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1. Discus spaces

In the following we use B (x; t) to denote the closed balls centered at x with radius
t > 0. In these remarks we consider only complete metric spaces. The following
definition was introduced by L. Pasicki in 2006 (although it was originally formulated
in terms of open balls, the formulation given here is equivalent).
Definition 1.2. [19] A complete metric space (X, d) is a discus space if there exists
a mapping ρ : [0,∞)× (0,∞)→ [0,∞) such that
(1) ρ (β, r) < ρ (0, r) = r for all β, r > 0,
(2) ρ (·, r) is nonincreasing for all r > 0,
(3) ρ (ε, ·) is upper semicontinuous for all ε > 0,
(4) for each x, y ∈ X and r, ε > 0 there exists z ∈ X such that

B (x; r) ∩B (y; r) ⊂ B (z; ρ (d (x, y) , r) + ε) .

Recall that a function ϕ : M → R is upper semicontinuous if given any sequence
{xn} in M, the conditions limn xn = x and limn ϕ (xn) = r ⇒ ϕ (x) ≥ r. This is
equivalent to saying that the set {u ∈M : ϕ (u) ≥ r} is closed.

Example 1.2. [19] Let (Y, (·, ·)) be a Hilbert space with ‖x‖ =
√

(x, x). Then

‖x+ h‖2 + ‖x− h‖2 = 2
(
‖x‖2 + ‖h‖2

)
651
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and hence

‖h‖2 =
1

2

(
‖x+ h‖2 + ‖x− h‖2 − 2 ‖x‖2

)
.

Now let x, y ∈ Y and r > 0. By translation we may assume y = −x. Set 2 ‖x‖ = ε
and choose h so that ‖x+ h‖ = ‖x− h‖ = r (assuming ε ≤ 2r). Define

ρ (δ, r) = ‖h‖ =

{ √
r2 − δ2/4 if δ ∈ [0, 2r]

0 if δ > 2r.

Then if ‖x− u‖ ≤ r and ‖x+ u‖ ≤ r it must be the case that ‖u‖ ≤ ‖h‖ = ρ (2 ‖x‖ , r)
and (4) is satisfied for z = 0. Thus each nonempty convex set X ⊂ Y is a discus space
for the given ρ.

If a Banach space E is uniformly convex there exists a strictly increasing surjection
δ : [0, 2]→ [0, 1] such that ‖x‖ ≤ R, ‖y‖ ≤ R and ‖x− y‖ ≥ ε implies ‖(x+ y) /2‖ ≤
R (1− δ (ε/R)) . Here δ us the usual modulus of convexity, which is known to be
continuous (see [8], pp. 52-55).
Example 1.3. [19] Let (Y, ‖·‖) be a uniformly convex Banach space. By choosing
x, y ∈ Y, with y = −x, and suppose u ∈ B (x; r)∩B (−x; r) . Then ‖(u− x)‖ ≤ r, and

‖(u+ x)‖ ≤ r. Hence

∥∥∥∥ (u− x) + (u+ x)

2

∥∥∥∥ = ‖u‖ ≤ r (1− δ (ε/r)) where ε = 2 ‖x‖ .

Thus

u ∈ B (x; r) ∩B (−x; r)⇒ u ∈ B (0; (1− δ (ε/r)) r) .

Therefore (4) is satisfied if we define

ρ (ε, r) =

{
r (1− δ (ε/r)) if ε ∈ [0, 2r]

0 if ε > 2r.

By now, the role of CAT(0) spaces in metric fixed point theory is well understood.
These spaces are geodesically connected, and every geodesic triangle in such a space
is at least as ‘thin’ as its comparison triangle in the Euclidean plane. See, e.g., [3],
[14] for a discussion. The relevant property is that if x1, x2, x3 are three points of a
CAT(0) space and if x̄1, x̄2, x̄3 are three points of R2 for which d (xi, xj) = d (x̄i, x̄j) ,
i, j = 1, 2, 3, then points of the sides of the triangle ∆ (x1, x2, x3) are no longer than
the distance between their corresponding counterparts on the triangle ∆ (x̄1, x̄2, x̄3)
in R2.
Example 1.4. A CAT(0) space (X, d) is a discus space. Define

ρ (δ, r) =

{ √
r2 − δ2/4 if δ ∈ [0, 2r]

0 if δ > 2r.

