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1. Introduction

The celebrated Banach-Caccioppoli contraction mapping principle is one of the sim-
plest and most useful methods for construction of solutions of linear and nonlinear
equations and fixed points of dynamical systems. This principle has been generalized
in different directions in different spaces by mathematicians over the years. For in-
stance, Nadler [4] proposed the contractive set-valued mapping principle; Suzuki [5]
presented a new type of generalization of the Banach contraction principle and did
characterize the metric completeness by using the concept of w-distance on a metric
space introduced by [8]. The corresponding works we still further refer to [6] and
references therein. In particular, Edelstein [7] gave a notion of locally contraction
to specify the validity in the case of the Banach condition of single-valued mappings
only holding for sufficiently close points. Then, Suzuki and Takahashi [9] extended
this locally notion into set-valued mappings and proved the existence of fixed points
for such mappings via the w-distance on a determinacy metric space.

The fuzzy contraction of mappings in fuzzy metric spaces recently has received
extensive attention. Such as Grabiec [10] proved a fuzzy Banach contraction theorem
and Vasuki [11] generalized the results of Grabiec for common fixed point theorem
for a sequence of mappings in a fuzzy metric space. Then, many authors devoted to
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investigate the subject in various different directions. Some instances of these works
are in [10]-[27]. The main idea consists to use a fuzzy metric instead of the regular
metric, as the topology of the sets under consideration. This problem has investigated
from different points of view. In particular, George and Veeramani [1, 2] introduced
and studied a notion of fuzzy metric M on a set X with the help of continuous t-
norms introduced in [3] and from now on, when we talk about fuzzy metrics we refer
to this type. Let us mention that Gregori and Sapena [12] have introduced a kind of
contractive mappings in fuzzy metric spaces in the sense of George and Veeramani [1]
and proved a fuzzy fixed point theorem which extends classical Banach contraction
principle by using a strong condition for completeness, now called the completeness
in the sense of Grabiec, or G-completeness. As a complete fuzzy metric space in the
usual sense, that is an M-complete fuzzy metric space, need not be G-complete (see
[13]), an important problem raised by the paper of Gregori and Sapena is to decide
whether a fuzzy contractive sequence is M-Cauchy. Mihet [14] defined a new fuzzy
contraction called fuzzy ψ-contraction which enlarges the class of fuzzy contractive
mappings of Gregori and Sapena and consider these mappings in fuzzy metric spaces
in the sense of Kramosil and Michalek. He has shown that every fuzzy contractive
sequence in a large class of fuzzy metric spaces is M-Cauchy and proved a fuzzy Banach
contraction theorem for M-complete non-Archimedean fuzzy metric spaces. Moreover,
the author posed an open question that whether this fixed point theorem holds if the
non-Archimedean fuzzy metric space is replaced by a fuzzy metric space. Vetro [15]
introduced a notion of weak non-Archimedean fuzzy metric space and proved common
fixed point results for a pair of generalized contractive type mappings. Wang [16] gave
a positive answer for the open question. Hong et al. [17, 25] further extended and
modified the above fuzzy ψ-contraction for set-valued mappings.

The above mentioned fuzzy contraction is a global idea. It is natural to ask whether
it could be modified as in the ordinary metric spaces so as to be valid when the fuzzy
ψ-condition is assumed to hold only for sufficiently close points in the sense of a
fuzzy metric. For this purpose, in this paper we present the new notion of locally
fuzzy contraction of set-valued mappings in fuzzy metric spaces. Moreover, it is
significative to introduce the ε-chainable fuzzy metric space for the demand of our
fuzzy fixed point theory. We enlarge the class of fuzzy ψ-contractive mappings since it
is shown that there exist locally fuzzy ψ- contractive mappings which are not globally
fuzzy ψ-contractive in the under section 3. To illustrate the applicability of our ideas,
another main purpose of this paper is to obtain some fixed point theorems for locally
fuzzy contractive set-valued mappings in fuzzy metric spaces by utilizing the fw-
distance introduced by Hong [17]. Our results substantially generalize and extend
several comparable results as in [14, 16] and are also regarded as the fuzzy versions
of corresponding results in [7, 9].

2. Preliminaries

Let us recall [3] that a continuous t-norms is a binary operation ∗ : [0, 1]×[0, 1]→
[0, 1] such that ([0, 1],≤, ∗) is an ordered Abelian topological monoid with unit 1. In
this sequel, we further assume that ∗ satisfies the condition a∗b ≥ ab for all a, b ∈ [0, 1].
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For examples of t-norm satisfying the above conditions we enumerate a ∗ b = ab,
a ∗ b = min{a, b} and a ∗ b = ab/max{a, b, λ} for 0 < λ < 1, respectively.

Definition 2.1. [1] A fuzzy metric space is an ordered triple (X,M, ∗) such that X
is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on X×X× (0,+∞)
satisfying the following conditions, for all x, y, z ∈ X, s, t > 0:

(F1) M(x, y, t) > 0,
(F2) M(x, y, t) = 1 if and only if x = y,
(F3) M(x, y, t) = M(y, x, t),
(F4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) and
(F5) M(x, y, ·) : (0,+∞)→ [0, 1] is continuous.

In this sense, M is called a fuzzy metric on X.

