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Abstract. Let A be a unital algebra, let X be a unital A-module for which Xρ is a ρ–complete

modular space and let f : A → Xρ be a mapping. We present some observations concerning
hyperstability of the following functional equations
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= f(µx), (m+ n)f(xy) = 2mx · f(y) + 2ny · f(x)

for all x, y ∈ A and all µ ∈ T1/n0
= {eiθ; 0 ≤ θ ≤ 2π/n0}, where m,n ≥ 0 with m+ n 6= 0 are fixed

integers.
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1. Introduction and Preliminaries

Let A be an algebra over the real or complex field F, let X be a left A–module
and let m,n ≥ 0 with m + n 6= 0 be some fixed integers. Then an additive mapping
d : A → X is called a module left (m,n)-derivation if

(m+ n)d(xy) = 2mx · d(y) + 2ny · d(x)

for all x, y ∈ A. Clearly, module left (m,n)-derivations are one of the natural gener-
alizations of module left derivations (the case m = n). In the last few decades a lot of
work has been done in the field of left derivations (see, for example [33, 34] and the
references therein). Recently also (m,n)-derivations were defined and investigated
[1, 7, 8, 35, 36].

That notion of stability, for functional equations, has arisen in connection with
a problem of Ulam [32] and a solution to it published by Hyers [10]. This work
started an avalanche in the theory of stability theory of functional equations, and
since then many results have been obtained in this field, studying the Ulam-Hyers
stability of differential and integral equations, etc. We should mention also the work
of Rassias, who generalized this notion of stability in [28], proving the Ulam-Hyers-
Rassias stability of the Cauchy additive functional equation. A very good and deep
insight to this theory can be found in [5, 11, 12]. Let us mention that a functional
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equation is called hyperstable if every approximately solution is an exact solution of it.
It seems that the first well known hyperstability result appeared in [3] and concerned
some ring homomorphisms.

The stability result concerning derivations between operator algebras was first ob-
tained by Šemrl [31]. Badora [2] and Miura et al. [21] considered the Bourgin-
type hyperstability of ring derivations on Banach algebras. Also, Park et al.
[6, 9, 15, 18, 23, 26, 27] studied the stability and hyperstability of linear deriva-
tions and Lie derivations. In [13] Jung examined the stability and hyperstability of
module left derivations. Recently, Fos̆ner studied the stability of a functional inequal-
ity associated with module left (m,n)-derivations [7]. Also, Sadeghi et al. [4, 29, 30]
studied the stability of some functional equations in modular spaces.

In this paper, we study the stability and hyperstability of linear module (m,n)-
derivations from a unital algebra to a unital module by using the Khamsi fixed point
theorem in modular spaces [14].

The notion of modular spaces, as a generalization of that of metric spaces, was
introduced by Nakano in 1950 [24] and was intensively developed by Luxemburg [19],
Koshi and Shimogaki [16] and Yamamuro [37] and their collaborators. Moreover, the
theory of modulars and modular spaces is extensively applied, in particular, in the
study of various Orlicz spaces [25] and interpolation theory [17, 20], which in their
turn have broad applications [22].
Definition 1.1. Let X be a real (or complex) vector space. A functional ρ : X →
[0,∞] is called a modular if for every x, y ∈ X , the following hold:

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) provided that α+ β = 1 and α, β ≥ 0.

If we replace (iii) by

(iii)
′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if α+ β = 1 and α, β ≥ 0,

then the modular ρ is called a convex modular.
Remark 1.2. If a and b are positive real numbers with a ≤ b, then property (iii)
shows that

ρ(ax) = ρ
(a
b
bx
)

= ρ
(a
b
bx+ (1− a

b
)0
)
≤ ρ(bx) + ρ(0) = ρ(bx)

for all x ∈ X . If α1, . . . , αn are nonnegative numbers with

n∑
i=1

αi = 1,

then for all x1, . . . , xn ∈ X ,

ρ

(
n∑
i=1

αixi

)
≤

n∑
i=1

ρ(xi).