For each x, y ∈ X, let z be the midpoint of the segment [x, y] . Suppose d (x, u) ≤ r
and d (y, u) ≤ r. Choose a comparison triangle ∆ (x̄, ȳ, ū) for ∆ (x, y, u) in R2 so that
ȳ = −x̄. Then d (z, u) ≤ dR2 (0, ū) = ρ (d (x̄, ȳ)) = ρ (d (x, y)) .

Because many theorems in metric fixed point theory, especially those involving
nonexpansive mappings, hold in both uniformly convex Banach spaces and also in
complete CAT(0) spaces, the notion of a complete discus space would appear to be
a unifying concept, despite the fact that these spaces are quite different. In fact the
only Banach spaces that are also complete CAT(0) spaces are the Hilbert spaces.
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2. Complete discus spaces

Theorem 2.1. [19] Let (X, d) be a (complete) discus space and let A ⊂ X be non-
empty and bounded. Then the Chebyshev center of A relative to X is a singleton.

Discus spaces are defined solely in terms of balls and a related a priori parameter.
This gives rise to our first question.
Question 2.2. Let (X, d) be a discus space and let B be a closed ball in X. Suppose
T : B → X is nonexpansive and satisfies

inf {d (x, T (x)) : x ∈ B} = 0.

Then does T have a fixed point? In particular, we note that the answer is affirmative
if X is a CAT(0) space (see [10, Theorem 21]).

A metric space (X, d) is said to be metrically convex ([18]) if for any x, y ∈ X with
x 6= y there exists z ∈ X with x 6= z 6= y such that

d (x, z) + d (z, y) = d (x, y) .

Menger has shown [18] (also see, e.g. [2]) that in a complete metrically convex space
each two point are the endpoints of at least one metric segment (i.e., an isometric
image of a real line interval).

Pasicki introduces a ‘seemingly’ more general class of spaces, called bead spaces,
in [20].

3. Bead spaces

In 2009 Pasicki introduced the following definition.
Definition 3.1. [20] A metric space (X, ρ) is a bead space if the following is satisfied:

∀R, β > 0 ∃ δ = δ (R, β) > 0 such that ∀x, y ∈ X with ρ (x, y) ≥ β (3.1)

∃ z ∈ X such that B (x;R+ δ) ∩B (y;R+ δ) ⊂ B (z;R− δ) .

In a rather remarkable subsequent development, Pasicki proved the following.
Theorem 3.2. [21] Any metric space is a bead space if and only if it is a discus
space.
Lemma 3.3. [20] Let (X, ρ) be a bead space and let ∅ 6= A ⊂ X be bounded. Then the
Chebyshev center of A consists of at most one point. If, in addition, X is complete,
the Chebyshev center of A is a singleton.
Proof. Let (Rn) decrease to R = R (A) while A ⊂ B (xn;Rn) . Suppose (xn) is not a
Cauchy sequence. Thus for some β > 0, ρ (xn, xk) ≥ β for infinitely many pairs (n, k)
with n > k. Let δ be the constant associated with R and β according to (3.1). Then
for Rk < Rn < δ we have

A ⊂ B (xn;Rn) ∩B (xk;Rk) ⊂ B (xn;R+ δ) ∩B (xk;R+ δ) ⊂ B (z;R− δ) .

This implies R (A) ≤ R−δ, which is a contradiction. Since X is complete we conclude
that (xn) converges, say to x ∈ X. Hence for any ξ > 0 there exists n0 ∈ N such that
A ⊂ B (xn;Rn) ⊂ B (x;R+ ξ) for all n ≥ n0. This in turn implies A ⊂ B (x;R) .
Remark 3.4. A discus space not necessarily metrically convex in the sense of Menger:
see Example 3 of [22].
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4. The Lifshits constant

Definition 4.1. The characteristic of convexity of a Banach space X is defined to
be the number

ε0 (X) := sup {ε ∈ [0, 2] : δX (ε) = 0} ,

where δX is the usual modulus of convexity of X.
(Since δX is continuous, δX (ε0 (X)) = 0.)
Observe that if γ satisfies

γ (1− δX (1/γ)) = 1

then γ ≥ 1. Moreover γ > 1⇔ ε0 (X) < 1, in which case 1 < γ < 1/ε0 (X) .
Theorem 4.2. [7], [9] Let X be a Banach space with ε0 (X) < 1, and let γ > 1 satisfy
γ (1− δX (1/γ)) = 1. If K is a nonempty closed, bounded convex subset of a Banach
space, and if T : K → K is k-uniformly lipschitzian for k < γ, then T has a fixed
point.
Definition 4.3. The Lifshits constant κ (M) of a metric space (M ; ρ) is defined as
follows:

κ (M) := sup{β > 0 : ∃ α > 1 such that ∀x, y ∈M and r > 0,

ρ (x, y) > r ⇒ ∃ z ∈M such that B (x;βr) ∩B (y;αr) ⊂ B (z; r)}.

