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1. Introduction

This paper deals with the existence of solutions for boundary value problems (BVP
for short), of a class of fractional order differential equation. In Section 3 we consider
the boundary value problem with nonlocal conditions

Dry(t) = f(t, y), for a.e. t ∈ J = [0, T ], 1 < r ≤ 2, (1.1)

y(0) = 0, y(T ) = g(y), (1.2)

where Dr is the Riemann-Liouville fractional derivative, (E, | · |) denotes a Banach
space f : J×E → E is a continuous function and g : E → E is a continuous function.

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed, there are numerous applications in viscoelasticity, electrochemistry, control,
porous media, electromagnetism, and so on. There has been a significant development
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in fractional differential equations in recent years; see the monographs of Hilfer [28],
Kilbas et al. [30], Delboscoet al. [16], Milleret al. [34], Heymans et al. [27], Podlubny
[39, 40], Kaufman et al. [29], Momani and Hadid [37], and the papers by Agarwal
et al. [1], Bai et al. [5, 6], Benchohra et al. [9, 10, 11]. In this paper, we present
existence results for the problem (1.1)-(1.2), when we apply the method associated
with the technique of measure of noncompactness and the fixed point theorem of
Mönch type. This technique was mainly initiated in the monograph of Banas and
Goebel [7] and subsequently developed and used in many papers; see, for example,
Banas ans Sadarangani [8], Guo et al [25], Lakshimikanthan and Leela [32],Mönch
[35], and Szufla [41].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this paper. Let C(J,E) be the Banach space of all
continuous functions from J into E with the norm

‖y‖ = sup{|y(t)| : 0 ≤ t ≤ T},
and we let L1(J,E) denote the Banach space of functions y : J −→ E which are
Bochner integrable with norm

‖y‖L1 =

∫ T

0

|y(t)|dt.

Let L∞(J,E) be the Banach space of functions y : J → E which are bounded equipped
with the norm

‖y‖L∞ = inf{c > 0 : ‖y(t)‖ ≤ c : a.e t ∈ J}.
Let AC1(J,E) is the space of functions y : J → E, which are absolutely continuous
whose first derivative, y′, is absolutely continuous.

V (t) = {ϑ(t) : ϑ ∈ V }, t ∈ J,
V (J) = {ϑ(t) : ϑ ∈ V }, t ∈ J.

Definition 2.1. ([31, 39]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Irah(t) =

∫ t

a

(t− s)r−1

Γ(r)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Irh(t) = h(t) ∗ ϕr(t), where

ϕr(t) =
tr−1

Γ(r)
for t > 0, and ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0, where δ is

the delta function.

Definition 2.2. ([31, 39]). For a function h given on the interval [a, b], the r Riemann-
Liouville fractional-order derivative of h, is defined by

(Dr
a+h)(t) =

1

Γ(n− r)

(
d

dt

)n ∫ t

a

(t− s)n−r−1h(s)ds.

Here n = [r] + 1 and [r] denotes the integer part of r.
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For convenience,we first recall the definition of the Kuratowski measure of non-
compactness, and summarize the main properties of this measure.

Definition 2.3. ([4, 7]) Let E be a Banach space and let ΩE be the family of bounded
subsets of E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞)
defined by

α(B) = inf{ε > 0, : B ⊂
m⋃
j=1

and diam(Bj) ≤ ε} ; hereB ∈ ΩE .

Properties.

(1) α(B) = 0⇔ B is compact (M is relatively compact).
(2) α(B) = α(B)
(3) A ⊂ B ⇒ α(A) ≤ α(B)
(4) α(A+B) ≤ α(A) + α(B).
(5) α(cB) = cα(B) ; c ∈ R.
(6) α(conB) = α(B).

Here B and conB denote the closure and the convex hull of the bounded set B,
respectively.

The details of α and its properties can be found in [4, 7].

Definition 2.4. A multivalued map F : J × E → E is said to be Carathéodory if

(1) t→ F (t, u) is measurable for each u ∈ E.
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J.

Let us now recall the Mönch’s fixed point theorem and the important lemma.

Theorem 2.5. ([35], [3]) Let D be a bounded, closed and convex subset of a Banach
space E such that 0 ∈ D, and let N be a continuous mapping of D into itself, if the
implication

V = coN(V ) orV = N(V ) ∪ {0} =⇒ α(V ) = 0. (2.1)

holds for every subset V of D, then N has a fixed point.