The vector space Xρ given by Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} is called a
modular space. Generally, the modular ρ is not subadditive and therefore does not
behave as a norm or a distance. However, the modular space Xρ can be equipped
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with an F–norm defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ λ

}
.

If ρ is convex modular, then

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}

defines a norm on the modular space Xρ and is called the Luxemburg norm.
Definition 1.3. A function modular is said to satisfy the ∆2–condition if there exists
M > 0 such that ρ(2x) ≤Mρ(x) for all x ∈ Xρ.

If ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also

ρ(x) ≤ 1

2
ρ(2x) ≤ M

2
ρ(x)

if ρ satisfy the ∆2–condition for all x ∈ X .
Definition 1.4. Let Xρ be a modular space.
(i) A sequence {xn} in Xρ is said to be

(1) ρ–convergent to x ∈ Xρ if ρ(xn−x)→ 0 as n→∞ (denoted by ρ− lim
n→∞

xn = x

or xn
ρ−→ x, the xn is ρ–convergent to x),

(2) ρ–Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(ii) Xρ is ρ–complete if any ρ–Cauchy sequence is ρ–convergent.

(iii) Say that ρ has the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) whenever xn
ρ−→ x.

Example 1.5. Let Xρ be a modular space, then the function dρ defined on Xρ ×Xρ
by

dρ(x, y) =

{
0 x = y,

ρ(x) + ρ(y) x 6= y,

is a generalized metric and (Xρ, dρ) is a generalized metric space.
Example 1.6. Let ϕ be a convex, nondecreasing and continuous function defined
on the interval such that ϕ(0) = 0, ϕ(α) > 0 for α > 0, ϕ(α) → ∞ as α → ∞.
The function ϕ is called an Orlicz function. The Orlicz function ϕ satisfies the ∆2–
condition if there exists M > 0 such that ϕ(2α) ≤Mϕ(α) for all α > 0. Let (Ω,Σ, µ)
be a measure space. Suppose L0(µ) is the space of all measurable real-valued (or
complex-valued) functions on Ω. Define for every f ∈ L0(µ) the Orlicz modular
ρϕ(f) as

ρϕ(f) =

∫
Ω

ϕ(|f |)dµ.

The associated modular function space with respect to this modular is called an Orlicz
space, and will be denoted by Lϕ(Ω, µ) or briefly Lϕ. In other words,

Lϕ = {f ∈ L0(µ) : ρϕ(λf)→ 0 as λ→ 0}.

It is known that the Orlicz space Lϕ is ρϕ–complete. Moreover, (Lϕ, ‖.‖ρϕ) is a
Banach space, where the Luxemburg norm ‖.‖ρϕ is defined as follows

‖f‖ρϕ = inf

{
λ > 0 :

∫
Ω

ϕ

(
|f |
λ

)
dµ ≤ 1

}
.
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The following fixed point theorem will play an important role in proving our main
theorems.
Theorem 1.7. ([14]) Let C be a ρ–complete nonempty subset of Xρ and let T : C → C
be a quasi-contraction, that is, there exists K < 1 such that

ρ(T (x)−T (y)) ≤ K max{ρ(x−y), ρ(x−T (x)), ρ(y−T (y)), ρ(x−T (y)), ρ(y−T (x))}.
Let x ∈ C such that

δρ(x) := sup{ρ(Tn(x)− Tm(x)) : m,n ∈ N} <∞.
Then {Tn(x)} ρ–converges to a point ω ∈ C. Moreover, if ρ(ω − T (ω)) < ∞ and
ρ(x − T (ω)) < ∞, then the ρ–limit of Tn(x) is a fixed point of T . Furthermore, if
ω∗ is any fixed point of T in C such that ρ(ω − ω∗) <∞, then one has ω = ω∗.