The simple but useful facts are that M is a continuous function on X×X× (0,∞)
and M(x, y, ·) is nondecreasing for all x, y ∈ X[28]. In addition, in the definition of
Kramosil and Michalek [29], M is a fuzzy set on X×X× [0,∞) that satisfies (F3) and
(F4), and (F1), (F2), (F5) are replaced by (K1), (K2), (K5), respectively, as follows:

(K1) M(x, y, 0) = 0;
(K2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(K5) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

We will refer to these fuzzy metric spaces as KM fuzzy metric spaces.
In the definition of (KM) fuzzy metric spaces, in further, it is satisfied

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t) for all x, y, z ∈ X and all t > 0.

Then (X,M, ∗) is said to be a non-Archimedean fuzzy metric space [14].
Let (X,M, ∗) be a fuzzy metric space. For fixed t > 0 and r ∈ (0, 1], the open ball

B(x, t, r) with center x ∈ X is defined by

B(x, t, r) = {y ∈ X : M(x, y, t) > 1− r}.

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, t, r) ⊂ A. Let T denote the family of all open subsets of X. Then T
is a topology on X induced by the fuzzy metric M . This topology is metrizable (see
[2]). Therefore, A closed subset B of X is equivalent that x ∈ B if and only if there
exists a sequence {xn} ⊂ B such that {xn} topologically converging to x. In fact, the
topologically convergence of sequences can be indicated by the fuzzy metric as follows

Definition 2.2. [1] Let (X,M, ∗) be a fuzzy metric space.

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X, denoted by
limn→∞ xn = x, if limn→∞M(xn, x, t) = 1 for any t > 0.

(ii) A sequence {xn} in X is called Cauchy sequence if for each ε > 0 and t > 0,
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for any m,n ≥ n0.

(iii) A fuzzy metric space (X,M, ∗) in which every Cauchy sequence is convergent
is said to be complete.

There exist two fuzzy versions of Cauchy sequences and completeness, i.e., be-
sides called M -Cauchy sequence and M -completeness in the sense of Definition 2.2,
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G-Cauchy sequence defined by limn→∞M(xn+p, xn, t) = 1 for all t, p > 0 and cor-
responding G-completeness introduced by [10]. In [13] the authors have pointed out
that a G-Cauchy sequence is not an M -Cauchy in general. It is clear that an M -
Cauchy sequence is G-Cauchy and hence a fuzzy metric space is M -complete if it
is G-complete. From now on, by Cauchy sequence and completeness we mean an
M -Cauchy sequence and M -completeness.

The authors in [17] have introduced the following notion of fw-distance for which
not either of the implications P(x, y, t) = 1⇔ x = y (namely (F2)) necessarily holds
and P is nonsymmetric, i.e., in general, P does not satisfy (F3).

Definition 2.3. Let (X,M, ∗) be a fuzzy metric space. A fuzzy set P on X ×X ×
(0,∞) is said to be a fw-distance if the following are satisfied:

(w1) P(x, y, t) ∗ P(y, z, s) ≤ P(x, z, t+ s) for all x, y, z ∈ X and all s, t > 0;
(w2) for any x ∈ X, t ∈ (0,∞), P(x, ·, t) : X → [0, 1] is upper semicontinuous and

P(x, y, ·) : (0,+∞)→ [0, 1] is left continuous for x, y ∈ X;
(w3) for any ε ∈ (0, 1) and t > 0, there exists δ ∈ (0, 1) such that P(z, x, t/2) ≥ 1−δ

and P(z, y, t/2) ≥ 1− δ imply M(x, y, t) ≥ 1− ε.

Clearly, the fuzzy metric M is a fw-distance on X, but the reverse is not true.
fw-distance has some useful properties for their proof we refer to[17].

Proposition 2.4. Let (X,M, ∗) be a fuzzy metric space and P be a fw-distance on
X. Then for sequences {xn} and {yn} in X, the function sequences {an(t)} and
{bn(t)} with an, bn : (0,∞)→ [0, 1) converging to 0 for t > 0, and for x, y, z ∈ X we
have the following

(1) if, for t > 0, P(xn, y, t/2) ≥ 1 − an(t/2) and P(xn, z, t/2) ≥ 1 − bn(t/2) for
any n ∈ N, then y = z; in particular, if P(x, y, t) = 1 and P(x, z, t) = 1, then
y = z;

(2) if, for t > 0, P(xn, yn, t/2) ≥ 1− an(t/2) and P(xn, z, t/2) ≥ 1− bn(t/2) for
any n ∈ N, then {yn} converges to z;

(3) if, for t > 0, P(xn, xm, t/2) ≥ 1− an(t/2) for any n,m ∈ N with m > n, then
{xn} is a Cauchy sequence;

(4) if, for t > 0, P(y, xn, t/2) ≥ 1−an(t/2) for any n ∈ N, then {xn} is a Cauchy
sequence;

(5) if x ∈ X and {yn} in X with limn→∞ yn = y and P(x, yn, t) ≥ ω for some
ω = ω(x) ∈ (0, 1), then P(x, y, t) ≥ ω.

By CB(X) we denote the collection consisting of all nonempty bounded closed
subsets of X.

The following collection of functions Ψ is given in [14], i.e., ψ ∈ Ψ means that
ψ : [0, 1]→ [0, 1] is continuous, nondecreasing and ψ(t) > t for each t ∈ (0, 1).