It is clear that κ (M) ≥ 1 for any metric space. (If β < 1 then obviously B (x;βr)∩
B (y;αr) ⊂ B (x; r) for any α > 1 so one may take z = x.Thus κ (M) ≥ β for any
β < 1.)
Theorem 4.4. (Lifshits [16]) If (M,ρ) is a bounded complete metric space and if
T : M →M is uniformly k-lipschitzian for k < κ (M) , then T has a fixed point.

A more general version of Lifshits’s theorem is proved in [13] A mapping f :
X → X is said to be eventually k-lipschitzian if there exists n0 ∈ N such that
d (fn (x) , fn (y)) ≤ kd (x, y) for all x, y ∈ X and n ≥ n0. The Lifshits character is
fundamental in metric fixed point theory because of the following result.
Theorem 4.5. Let (X, d) be a complete metric space. Then every eventually k-
lipschitzian mapping T : X → X with k < κ (X) has a fixed point if it has a bounded
orbit.

Now let X be a Banach space and let κ0 (X) be the infimum of κ (C) where C
ranges over all nonempty bounded closed convex subsets of X. Lifshits proved that
κ0 (X) ≥

√
2 if X is a Hilbert space. It is noted in [9] that in Hilbert space γ =

√
5/2 is

the solution to γ (1− δX (1/γ)) = 1. Therefore for a Hilbert space Lifshits’s estimate
on k is better than that given in Theorem 4.2.
Theorem 4.6. [6] Let X be a Banach space and assume γ > 1 satisfies

γ (1− δX (1/γ)) = 1.

Then γ ≤ κ0 (X) .
In [6] Downing and Turett attribute the following lemma to Lifshits. For conve-

nience we give a proof here.
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Lemma 4.7. Let X be a normed linear space. Then

κ0 (X) ≥ sup{β > 0 : for some α > 1 and all y ∈ X with ‖y‖ > 1,

there exists t ∈ [0, 1] with B (0;β) ∩B (y;α) ⊂ B (ty; 1)}.

Proof. Let C be a bounded closed convex subset of X. Set

κ1 = {β > 0 : for some α > 1 and all y ∈ X with ‖y‖ > 1,

∃ t ∈ [0, 1] such that B (0;β) ∩B (y;α) ⊂ B (ty; 1)}.
If

κ = {β > 0 : for some α > 1 and all x, y ∈ C and all r > 0, ‖x− y‖ > r

⇒ ∃ z ∈ C such that B (x;βr) ∩B (y;αr) ⊂ B (z; r)},
then

κ = {β > 0 : for some α > 1 and all r > 0, x, y ∈ 1

r
C with ‖x− y‖ > 1

⇒ ∃ z ∈ C such that B (x;β) ∩B (y;α) ⊂ B (z; 1)}.
Without loss of generality (by translation) we may assume x = 0. Thus

κ = {β > 0 : for some α > 1 and all r > 0 y ∈ 1

r
C with ‖y‖ > 1

⇒ ∃ z ∈ C such that B (0;β) ∩B (y;α) ⊂ B (z; 1)}.
Now we see that if u ∈ κ1 then u ∈ κ. Hence supκ ≥ supκ1. It follows that κ (C) ≥
supκ1, hence κ0 (X) ≥ supκ1.
Question 4.8. If ε0 (X) < 1 then 1 < γ < 1/ε0 (X) . Is there a relation between
κ0 (X) and 1/ε0 (X)?

The next fact shows that while Lifshits’s result gives a better estimate for k, qual-
itatively Theorems 4.2 and 4.4 are equivalent.
Theorem 4.9. [6] Let X be a Banach space. Then ε0 (X) < 1 if and only if κ0 (X) >
1.

It follows that for a Banach space X, κ0 (X) > 1⇒ X has normal structure. Does
this fact carry over to metric spaces? Specifically recall that the admissible subsets
of a metric space are precisely those sets that are intersections of closed balls.
Question 4.10. If M is a complete metric space for which κ (M) > 1, are the
admissible subsets of M normal?