Lemma 2.6. ([41]) Let D be a bounded, closed and convex subset of a Banach space
C(J,E), G a continuous function on J × J, and a function f : J × E → E satisfies
the Carathéodory conditions, and there exists p ∈ L1(J,R+) such that for each t ∈ J
and each bounded set B ⊂ E one has

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B); where Jt,k = [t− k, t] ∩ J. (2.2)

If V is an equicontinuous subset of D, then

α({
∫
J

G(s, t)f(s, y(s))ds : y ∈ V }) ≤
∫
J

‖G(t, s)‖p(s)α(V (s))ds. (2.3)
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3. Main Results

Let us start by defining what we mean by a solution of the problem (1.1)–(1.2).

Definition 3.1. A function y ∈ C([0, T ], E) is said to be a solution of (1.1)–(1.2) if
y satisfies the equation Dry(t) = f(t, y(t)) on J , and the condition y(0) = 0, y(T ) =
g(y).

For the existence of solutions for the problem (1.1)–(1.2), we need the following
auxiliary lemma.

Lemma 3.2. [6] Let r > 0, and h ∈ C(0, T ) ∩ L(0, T ) then

IαDαh(t) = h(t) + c1t
r−1 + c2t

r−2 + . . .+ cnt
r−n

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the smallest integer greater than or
equal to r.

Lemma 3.3. Let 1 < r < 2 and let h : [0, T ] → R be continuous. A function
y ∈ C([0, T ], E) is a solution of the fractional integral equation

y(t) =
1

Γ(r)

∫ t

0

(t− s)r−1h(s)ds

+
tr−1

T r−1Γ(r)

∫ T

0

(T − s)r−1h(s)ds− tr−1

T r−1
g(y)

(3.1)

if and only if y is a solution of the fractional BVP

Dry(t) = h(t), t ∈ [0, T ], (3.2)

y(0) = 0, y(T ) = g(y). (3.3)

Proof. Assume y satisfies (3.2), then Lemma 3.2 implies that

y(t) = c1t
r−1 + c2t

r−2 +
1

Γ(r)

∫ t

0

(t− s)r−1h(s)ds.

From (3.3), a simple calculation gives

c2 = 0,

and

c1 =
1

T r−1Γ(r)

∫ T

0

(T − s)r−1h(s)ds+
1

T r−1
g(y).

Hence we get equation (3.1). Inversely, it is clear that if y satisfies the integral
equation (3.1), then equations (3.2)-(3.3) hold.

Theorem 3.4. Assume the following hypotheses hold:

(H1) The function f : J × E −→ E satisfy the Carathéodory conditions.
(H2) There exists p ∈ L∞(J,R+), such that

‖f(t, y)‖ ≤ p(t)‖y‖ for a.e. t ∈ J and each y ∈ E.
(H3) There exists constant k∗ > 0 such that

‖g(y)‖| ≤ k∗‖y‖ for each y ∈ E.
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(H4) For almost each t ∈ J and each bounded set B ⊂ E we have

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B).

(H5) For almost each bounded set B ⊂ E we have

α(g(B)) ≤ k∗α(B).

Then the BVP (1.1)–(1.2) has at least one solution on C(J,B), provided that

T r + T 2r

Γ(r)
‖p‖L∞ +

k∗T r

Γ(r)
< 1, (3.4)

Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Consider the
operator

(Ny)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s, y(s))ds

+
tr−1

T r−1Γ(r)

∫ T

0

(T − s)r−1f(s, y(s))ds− tr−1

T r−1
g(y)

Remark 3.5. Clearly, from Lemma 3.3, the fixed points of N are solutions to (1.1)–
(1.2).

Let R > 0 and consider the set

DR = {y ∈ C(J,E) : ‖y‖‖∞ ≤ R}.

We shall show that N satisfies the assumptions of the Mönch’s fixed point theorem.
The proof will be given in several steps.
Step 1. N is continuous.

Let |yn| be a sequence such that yn → y in C(J,E). Then, for each t ∈ J,

|(Nyn)(t)− (Ny)(t)| ≤ 1

Γ(r)

∫ t

0

(t− s)r−1‖f(s, yn(s)− f(s, y(s))‖ds

+
tr−1

T r−1Γ(r)

∫ T

0

(T − s)r−1‖f(s, yn(s)− f(s, y(s))‖ds.

Let ρ > 0 be such that

‖yn‖∞ ≤ ρ, ‖y‖∞ ≤ ρ.

By (H2)-(H3) we have

‖f(s, yn(s)− f(s, y(s))‖ ≤ 2ρp(s) := σ(s); σ ∈ L1(J,R+).