Definition 2.5. [17] Let ψ ∈ Ψ and P be a fw-distance. T : X → CB(X) is called
a fuzzy ψ-p-contractive set-valued mapping if the following implication takes place:
for any x1, x2 ∈ X and y1 ∈ Tx1, there exists y2 ∈ Tx2 such that

P(x1, x2, t) > 0⇒ P(y1, y2, t) ≥ ψ(P(x1, x2, t)), ∀t > 0.
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At the end of this section, we list the following lemmas regarding fw-distance
which play a key role in the proof of the main result of this paper.

Lemma 2.6. [17] Let X be a fuzzy metric space with the fuzzy metric M , let P
be a fw-distance on X, and let Q be a function from X × X × (0,+∞) into [0, 1]
satisfying (w1), (w2) in Definition 2.3. Suppose that Q(x, y, t) ≤ P(x, y, t) for every
x, y ∈ X, t ∈ (0,+∞). Then Q is also a fw-distance on X. In particular, if Q
satisfies (w1), (w2) in Definition 2.3 and Q(x, y, t) ≤ M(x, y, t) for every x, y ∈
X, t ∈ (0,+∞), then Q is a fw-distance on X.

A point x ∈ X is said to be a fixed point of the set-valued mapping T if x ∈ Tx.

Lemma 2.7. [17] Let (X,M, ∗) be a complete fuzzy metric space and T be a fuzzy
ψ-p-contractive set-valued mapping from X into CB(X). If there exists x ∈ X such
that P(x, y, t) > 0 for some y ∈ Tx and any t > 0, then T has at least a fixed point
x0 ∈ X. Moreover, if P(x0, x0, t) > 0 then P(x0, x0, t) = 1 for all t > 0.

3. Locally fuzzy contractions

In what follows, we always assume that (X,M, ∗) is a fuzzy metric space unless
otherwise specified. Let P be a fw-distance on X ×X × (0,∞) and ψ ∈ Ψ.

Motivated by [28], we define a function on CB(X)× CB(X)× (0,∞) as follows

HM (A,B, t) = min{δM (A,B, t), δM (B,A, t)}
for any A,B ∈ CB(X) and t > 0, where δM (C,D, t) = infc∈C H

M (c,D, t) with
HM (c,D, t) = supd∈DM(c, d, t) for C,D ∈ CB(X). On the family of compact subsets
of X, in [28] the authors have shown that HM satisfies the conditions (F1)-(F5) given
as in Definition 2.1. Clearly, HM ({x}, {y}, t) = M(x, y, t) for all x, y ∈ X and t > 0.

For x, y ∈ X and t > 0, a finite sequence {u0, u1, . . . , uk} ⊂ X is called a fuzzy
ε-chain in X linking x and y if u0 = x, uk = y and there exists a positive number
ε ∈ (0, 1] such that ui+1 ∈ B(ui, t, ε) for i = 0, 1, . . . , k − 1.

For the sake of convenience, we introduce the following necessary notations

Uk = {u0, u1, . . . , uk} ⊂ X.
Uε(x, y, t) = {Uk : Uk is an ε-chain in X linking x and y} with t > 0.

S(t, k) =
{
Sk = (s0, s1, . . . , sk−1) : si > 0,

∑k−1
i=0 si ≤ t

}
.

Sε(x, y, t) = {(Sk, Uk) : Sk ∈ S(t, k), ui+1 ∈ B(ui, si, ε(si)), u0 = x, uk = y},
where t > 0 and ε : (0,∞)→ (0, 1] is a function.∏k−1
i=0 ∗M(ui, ui+1, si) = M(u0, u1, s0)∗M(u1, u2, s1)∗ · · ·∗M(uk−1, uk, sk−1)

with t > 0.

Let ε : (0,∞) → (0, 1] be a nondecreasing function. Then, Uε(s)(x, y, s) ⊂
Uε(t)(x, y, t) (Sε(x, y, s) ⊂ Sε(x, y, t)) if 0 < s ≤ t, Uk ∈ Uε(t)(x, y, t) if (Sk, Uk) ∈
Sε(x, y, t) since B(ui, si, ε(si)) ⊂ B(ui, t, ε(t)).

Correspond to the chainable property of regular metric space, we introduce the
following fuzzy counterpart which will be useful in obtaining our fixed point results.

Definition 3.1. Let ε : (0,∞) → (0, 1] be a nondecreasing function. (X,M, ∗) is
called weakly fuzzy ε-chainable if there exist x, y ∈ X such that Uε(t)(x, y, t) with
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t > 0 is nonempty. If ε is independent of t, then (X,M, ∗) is called uniformly fuzzy
ε-chainable.

(X,M, ∗) is evidently weakly fuzzy ε-chainable if it is uniformly fuzzy ε-chainable.

Example 3.2. Let X = [0,∞) and a ∗ b = ab for a, b ∈ [0, 1]. For any x, y ∈ X,
denote d(x, y) = |x− y| and define

Md(x, y, t) =: M(x, y, t) =
t

t+ d(x, y)
.