2. Approximately linear module left (m,n)-derivations

In the rest of this paper, unless otherwise explicitly stated, we will assume that
A is an algebra, X is a A-module for which Xρ is a ρ–complete modular space, m
and n are nonnegative integers with m+ n 6= 0 and n0 ∈ N is a positive integer and
suppose that T1/n0

:= {eiθ; 0 ≤ θ ≤ 2π/n0} and the convex modular ρ has the Fatou
property such that it satisfies the ∆2–condition with 0 < M ≤ 2. For convenience,
we use the following abbreviations for a given mapping f : A → Xρ,

∆µf (x, y) := µf

(
x+ y

2

)
+ µf

(
x− y

2

)
− f(µx),

∆m,nf (x, y) := (m+ n)f(xy)− 2mx · f(y)− 2ny · f(x)

for all x, y ∈ A and all µ ∈ T1/n0
.

Theorem 2.1. Let f : A → Xρ be a mapping for which there are functions φ :
A×A → [0,∞) and ψ : A×A → [0,∞) such that

ρ (∆µf (x, y)) ≤ φ(x, y), (2.1)

ρ (∆m,nf (x, y)) ≤ ψ(x, y), (2.2)

lim
k→∞

1

2k
φ(2kx, 2ky) = 0, lim

k→∞

1

4k
ψ(2kx, 2ky) = 0 (2.3)

for all x, y ∈ A and all µ ∈ T1/n0
. If there exists 0 < L < 1 such that

φ(2x, 0) ≤ 2Lφ(x, 0)

for all x ∈ A, then there exists a unique linear module left (m,n)-derivation D : A →
Xρ such that

ρ(f(x)−D(x)) ≤ L

1− L
φ(x, 0) (2.4)

for all x ∈ A.
Proof. Consider the set W := {g : A → Xρ} and introduce the mapping ρ̃ on W as
follows,

ρ̃(g) = inf{c > 0 : ρ(g(x)) ≤ cφ(x, 0)}.
By the same method as in the proof of Theorem 2.1 in [29], we conclude that ρ̃
is convex modular and satisfies the ∆2–condition with 0 < M < 2. Also, Wρ̃ is
ρ̃–complete.
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Now, we define the mapping Λ : Wρ̃ →Wρ̃ as follows

(Λg)(x) := 2g
(x

2

)
, for all g ∈Wρ̃ and x ∈ A.

Let g, h ∈ Wρ̃ and let c ∈ [0,∞] be an arbitrary constant with ρ̃(g − h) ≤ c. We
obtain

ρ(g(x)− h(x)) ≤ cφ(x, 0)

for all x ∈ A. By the assumption and the last inequality, we get

ρ

(
g(2x)

2
− h(2x)

2

)
≤ 1

2
ρ(g(2x)− h(2x)) ≤ 1

2
cφ(2x, 0) ≤ Lcφ(x, 0)

for all x ∈ A. Hence, ρ̃(Λg − Λh) ≤ Lρ̃(g − h) for all g, h ∈ Wρ̃, so Λ is a ρ̃–strict
contraction.

Substituting y = 0 and µ = 1 in (2.1), we obtain

ρ
(

2f
(x

2

)
− f(x)

)
≤ φ(x, 0) (2.5)

for all x ∈ A. Letting x = 2x in (2.5), we get

ρ (2f (x)− f(2x)) ≤ φ(2x, 0)

for all x ∈ A. Since ρ is convex modular, we obtain

ρ

(
f (x)− f(2x)

2

)
≤ 1

2
ρ (2f (x)− f(2x)) ≤ 1

2
φ(2x, 0) ≤ Lφ(x, 0) (2.6)

for all x ∈ A. Let x = 2x in (2.6) and then divide both sides by 2 to yield

ρ

(
f (2x)

2
−
f
(
22x
)

22

)
≤ 1

2
Lφ(2x, 0) ≤ L2φ(x, 0) (2.7)

for all x ∈ A. It follows from (2.6) and (2.7) that

ρ

(
f (x)−

f
(
22x
)

22

)
≤ 1

2
ρ (2f (x)− f(2x)) +

1

2
ρ

(
f (2x)− 1

2
f
(
22x
))

≤ Lφ(x, 0) + L2φ(x, 0)

for all x ∈ A. By induction we obtain

ρ

(
f(x)− f(2kx)