Now suppose κ (M) > 1 for a metric space M. Choose 1 < β < κ (M) . Then there
exists α > 1 such that for any r > 0 and x, y ∈ M, ρ (x, y) > r ⇒ ∃z ∈ M such
that B (x;βr) ∩ B (y;αr) ⊂ B (z; r) . Taking λ = min {β, α} we conclude that there
exist λ > 1 such that for any r > 0 and x, y ∈ M, ρ (x, y) > r ⇒ ∃ z ∈ M such that
B (x;λr) ∩B (y;λr) ⊂ B (z; r) . Therefore we have the following qualitative fact.
Proposition 4.11. For a metric space M, κ (M) > 1 ⇔ ∃ λ > 1 such that for any
r > 0 and x, y ∈M, ρ (x, y) > r ⇒ ∃ z ∈M such that B (x;λr)∩B (y;λr) ⊂ B (z; r) .
Moreover, κ (M) ≥ λ.

Let Λ (M) = sup{λ : for any r > 0 and x, y ∈M,
ρ (x, y) > r ⇒ ∃ z ∈M such that B (x;λr) ∩B (y;λr) ⊂ B (z; r)}.
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Clearly κ (M) ≥ Λ (M) .
Now let X be a Banach space and define Λ0 (X) to be the infimum of Λ (C) where

C ranges over all bounded convex subsets of X.
Question 4.12. How is Λ (M) related to the characteristic of convexity? Is this a
metric space analog of the Banach space characteristic of convexity?
Question 4.13. In a Banach space does ε0 (X) = 1/Λ0 (X)?
Lemma 4.14. Let X be a normed linear space. Then
Λ0 (X) ≥ sup{β > 0 : for all y ∈ X with ‖y‖ > 1, there exists t ∈ [0, 1] with
B (0;β) ∩B (y;β) ⊂ B (ty; 1)}.
Proof. Let C be a bounded closed convex subset of X. Set

Λ1 = {β > 0 : for all y ∈ X with ‖y‖ > 1,∃ t ∈ [0, 1]

such that B (0;β) ∩B (y;β) ⊂ B (ty; 1)}.

If

Λ = {β > 0 : for all x, y ∈ C and all r > 0, ‖x− y‖ > r

⇒ ∃ z ∈ C such that B (x;βr) ∩B (y;β) ⊂ B (z; r)},

then

Λ = {β > 0 : for all r > 0 if x, y ∈ 1

r
C

with ‖x− y‖ > 1. ⇒

∃ z ∈ C such that B (x;β) ∩B (y;β) ⊂ B (z; 1)}.

Without loss of generality (by translation) we may assume x = 0. Thus

Λ = {β > 0 : for all r > 0 if y ∈ 1

r
C

with ‖y‖ > 1 ⇒ ∃ z ∈ C such that

B (0;β) ∩B (y;α) ⊂ B (z; 1)}.

Now we see that if u ∈ Λ1 then u ∈ Λ. Hence sup Λ ≥ sup Λ1. It follows that
Λ (C) ≥ sup Λ1; hence Λ0 (X) ≥ sup Λ1.
Theorem 4.15. Let X be a Banach space and assume γ > 1 satisfies

γ (1− δX (1/γ)) = 1.

Then γ ≤ Λ0 (X) .

5. More on Lifshits’s theorem

Now let (M,ρ) be a complete metric space. The balls in M are said to be c-regular
if for each k < c ∃ µ, α ∈ (0, 1) such that ∀ x, y ∈M and r > 0

The balls in M are always 1-regular. To see this suppose k < 1. Then it is possible
to choose µ so near 0 that

k (1 + µ) := α < 1.

In which case ∀ x, y ∈M and r > 0,

B (x; (1 + µ) r) ∩B (y; k (1 + µ) r) ⊂ B (y;αr) .
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With this notation, the Lifshits constant of M is the number

κ (M) = sup {c ≥ 1 : the balls in M are c-regular} .
To see that the above definition is equivalent to the one given earlier, suppose k < c

and choose µ, α so that k

(
1 + µ

α

)
< c. Let r′ = αr, α′ =

1 + µ

α
, β′ = k

(
1 + µ

α

)
.

Upon interchanging the roles of x and y, the above becomes: ∃ α′ > 1 such that ∀
x, y ∈M
ρ (x, y) ≥ 1− µ

α
⇒ ∃ z ∈M such that

B (x;β′r′) ∩B (y;α′r′) ⊂ B (z; r′) .