Let ε ∈ (0, 1). Then, for any x, y ∈ X with x < y and t > 0, there exists k ∈ N such
that Uk = {u0, u1, . . . , uk} with x = u0 < u1 < · · · < uk = y satisfying ui+1 − ui ≤
tε

1−ε . This implies that ui+1 ∈ B(ui, t, ε) for i = 0, 1, . . . , k−1, that is, for any x, y ∈ X
there exists an ε-chain in X linking x and y and hence (X,Md, ∗) is uniformly fuzzy
ε-chainable.

For any given x, y ∈ X and t > 0, let Uk = {u0 = x, u1, . . . , uk−1, uk = y} be a
partition of the line segment |x − y| such that every segment |ui+1 − ui| ≤ tε

k(1−ε) .

Putting si = t
k for i = 0, 1, . . . , k − 1, then we have

si =
t

k
≥ 1− ε

ε
|ui+1 − ui|, i = 0, 1, . . . , k − 1.

This guarantees that ui+1 ∈ B(ui, si, ε) ⊂ B(ui, t, ε) for i = 0, 1, . . . , k − 1 and
(Sk, Uk) ∈ Sε(x, y, t) with Sk = (s0, s1, . . . , sk−1) and Uk = {u0, u1, . . . , uk}. To wit,
Sε(x, y, t) is nonempty.

Lemma 3.3. Let (X,M, ∗) be a fuzzy metric space and ε : (0,∞)→ (0, 1) a function.
Then the function F : X ×X × (0,+∞)→ [0, 1] defined by

F(x, y, t) =

{
sup

{∏k−1
i=0 ∗M(ui, ui+1, si) : (Sk, Uk) ∈ Sε(x, y, t)

}
, Sε(x, y, t) 6= ∅,

0, Sε(x, y, t) = ∅

for t > 0 is a fw-distance on X.

Proof. Note that F is well-defined. Moreover, from the hypothesis a∗b ≥ ab it follows
that F(x, y, t) > 0 if Sε(x, y, t) 6= ∅ for (x, y, t) ∈ X ×X × (0,∞). In order to check
(w1), we set that x, y, z ∈ X and s, t > 0 are arbitrary. We consider two cases.

Case 1. F(x, z, t + s) > 0. If F(x, y, t) > 0 and F(y, z, s) > 0, then, for
η ∈ (0,min{F(x, y, t), F(y, z, s)}) there exist (Sk, Uk) ∈ Sε(x, y, t) and (Tl, Vl) ∈
Sε(y, z, s) with Uk = (u0, u1, . . . , uk), Vl = (v0, v1, . . . , vl), Sk = (s0, s1, . . . , sk−1) ∈
S(t, k) and Tl = (τ0, τ1, . . . , τl−1) ∈ S(s, l) such that

k−1∏
i=0

∗M(ui, ui+1, si) ≥ F(x, y, t)− η,
l−1∏
j=0

∗M(vj , vj+1, τj) ≥ F(y, z, s)− η.

Let

S′k+l = (s0, s1, . . . , sk−1, τ0, τ1, . . . , τl−1), U ′k+l = {u0, u1, . . . , uk, v1, v2, . . . , vl}.
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It is easy to see that S′k+l ∈ S(t+ s, k + l) and (Sk+l, U
′
k+l) ∈ Sε(x, z, t+ s). Hence

F(x, z, t+ s) ≥
k−1∏
i=0

∗M(ui, ui+1, si) ∗
l−1∏
j=0

∗M(vj , vj+1, τj)

≥ (F(x, y, t)− η) ∗ (F(y, z, s)− η).

Since η > 0 is arbitrary, we have F(x, z, t + s) ≥ F(x, y, t) ∗ F(y, z, s). Hence, in
this case, (w1) is satisfied. In addition, this implies that F(x, z, s+ t) > 0 whenever
F(x, y, t) and F(y, z, s) both are positive.

Otherwise, at least one of F(x, y, t) and F(y, z, s) is zero, say, F(x, y, t) = 0. Then
the conclusion obviously holds.

Case 2. F(x, z, t + s) = 0. In this case, there is at least one of P(x, y, t) and
F(y, z, s) is zero. In a similar way, we get F(x, z, t + s) ≥ F(x, y, t) ∗ F(y, z, s).
Consequently, (w1) holds.

It is sufficient for checking (w2) to prove that F(x, ·, t) is upper semicontinuous
for given x ∈ X and t > 0 since F(x, y, ·) is obviously continuous. To this end, we
take y ∈ X and assume that {yn} is a sequence in X with yn → y. Thus, for any
0 < ε ≤ ε(t) and t′ > t, there exists n0 ∈ N such that M(y, yn, t

′ − t) ≥ 1 − ε and
M(y, yn, t) ≥ 1 − ε for every n ≥ n0. Suppose that there exist infinite many n ∈ N
such that F(x, yn, t) > 0. For any fixed n ≥ n0 and µ ∈ (0,F(x, yn, t)), there exist
Sk ∈ S(t, k) and (Sk, Uk) ∈ Sε(x, yn, t) such that

k−1∏
i=0

∗M(ui, ui+1, si) ≥ F(x, yn, t)− µ.

Let Ŝk+1 = (s0, s1, . . . , sk−1, t
′− t) = (Sk, t

′− t), Ûk+1 = {u0, u1, . . . , uk, y} = (Uk, y).