Since f, is Carathéodory functions, the Lebesgue dominated convergence theorem
implies that

‖N(yn)−N(y)‖∞ → 0 as n→∞.

Step 2. N maps DR into itself.
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For each y ∈ DR, by (H2) and (3.4) we have for each t ∈ J

‖N(y)(t)‖ ≤ 1

Γ(r)

∫ t

0

(t− s)r−1‖f(s, y(s))‖ds

+
tr−1

T r−1Γ(r)

∫ T

0

(T − s)r−1‖f(s, y(s))‖ds+
tr−1

T r−1
‖g(y)‖

≤ T r + T 2r

Γ(r)
‖p‖L∞ +

k∗T r

Γ(r)

≤ R.

Step 3. N(DR) is bounded and equicontinuous.
By Step 2, it is obvious that N(DR) ⊂ C(J,E) is bounded.

For the equicontinuity of N(DR). Let t1, t2 ∈ J, t1 < t2, and y ∈ DR. we have

|(Ny)(t2)− (Ny)(t1)| =
∥∥∥ 1

Γ(r)

∫ t1

0

[(t2 − s)r−1 − (t1 − s)r−1]f(s, y(s))ds

+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1f(s, y(s))ds

+
(t1 − t2)r−1

T r−1Γ(r)

∫ T

0

(T − s)r−1|f(s, y(s))|ds

+
(t1 − t2)r−1

T r−1
g(y)

∥∥∥
≤ p(t)

Γ(r)

∫ t1

0

[(t1 − s)r−1 − (t2 − s)r−1]ds

+
p(t)

Γ(r)

∫ t2

t1

(t2 − s)r−1ds

+
p(t)(t2 − t1)r−1

T r−1Γ(r)

∫ T

0

(T − s)r−1ds+
k∗(t1 − t2)r−1

T r−1

≤ p(t)

Γ(r + 1)
[(t2 − t1)r + tr1 − tr2] +

p(t)

Γ(r + 1)
(t2 − t1)r

+
p(t)(t2 − t1)r−1

T r−1Γ(r)
+
k∗(t1 − t2)r−1

T r−1

≤ p(t)

Γ(r + 1)
(t2 − t1)r +

p(t)

Γ(r + 1)
(tr1 − tr2)

+
p(t)(t2 − t1)r−1

T r−1Γ(r)
+
k∗(t1 − t2)r−1

T r−1
(3.5)

As t1 −→ t2, the right-hand side of the above inequality tends to zero.
Now let V be a subset of DR such that V ⊂ co(N(V ) ∪ {0}).
v is bounded and equicontinuous, and therefore the function ϑ → ϑ = α(V (t)) is
continuous on J. By (H3),Lemma2.6, and the properties of the measure α we have
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for each t ∈ J

ϑ(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤
∫ t

0

T r + T 2r

Γ(r)
p(s)α(V (s))ds+

k∗T r

Γ(r)
α(V (t))

≤ ‖ϑ‖L∞

[
T r + T 2r

Γ(r)
‖p‖L∞ +

k∗T r

Γ(r)

]
.

This means that

‖ϑ‖L∞

(
1− T r + T 2r

Γ(r)
‖p‖L∞ +

k∗T r

Γ(r)

)
≤ 0.

By ( 3.4) it follows that ‖ϑ‖∞ = 0, that is, ϑ = 0 for each t ∈ J, and then V (t) is
relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact
in DR. Applying now Theorem 3.4 we conclude that N has a fixed point which is a
solution of the problem (1.1)–(1.2).

4. An example

As an application of the main results, we consider the fractional differential equation

Dry(t) =
2

19 + et
|y(t)|, for a.e. t ∈ J = [0, 1], 1 < r ≤ 2, (4.1)

y(0) = 0, y(1) =

n∑
i=1

ciy(ti), (4.2)

where 0 < t1 < t2 < ... < tn < 1, ci, i = 1, ..., n are given positive constants with

n∑
i=1

ci <
4

5
.

Set

f(t, x) =
2

19 + et
x, (t, x) ∈ J × [0,∞),

Clearly, conditions (H1), (H2) hold with

p(t) =
2

19 + et
, k∗(t) =

4

5
.

Condition (3.4)is satisfied with T = 1. Indeed

T r + T 2r

Γ(r)
‖p‖L∞ +

k∗T r

Γ(r)
≤ 9

10Γ(r)
< 1,

which is satisfied for each r ∈ (1, 2]. Then by Theorem 3.4 the problem (4.1)-(4.2) has
a solution on [0, 1].
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