The number supβ′ for which the above holds is equivalent to sup c such that M is
c-regular.

We return to Pasicki’s concept. Again suppose Λ (M) > 1, and let 1 < λ < Λ (M) .
Taking α = λ−1 we see that ∀r > 0 and ∀ x, y ∈ M, ρ (x, y) > αr ⇒ ∃ z ∈ M such
that

B (x; r) ∩B (y; r) ⊂ B (z;αr) .

The idea now is to replace αr in the above with α (r) where α (r) < r. What properties
does α need to assure the Lifshits argument will carry over?

It is shown in [4] that the Lifshits constant of a CAT(0) space is
√

2 (the same as
that of Hilbert space) and the Lifshits constant of an R-tree is 2. It was conjecture
there that the Lifshits constant for a CAT(κ) space, κ < 0, is a continuous decreasing

function of κ which takes values in the interval
(√

2, 2
)
. (We have since learned that

this is true only in spaces of constant curvature [5].)

6. A modification

Let (M,ρ) be a complete metric space. The balls in X are said to be weakly c-
regular if for each k < c ∃ µ ∈ (0, 1) and αk : R+ → (0, 1) such that ∀ x, y ∈ M and
r > 0
ρ (x, y) ≥ (1− µ) r ⇒ ∃ z ∈M such that

B (x; (1 + µ) r) ∩B (y; k (1 + µ) r) ⊂ B (z;αk (r)) .

Now set

κw (M) = sup {c ≥ 1 : the balls in M are weakly c-regular} .
The condition αnk (r) → 0 as n → ∞ for each r > 0 will imply that every uniformly
k-lipschitzian mapping will have approximate fixed points.

The balls in X are said to be c-regular if for each k < c ∃ µ, α ∈ (0, 1) such that ∀
x, y ∈ X and r > 0
ρ (x, y) ≥ (1− µ) r ⇒ ∃ z ∈ X such that

B (x; (1 + µ) r) ∩B (y; k (1 + µ) r) ⊂ B (z;αr) .

To show that a bead space has Lifshits character greater than 1 it must be shown
that the balls of X are c-regular for some c > 1. We now present a criterion which
implies this.



658 WILLIAM A. KIRK AND NASEER SHAHZAD

Theorem 6.1. Let (X, ρ) be a bead space for which

inf
R,β

δ (R, β)

R
> 0.

Then X has Lifshits character greater than 1.
Proof. Choose µ ∈ (0, 1) so that

µ ≤ δ (R, β)

R

and choose k > 1 so that

α := k (1− µ) < 1.

If r =
R

k
, we now have

1 +
δ

R
≥ 1 + µ⇒ R+ δ ≥ R (1 + µ) = k (1 + µ)

R

k
= k (1 + µ) r.

Also

1− δ

R
≤ 1− µ⇒ R− δ ≤ (1− µ)R = k (1− µ)

R

k
= α

R

k
= αr.

Letting β = (1− µ) r, for x, y ∈ X such that ρ (x, y) ≥ β there exists z ∈ X such that

B (x; (1 + µ) r) ∩B (y; k (1 + µ) r) ⊂ B (x; k (1 + µ) r) ∩B (y; k (1 + µ) r)

⊂ B (x;R+ δ) ∩B (y;R+ δ)

⊂ B (z;R− δ)
⊂ B (z;αr)

Question 6.2. Do all bead spaces have Lifshits character greater than 1?

7. ∆-convergence in metric spaces

We now turn to some observations of Kirk and Panyanak [12]. Let X be a complete
CAT(0) space, let (xn) be a bounded sequence in X and for x ∈ X set

r (x, (xn)) = lim sup
n→∞

d (x, xn) .

Recall that the asymptotic radius r ((xn)) of (xn) is given by

r ((xn)) = inf {r (x, (xn)) : x ∈ X} .
The asymptotic center A ((xn)) of (xn) is the set

A ((xn)) = {x ∈ X : r (x, (xn)) = r ((xn))} .
It is known (see, e.g., [4], Proposition 7) that in a CAT(0) space, A ((xn)) consists of
exactly one point.