Then Ŝk+1 ∈ S(t′, k + 1), (Ŝk+1Ûk+1) ∈ Sε(x, y, t
′) and hance

F(x, y, t′) ≥
k−1∏
i=0

∗M(ui, ui+1, si) ∗M(yn, y, t
′− t) ≥ (F(x, yn, t)−µ) ∗M(yn, y, t

′− t).

Now, by the arbitrariness of µ, we obtain

F(x, y, t′) ≥ (F(x, yn, t)) ∗M(yn, y, t
′ − t) ≥ (F(x, yn, t)) ∗ (1− ε).

In virtue of the arbitrariness of ε, we have F(x, y, t′) ≥ lim supn→∞ F(x, yn, t). In
view of the continuity of F(x, y, ·), we obtain

F(x, y, t) ≥ lim sup
n→∞

F(x, yn, t).

If F(x, yn, t) = 0 except finite many n ∈ N, the above inequality is obviously valid.
Hence, we deduce that F(x, ·, t) is upper semicontinuous as desired.

Finally, for any x, y ∈ X and t > 0, from Definition 2.1-(F4), it follows

k−1∏
i=0

∗M(ui, ui+1, si) ≤M(x, y, t)
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for every Sk = (s0, s1, . . . , sk−1) ∈ S(t, k) and (Sk, Uk) ∈ Sε(x, y, t) with Uk =
{u0, u1, . . . , uk}. This implies F(x, y, t) ≤M(x, y, t) for all (x, y, t) ∈ X×X× (0,∞).
By Lemma 2.6, F is a fw-distance. �

Following the line in arguments of Lemma 3.3, we can check the following

Lemma 3.4. Let (X,M, ∗) be a non-Archimedean fuzzy metric space. If there exists
a nondecreasing function ε : (0,∞) → (0, 1] such that X is weakly fuzzy ε-chainable,
then the function F : X ×X × (0,+∞)→ [0, 1] defined by

F(x, y, t) =

{
sup

{∏k−1
i=0 ∗M(ui, ui+1, t) : Uk ∈ Uε(t)(x, y, t)

}
, Uε(t)(x, y, t) 6= ∅,

0, Uε(t)(x, y, t) = ∅
for t > 0 is a fw-distance on X.

Definition 3.5. T is called a locally fuzzy (ψ, ε)-contractive set-valued mapping if
ψ ∈ Ψ, ε : (0,∞) → [0, 1) is a function and, for any x ∈ X and t > 0, the following
inequality holds:

HM (Tx, Ty, t) ≥ ψ(M(x, y, t))

whenever y ∈ B(x, t, ε(t)). If ε is independent of t, then T is called locally fuzzy (ψ, ε)-
uniformly contractive. In particular, T is said to be (globally) fuzzy ψ-contractive
when ε ≡ 1.
T is called locally fuzzy (ψ, ε)-strongly contractive if T is locally fuzzy (ψ, ε)-

contractive and there exist x ∈ X, y ∈ Tx such that Sε(x, y, t) 6= ∅ for any t > 0.
T is called locally fuzzy (ψ, ε)-SU contractive if T is locally fuzzy (ψ, ε)-strongly

contractive and locally fuzzy (ψ, ε)-uniformly contractive.

Remark 3.6. Definition 3.5 is also valid when (X,M, ∗) is a KM fuzzy metric space
since M(x, y, t) > 0 whenever y ∈ B(x, t, ε).

Let X be a complex plane and the analytic function f : X → X map every
connected and compact subset C of X into itself. If |f ′(x)| < 1 for every x ∈ C, note
that f ′ is continuous on C, we can find λ > 0 such that |f ′(x)| ≤ λ < 1 for every
x ∈ C. For fixed x ∈ C, there exists a neighborhood U(x, r) ⊂ X with 0 < r < 1
such that |f ′(y)| ≤ λ for all y ∈ U(x, r). Since

⋃
x∈C U(x, r) is an open covering of C,

from the compactness of C there exist finite many neighborhoods, say, {U(xi, ri)}ni=1

such that C ⊂
⋃n
i=1 U(xi, ri). Let ε = min1≤i≤n{ri}. Then 0 < ε < 1 and for any

x ∈ C, y ∈ X with |x− y| < ε, there exists 1 ≤ i0 ≤ n such that x, y ∈ U(xi0 , ri0) and
hence

|f(x)− f(y)| ≤
∫ y

x

|f ′(z)|dz ≤ λ|x− y|.

This implies that f is locally Banach contractive on C. In fact, it is quite easy to
exhibit that the mapping T which admits a locally Banach contraction on a regular
metric space X is equivalent to locally fuzzy contraction on X endowed a suitable
fuzzy metric.

Example 3.7. Let a ∗ b = min{a, b} for a, b ∈ [0, 1] and X be the complex plane
endowed with the fuzzy metric Md. If the analytic function f : X → X which maps
every connected and compact subset C of X into itself satisfies |f ′(x)| < 1 for every
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x ∈ C, then there exists ψ ∈ Ψ such that f is locally fuzzy (ψ, η)-strongly contractive
on C, where η is a function from (0,∞) into (0, 1] with η(t) = ε/(t+ε). In particular,
there exists ε ∈ (0, 1) such that f is locally fuzzy (ψ, ε)-SU contractive on C under

the fuzzy metric M̃(x, y, t) = 1/(1 + |x− y|).

