example 4.2. Let E ⊂ K be the set of all functions satisfying 7πu(t, x, y) ≤
L◦u(t, x, y). Then E is a complete metric space with metric

(d(u, v))(t, x) = sup {|u(t, x, y)− v(t, x, y)| : (t, x, y) ∈ Ωa,b,c}

and satisfies the condition (L1) of the above theorem. Let

F (t, x, y, u) = [
1

7
u(t, x, y)e−(t+x+y) − t− x− y, 1

5
u (t, x, y) e−(t+x+y) − t− x− y
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for u ∈ E. Then F satisfies the condition (L2) of the above theorem.
Take v ∈ SF ,u then 1

7u(t, x, y)e−(t+x+y) − t− x− y ≤ v. So we have

u (t, x, y)− t− x− y ≤ 1

7π
L◦u(t, x, y)− t− x− y

≤ 1

7

t∫
0

x∫
0

y∫
0

e−(τ+η+r)u(τ, η, r)dτdηdr

− xy

2
t2 − ty

2
x2 − tx

2
y2 ≤ L◦v(t, x, y).

Hence F satisfies the condition (L3) of the above theorem.

Acknowledgements. The authors thank the referee for his/her careful reading of
the paper and a number of remarks and suggestions which led to improvements on
several places.

References

[1] M. Abbas, A. Erduran, Common fixed point of g-approximative multivalued mapping in partially
ordered metric space, Filomat, 27(2013), 1173–1182.

[2] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered met-

ric spaces, Applied Anal., 87(2008), 109–116.
[3] Ya.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, new

results in operator theory, Advances and Applications, (Eds. I. Gohberg, Yu. Lyubich), vol. 98,
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[16] N. Mehmood, A. Azam, Lj.D.R. Kočinac, Multivalued fixed point results in cone metric spaces,

Topology and Its Appl., 179(2015), 156–170.



688 NAYYAR MEHMOOD, AKBAR AZAM AND LJUBIŠA D.R. KOČINAC
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