These observations suggest a notion of convergence for the CAT(0) spaces which
actually coincides with weak convergence in the special case that the space is a Hilbert
space. This notion of convergence was first introduced in metric spaces by T. C. Lim
[17], who called it ∆-convergence. (T. Kuczumow [15] introduced a similar notion of
convergence in Banach spaces which he called ‘almost convergence’.)
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Definition 7.1. A sequence (xn) in X is said to converge weakly to x ∈ X if x is the
unique asymptotic center of (un) for every subsequence (un) of (xn) . In this case we
write ∆-limn→∞xn = x.

Next recall that a bounded sequence (xn) in X is said to be regular if r ((xn)) =
r ((un)) for every subsequence (un) of (xn) . It is known that every bounded sequence
in a Banach space has a regular subsequence (see, e.g., [8], p. 166). The proof is metric
in nature and carries over to the present setting without change. Since every regular
sequence converges weakly, we see immediately that the statement every bounded
sequence in X has a weakly convergent subsequence is equivalent to the statement
every bounded sequence has a regular subsequence.

Notice that given (xn) ⊂ X such that (xn) converges weakly to x and given y ∈ X
with y 6= x,

lim
n

sup d (xn, x) < lim
n

sup d (xn, y) .

Thus X satisfies a condition which is known in Banach space theory as the Opial
property.
Remark 7.2. Every bounded closed convex subset K of X is weakly closed in the
sense that it contains the limits of all of its asymptotcally convergent sequences. To
see this suppose (xn) converges weakly to x ∈ X. Let P : X → K be the nearest
point projection of X onto K. Then P is nonexpansive ([3], p. 177). If x /∈ K then
r (P (x) , (xn)) < r (x, (xn)) , a contradiction.

As a consequence of the preceding observation,

x ∈
∞⋂
k=1

conv {xk, xk+1, · · ·} ,

where conv (A) =
⋂
{B : B ⊇ A and B is closed and convex} .

The preceding ideas readily extend to nets. We define the asymptotic radius and
asymptotic center for nets analogous to the way they are defined for sequences.
Definition 7.3. A net (xα) in X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of (uξ) for every subnet (uξ) of (xα) .
Proposition 7.4. ([11], Proposition 4) A bounded ultranet is ∆-convergent.

Since every net has a subnet which is an ultranet, we immediately have the follow-
ing.
Proposition 7.5. Every bounded net in a complete CAT(0) space has a ∆-convergent
subnet.

The preceding fact can be reformulated as follows. (Cf., Theorem 3 of [17].)
Proposition 7.6. Every bounded closed convex set in a complete CAT(0) space is
∆-compact.

This brings us to our final question.
Question 7.7. Is there a corresponding notion of ∆-convergence in the spaces de-
scribed above?

Perhaps remarkably, the answer is ‘yes’. We turn now to a another observation of
Pasicki [22].
Lemma 7.8. [22] Let (X, d) be a bead space. Then if a bounded sequence (xn) is
regular, it is ∆-convergent.
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Proof. Suppose for some subsequence (xnk
) of (xn) , A (xnk

) = {x} 6= {y} = A (xn) .
If x 6= y it follows that r (xn) > 0 (otherwise (xn) would converge to y.) Now we have
xnk
∈ B (x; r + δ) ∩ B (y; r + δ) ⊂ B (z; r = δ) for some δ > 0 and large n. Hence it

follows that r (xnk
) = r ≤ r − δ – a contradiction.

This quickly gives rise to the following result.
Theorem 7.9. [22] Let (X, d) be a bead space and F : X → 2X a mapping. Assume
that (xn) is a regular sequence in X, let Y := {xn : n ∈ N}, and let G be a selection
for F|Y such that

lim
n→∞

d (xn, G (xn)) = 0.

If F (x) is compact and G (y) ⊂ B (F (x) , d (x, y)) for all y ∈ Y, then x ∈ F (x) .
We refer to [22] for related results.
We close by stating the central result of [23] This is an extension of Theorem 11 of

[19], which in turn can be viewed as an extension of the well-known Browder-Göhde-
Kirk theorem for nonexpansive mappings in Hilbert space.
Theorem 7.10. Let (X, d) be a metric space and let f : X → X be a mapping.
Assume that a nonempty subset Y in X is such that f |Y : Y → Y and A (f |Y ) = {x}
(a singleton). Suppose also that

d (f (x) , f (y)) ≤ d (x, y) for all y ∈ Y.

Then x is a fixed point of F.
In connection with the discussion in this section, it is appropriate to call attention

to a recent paper by Ahmadi Kakavandi [1]. See Chapter 9 of [14] for more details.
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