Proof. It is easy to see that (X,Md, ∗) is a KM fuzzy metric space. In addition, for
any x ∈ C and t > 0, y ∈ B(x, t, η(t)) if and only if |x − y| ≤ ε and this yields
|f(x)− f(y)| ≤ λ|x− y|. Moreover, it is equivalent to

Md(f(x), f(y), t) ≥ Md(x, y, t)

Md(x, y, t) + λ(1−Md(x, y, t))
.

We now set ψ(t) = t
t+λ(1−t) . Then, ψ ∈ Ψ and Md(f(x), f(y), t) ≥ ψ(Md(x, y, t))

for all x ∈ C and y ∈ B(x, t, η(t)). In particular, f is locally fuzzy (ψ, η)-uniformly

contractive on C with η = ε/(1 + ε) if we consider the fuzzy metric M̃ .
In addition, following the line in arguments of Example 3.2, for ε > 0 we see

Sε(x, f(x), t) 6= ∅ for all x ∈ C and t > 0, that is, f is (ψ, ε)-strongly contractive on

C. Consequently, f is (ψ, η)-SU contractive on C under the fuzzy metric M̃ . �
The author in [7] exhibited spaces which admit (uniformly) locally Banach contrac-

tive mappings are not globally Banach contractive. Moreover, we see that the locally
fuzzy (ψ, ε)-(uniformly) contraction of mappings is equivalent to the Banach contrac-
tion under consideration of Example 3.7 involving ψ(t) = t

t+λ(1−t) and λ ∈ (0, 1).

Therefore, there exist mappings such that they are even locally fuzzy (ψ, ε)-uniformly
contractive single-valued mappings but not globally fuzzy ψ-contractive.

4. Fixed point theorems

As an application of the locally fuzzy contraction, in this section we approach
to state and prove the fuzzy fixed point theorems which are one of our main results.

Theorem 4.1. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric space. If
there exists a nondecreasing function ε : (0,∞) → (0, 1] such that X is weakly fuzzy
ε-chainable, the set-valued mapping T from X into CB(X) is locally fuzzy (ψ, ε)-
contractive with ψ ∈ Ψ and the condition

(i) Ψ∗ψ = {φ ∈ Ψ : φ(a) ∗ φ(b) ≥ φ(a ∗ b) for any a, b ∈ [0, 1] and φ(a) < ψ(a) for

a ∈ [0, 1)} 6= ∅
holds, then T has at least a fixed point x0 ∈ X. Moreover, there exists a fw-distance
P such that P(x0, x0, t) > 0 implies P(x0, x0, t) = 1 for t > 0.

Proof. Define a fuzzy function as follows

P(x, y, t) =

{
sup

{∏k−1
i=0 ∗M(ui, ui+1, t) : Uk ∈ Uε(t)(x, y, t)

}
, Uε(t)(x, y, t) 6= ∅,

0, Uε(t)(x, y, t) = ∅.
P is well-defined sinceX is weakly fuzzy ε-chainable. Moreover, P(x, y, t) ≤M(x, y, t)
for all x, y ∈ X and t > 0 on the non-Archimedean fuzzy metric space. Lemma
3.4 guarantees that P is a fw-distance. Moreover, there exist x, y ∈ X such that
P(x, y, t) > 0 for any t ∈ (0,∞). We next verify that T is fuzzy φ-p-contractive for
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φ ∈ Ψ∗ψ. Let x1, x2 ∈ X, y1 ∈ Tx1. If P(x1, x2, t) > 0 for arbitrarily given t > 0 then,

for η ∈ (0,P(x1, x2, t)), there exists Uk ∈ Uε(t)(x, y, t) with Uk = {u0, u1, . . . , uk}
such that

k−1∏
i=0

∗M(ui, ui+1, t) ≥ P(x1, x2, t)− η.

Take advantage of x1 = u0 and u1 ∈ B(u0, t, ε(t)), together with the hypothesis of
the locally contraction of T , we have

HM (Tu0, Tu1, t) ≥ ψ(M(u0, u1, t)) > φ(M(u0, u1, t)).

Put v0 = y1 ∈ Tx1 = Tu0, by the definition of HM it is easy to see that there exists
v1 ∈ Tu1 such that

M(v0, v1, t) ≥ φ(M(u0, u1, t)) > φ(1− ε(t)) > 1− ε(t).

Analogously, by means of u2 ∈ B(u1, t, ε(t)) and the locally fuzzy (ψ, ε)-contraction
of T , for v1 ∈ Tu1, combining the definition of HM , we can find v2 ∈ Tu2 such that

M(v1, v2, t) ≥ φ(M(u1, u2, t)) > φ(1− ε(t)) > 1− ε(t).

Repeating the process, we can obtain a point sequence {v0, v1, . . . , vk} ∈
Uε(t)(y1, vk, t) such that vi ∈ Tui for i = 0, 1, . . . , k and

M(vi, vi+1, t) ≥ φ(M(ui, ui+1, t)) > φ(1− ε(t)) > 1− ε(t)

for each i = 0, 1, . . . , k − 1. Putting y2 = vk, since y2 ∈ Tuk = Tx2, we have

P(y1, y2, t) ≥
k−1∏
i=0

∗M(vi, vi+1, t) ≥
k−1∏
i=0

∗φ(M(ui, ui+1, t))

≥ φ

(
k−1∏
i=0

∗M(ui, ui+1, t)

)
≥ φ(P(x1, x2, t)− η).