2k

)
≤

k∑
i=1

Liφ(x, 0) ≤ L

1− L
φ(x, 0) (2.8)

for all x ∈ A. Now we assert that

δρ̃(f) = sup
{
ρ̃
(
Λkf − Λ`f

)
; k, ` ∈ N

)
} <∞.
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Since ρ is convex modular and satisfies the ∆2–condition, it follows from (2.8) that

ρ

(
f(2kx)

2k
− f(2`x)

2`

)
≤ 1

2
ρ

(
2f(x)− 2

f(2kx)

2k

)
+

1

2
ρ

(
2f(x)− 2

f(2`x)

2`

)
≤ M

2
ρ

(
f(x)− f(2kx)

2k

)
+
M

2
ρ

(
f(x)− f(2`x)

2`

)
≤ 2L

1− L
φ(x, 0)

for all x ∈ A and k, ` ∈ N, which implies that ρ̃
(
Λkf − Λ`f

)
≤ 2L

1−L for all k, ` ∈ N.

Thus, δρ̃(f) < ∞ and {Λkf} is ρ̃–converges to D ∈ Wρ̃. Since ρ has the Fatou
property, (2.8) gives ρ̃(ΛD − f) <∞.

Let x = 2kx in (2.6) and then divide both sides by 2k to yield

ρ

(
f(2kx)

2k
− f(2k+1x)

2k+1

)
≤ 1

2k
ρ

(
f
(
2kx
)
− 1

2
f
(
2k+1x

))
≤ L

2k
φ(2kx, 0) ≤ L

2k
(2L)kφ(x, 0) ≤ Lk+1ϕ(x, 0)

≤ φ(x, 0)

for all x ∈ A. So, ρ̃(ΛD−D) <∞. It follows from Theorem 1.7 that ρ̃–limit of {Λkf}
is fixed point of map Λ.

It follows from (2.1) that

ρ

(
1

2k
∆µf

(
2kx, 2ky

))
≤ 1

2k
ρ
(
∆µf

(
2kx, 2ky

))
≤ 1

2k
φ(2kx, 2ky)

for all x, y ∈ A and all µ ∈ T1/n0
. Using (2.3) we see that the limit of the right hand

side of the above inequality is zero when k →∞. So, ∆µD (x, y) = 0 for all x, y ∈ A
and all µ ∈ T1/n0

. Putting µ = 1 in ∆µD (x, y) = 0, we have

D
(
x+ y

2

)
+D

(
x− y

2

)
= D(x),

for all x, y ∈ A. Setting x = x+ y and y = x− y in the last equality gives D(x+ y) =
D(x) +D(y) for all x, y ∈ A, that is, D is additive. So by ∆µD (x, y) = 0, we can get

D(µx) =
1

2
µD (x+ y) +

1

2
µD (x− y)

for all x, y ∈ A and all µ ∈ T1/n0
. Putting y = 0 in the last equality gives

D(µx) = µD (x)

for all x ∈ A and all µ ∈ T1/n0
. Now, let µ = eiθ ∈ T1 (i.e., n0 = 1). We set

ν = eiθ/n0 , thus ν ∈ T1/n0
and

D(µx) = D(νn0x) = νn0D(x) = µD(x)

for all x ∈ A and all µ ∈ T1. If µ ∈ jT1 := {jλ : λ ∈ T1}, then by additivity of D,
D(µx) = µD(x) for all x ∈ A and all µ ∈ jT1. If α ∈ (0,∞), then by archimedean



ON THE HYPERSTABILITY OF (m,n)-DERIVATIONS 647

property there exists a natural number j such that the point (α, 0) lies in the interior
of circle with center at origin and radius j. Let

β = α+
√
j2 − α2 i

and

γ = α−
√
j2 − α2 i.