In virtue of the continuity of φ and the arbitrariness of η, we have P(y1, y2, t) ≥
φ(P(x1, x2, t)), which implies that T is a fuzzy φ-p-contractive set-valued mapping.
In virtue of Lemma 2.7, we arrive at the desired results. This Proof is complete. �

In what follows, we appropriately relax the restriction of fuzzy spaces, that is, the
non-Archimedean fuzzy metric space is replaced by a fuzzy metric space. In this case,
we present the following

Theorem 4.2. Let ε : (0,∞) → (0, 1] be a nondecreasing function and (X,M, ∗) be
complete. Suppose that (i) and the following condition hold:

(ii) The set-valued mapping T from X into CB(X) is locally fuzzy (ψ, ε)-strongly
contractive.

Then T has at least a fixed point x0 ∈ X. Moreover, there exists a fw-distance P
such that P(x0, x0, t) > 0 implies P(x0, x0, t) = 1 for t > 0.

Proof. Define a fw-distance P = F on X ×X × (0,∞) with F given as in Lemma
3.3. We first observe that from the hypothesis (ii) there exist x ∈ X and some y ∈ Tx
such that P(x, y, t) > 0 for any t > 0.
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Choosing a function φ ∈ Ψ∗ψ such that φ(a) < ψ(a) for each a ∈ [0, 1), we next prove

that T is fuzzy φ-p-contractive. Let x1, x2 ∈ X, y1 ∈ Tx1. Suppose P(x1, x2, t) > 0.
Then, for arbitrarily given t > 0 and η ∈ (0,P(x1, x2, t)), there exists (Sk, Uk) ∈
Sε(x1, x2, t) with Sk = (s0, s1, . . . , sk−1), Uk = {u0, u1, . . . , uk} such that

k−1∏
i=0

∗M(ui, ui+1, si) ≥ P(x1, x2, t)− η.

Take advantage of x1 = u0 and u1 ∈ B(u0, s0, ε(s0)), together with the hypothesis
(ii), we have

HM (Tu0, Tu1, s0) ≥ ψ(M(u0, u1, s0)) > φ(M(u0, u1, s0)).

Put v0 = y1 ∈ Tx1 = Tu0, by the definition of HM it is easy to see that there exists
v1 ∈ Tu1 such that

M(v0, v1, t) ≥M(v0, v1, s0) ≥ φ(M(u0, u1, s0)) > φ(1− ε(s0)) > 1− ε(s0).

Analogously, by means of u2 ∈ B(u1, s1, ε(s1)) and the locally fuzzy (ψ, ε)-contraction
of T , for v1 ∈ Tu1, combining the definition of HM , we can find v2 ∈ Tu2 such that

M(v1, v2, t) ≥M(v1, v2, s1) ≥ φ(M(u1, u2, s1)) > φ(1− ε(s1)) > 1− ε(s1).

Repeating the process, we can obtain an element (Sk, Vk) ∈ Sε(y1, vk, t) with Vk =
{v0, v1, . . . , vk} such that vi ∈ Tui with ui ∈ B(ui−1, si−1, ε(si−1)) for i = 1, 2, . . . , k
and

M(vi, vi+1, t) ≥M(vi, vi+1, si) ≥ φ(M(ui, ui+1, si)) > φ(1− ε(si)) > 1− ε(si)

for each i = 0, 1, . . . , k − 1. Putting y2 = vk, since y2 ∈ Tuk = Tx2, we have

P(y1, y2, t) ≥
k−1∏
i=0

∗M(vi, vi+1, si) ≥
k−1∏
i=0

∗φ(M(ui, ui+1, si))

≥ φ

(
k−1∏
i=0

∗M(ui, ui+1, si)

)
≥ φ(P(x1, x2, t)− η).

In virtue of the continuity of φ and the arbitrariness of η, we have P(y1, y2, t) ≥
φ(P(x1, x2, t)), which implies that T is a fuzzy φ-p-contractive set-valued mapping.
Lemma 2.7 now guarantees the existence of fixed point as desired and this proof is
complete. �

Example 4.3. Let X = (0, 1], a∗b = ab for any a, b ∈ [0, 1] and M(x, y, t) = min{x,y}
max{x,y} .

Define the set-valued mapping T : X → 2X as follows

Tx =

{
{
√
x} , x ∈

(
0, 12
]
,[

1√
2
,
√
x
]
, x ∈

(
1
2 , 1
]
.

Conclusion. T is locally fuzzy (ψ, 1/2)-uniformly contractive and hence has a fixed
point in X.
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Proof. Using similar arguments to ones in [[30],Theorem 16], one can show that
(X,M, ∗) is complete. Obviously, X is a fuzzy (1/2)-chainable and non-Archimedean

fuzzy metric space. Let ψ(t) =
√
t and φ(t) =

4
√
t3 for t ∈ [0, 1]. Then ψ ∈ Ψ and

φ ∈ Ψ∗ψ, i.e., Ψ∗ψ 6= ∅. For any x ∈ X and t > 0, we distinguish two case:

Case 1. x ∈
(
0, 12
]

and y ∈ B
(
x, t, 12

)
. If y ∈

(
0, 12
]

and x ≤ y, then

HM (Tx, Ty, t) = M(Tx, Ty, t) =

√
x
√
y

= ψ(M(x, y, t)).

The proof is similar for x > y. If y ∈
(
1
2 , 1
]
, then x < y and

HM (Tx, Ty, t) = HM

(√
x,

[
1√
2
,
√
y

)
, t

)
≥
√
x
√
y

= ψ(M(x, y, t)).

Therefore, the locally fuzzy (ψ, 1/2)-uniformly contractive condition is satisfied.
Case 2. x ∈

(
1
2 , 1
]

and y ∈ B
(
x, t, 12

)
. If y ∈

(
0, 12
]
, the proof is the same as in

Case 1. If y ∈
(
1
2 , 1
]

and x ≤ y, then

HM (Tx, Ty, t) = HM

([
1√
2
,
√
x

)
,

[
1√
2
,
√
y

)
, t

)
=

√
x
√
y

= ψ(M(x, y, t)).

The proof is similar for y < x. Therefore, the locally fuzzy (ψ, 1/2)-uniformly con-
tractive condition is satisfied.

We now get that T is the locally fuzzy (ψ, 1/2)-uniformly contractive. Conse-
quently, Theorem 4.1 guarantees that T has at least a fixed point in X. �

As direct consequences of Theorem 4.1 or Theorem 4.2, we obtain the following
corollaries which are the fuzzy versions of Nadler’s fixed point theorem [4] for set-
valued mappings and Edelstein’s fixed point theorem [7] on an ε-chainable regular
metric space, respectively.

Corollary 4.4. Let (X,M, ∗) be complete and T : X → CB(X) be a fuzzy ψ-
contractive set-valued mapping with ψ ∈ Ψ. Remain valid for (i) in Theorem 4.1.
Then T has a fixed point in X.

Proof. Theorem 4.1 immediately derive Corollary 4.4. Thereinafter, we will utilize
Theorem 4.2 to prove the desired result. We observe that X is 1-strongly chainable
and T is locally fuzzy (ψ, 1)-uniformly contractive and hence it is locally fuzzy (ψ, 1)-
SU contractive since S1(x, y, t) 6= ∅ for every x, y ∈ X with x 6= y and t > 0, i.e., (ii)
of Theorem 4.2 holds. Using Theorem 4.2, we obtain the desired result. �

Corollary 4.5. Let ε : (0,∞) → (0, 1] be a nondecreasing function, (X,M, ∗) be
complete and the single-valued mapping T from X into itself be locally fuzzy (ψ, ε)-
contractive. If one of the following conditions is satisfied, then T has an unique fixed
point.

(i) T is locally fuzzy (ψ, ε)-strongly contractive. Moreover, for any two fixed
points x, y of T and t > 0 there exists a fw-distance P such that P(x, y, t) > 0.

(ii) (X,M, ∗) is a weakly fuzzy ε-chainable and non-Archimedean fuzzy metric
space.
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Proof. By Theorems 4.1 or 4.2, there exists x0 ∈ X with Tx0 = x0 and there exists
a fw-distance P such that P(x0, x0, t) = 1 for all t > 0.

(i) Let y0 = Ty0 and P = F with F as in Lemma 3.3. Then P(x0, y0, t) >
0 for all t > 0. By a similar way to the proof of Theorem 4.2, we obtain
that P(x0, y0, t) = P(Tx0, T y0, t) ≥ ψ(P(x0, y0, t)). If P(x0, y0, t) < 1 then
P(Tx0, T y0, t) > P(x0, y0, t) > 0. This contradiction implies P(x0, y0, t) = 1. Now
P(x0, x0, t) = 1 and Proposition 2.4-(1) infer x0 = y0.

(ii) Let the fw-distance P be given as in the proof of Theorem 4.1. Then
P(x, y, t) > 0 for all (x, y, t) ∈ X × X × (0,∞). The rest of this proof is analo-
gous to (i). �

5. Conclusion

In this work we have dealt with a more general class of fuzzy contractive set-
valued mappings, i.e. the locally fuzzy contractive class, the idea of which roots in
literatures [7, 9]. We have considered such mapping in a fuzzy metric space and
proved that every set-valued mapping with some locally fuzzy contraction has a fixed
point (the fixed point uniquely exists in the sense of single-valued mappings).

Note that a globally fuzzy ψ-contractive mapping can be regarded as a locally
fuzzy (ψ, 1)-SU contractive since, in this sense, we have S1(x, y, t) 6= ∅ for every
x, y ∈ X with x 6= y and t > 0. Hence, Corollary 4.5(i) is an essential extension and
improvement of several comparable results in [14, 16].

In addition, without considering the fuzzy or crisp metric issue, differ from the
cited literatures, in Theorem 4.2 we assume that the set-valued mapping T is locally
fuzzy (ψ, ε)-strongly contractive without the assumption that X is fuzzy ε-chainable.
Fortunately, from Example 3.2 it is not hard to see the existence of the locally fuzzy
(ψ, ε)-strongly contractive mapping. However, under the hypothesis of the fuzzy ε-
chainability, we obtain no result if ”non-Archimedean fuzzy metric space” is replaced
by ”fuzzy metric space” in Theorem 4.1.
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