Then β, γ ∈ jT1 and α = β+γ
2 . Thus

D(αx) = D(
β + γ

2
x) =

β + γ

2
D(x) = αD(x)

for all x ∈ A and all α ∈ (0,∞). Now, if µ ∈ C, then µ = |µ|eiθ and so

D(µx) = D(|µ|eiθx) = |µ|eiθD(x) = µD(x)

for all x ∈ A and all µ ∈ C. So, the mapping D is C–linear.
It follows from (2.2) that

ρ

(
1

22k
∆m,nf

(
2kx, 2ky

))
≤ 1

22k
ρ
(
∆m,nf

(
2kx, 2ky

))
≤ 1

22k
ψ(2kx, 2ky)

for all x, y ∈ A. Using (2.3) we see that the limit of the right hand side of the above
inequality is zero when k → ∞. So, ∆m,nD (x, y) = 0, that is, D is a linear module
left (m,n)-derivation.

It follows from (2.8) that ρ̃(f − D) ≤ L
1−L . i.e., the inequality (2.4) holds true for

all x ∈ A.
Also, if G is another fixed point of Λ, then

ρ̃(D − G) ≤ 1

2
ρ̃
(
2ΛD − 2f

)
+

1

2
ρ̃
(
2ΛG − 2f

)
≤ M

2
ρ̃
(
ΛD − f

)
+
M

2
ρ̃
(
ΛG − f

)
≤ ML

1− L
<∞.

Since Λ is ρ̃–strict contraction, we get

ρ̃(D − G) = ρ̃
(
ΛD − ΛG

)
≤ Lρ̃(D − G),

which implies that ρ̃(D − G) = 0 or D = G since ρ̃(D − G) < ∞, which proves the
uniqueness of D. This completes the proof.
Corollary 2.2. Let A be a normed algebra, let B be a Banach algebra and let 0 <
r < 1 and ε be nonnegative real numbers. If f : A → B is a mapping such that

‖∆µf (x, y) ‖ ≤ ε(‖x‖r + ‖y‖r), ‖∆m,nf (x, y) ‖ ≤ ε‖x‖r · ‖y‖r

for all x, y ∈ A and all µ ∈ T1/n0
, then there exists a unique linear module left

(m,n)-derivation D : A → B such that

‖f(x)−D(x)‖ ≤ ε

21−r − 1
‖x‖r

for all x ∈ A.
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Proof. It is known that every normed space is modular space with the modular
ρ(x) = ‖x‖ and M = 2. Now, the proof follows from Theorem 2.1 by taking

φ(x, y) := ε(‖x‖r + ‖y‖r)

and

ψ(x, y) := ε‖x‖r · ‖y‖r

for all x, y ∈ A and putting L = 2r−1.
Now, we formulate and prove a theorem in hyperstability of linear module left

(m,n)-derivations.
Theorem 2.3. Let A be a unital algebra and let X be a unital A-module for which
Xρ is a ρ–complete modular space. Suppose f : A → Xρ is a mapping for which there
is a function φ : A×A → [0,∞) satisfying (2.1) and

ρ (∆m,nf (x, y)) ≤ φ(x, y), (2.9)

lim
k→∞

1

2k
φ(2kx, 2ky) = 0 (2.10)

for all x, y ∈ A and all µ ∈ T1/n0
. If there exists 0 < L < 1 such that φ(2x, 0) ≤

2Lφ(x, 0) for all x ∈ A, then f is a linear module left (m,n)-derivation.
Proof. Notice that m and n are nonnegative integers with m+ n 6= 0, without loss of
generality, let us assume m 6= 0. Based on the proof of Theorem 2.1, we can find the
linear module left (m,n)-derivation D given by

D(x) = ρ− lim
k→∞

Λkf(x) = ρ− lim
k→∞

1

2k
f(2kx)

for all x ∈ A. It follows from (2.9) and (2.10) that

ρ− lim
k→∞

(
m+ n

2k
f(2kxy)− 2m2kx

2k
· f(y)− 2ny

2k
· f(2kx)

)
= 0

for all x, y ∈ A. Since D is a linear module left (m,n)-derivation, we have

2mx · D(y) + 2ny · D(x) = (m+ n)D(xy) = 2mx · f(y) + 2ny · D(x)

for all x, y ∈ A. Therefore, mx · D(y) = mx · f(y) for all x, y ∈ A. If x = e, we have
f = D, hence f is a linear module left (m,n)-derivation.
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