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1. Introduction

In this paper, we study the existence of multiple positive solutions for even order
m-point boundary value problem (BVP) on time scales:

(−1)ny∆2n

(t) = f(t, y(t)), t ∈ [t1, t2] ⊂ T, n ∈ N

αy∆2i

(t1)− βy∆2i+1

(t1) =
m−2∑
p=1

apy
∆2i+1

(ξp),

γy∆2i

(t2) + δy∆2i+1

(t2) =
m−2∑
p=1

bpy
∆2i+1

(ξp),

(1.1)

for 0 ≤ i ≤ n − 1, where m ≥ 3, α > 1, β, γ, δ > 0, t1 < ξ1 < . . . < ξm−2 < t2
and ap, bp ≥ 0 are given constants. We assume that f : [t1, t2] × [0,∞) → [0,∞) is
continuous.

Throughout this paper we suppose T is any time scale (nonempty closed subset
of R) and [t1, t2] is a subset of T such that [t1, t2] = {t ∈ T : t1 ≤ t ≤ t2}. The
study of dynamic equations on time scales goes back to its founder Hilger [5] and is
a rapidly expanding area of research. It has been created in order to unify continu-
ous and discrete analysis and it allows a simultaneous treatment of differential and
difference equations, extending those theories to so-called dynamic equations. Some
basic definitions and theorems on time scales can be found in the books [1, 2], which
are excellent references for calculus of time scales.
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The multi-point boundary value problems have applications in a variety of different
areas of applied mathematics and physics. For example, the vibrations of a guy wire
of a uniform cross-section and composed of N parts of different densities can be set up
as a multi-point boundary value problem as in [14]; also, many problems in the theory
of elastic stability can be handled by multi-point problems as in [15]. In 1987, Il’in
and Moiseev [6] studied the existence of solutions for a linear multi-point boundary
value problem. Since then, by applying the cone theory techniques, more general
nonlinear multi-point boundary value problems have been studied by several authors.
We refer the reader to [3, 8, 9, 16] and their references. Higher order multi-point
boundary value problems have attracted the attention of many researchers in recent
years (see [7, 10, 11, 13, 17, 18, 19] and the references therein).

Yaslan [20] studied the following higher order m-point BVP on time scales:
(−1)ny∆2n

(t) = f(t, y(t)), t ∈ [t1, tm] ⊂ T, n ∈ N

y∆2i+1

(tm) = 0, αy∆2i

(t1)− βy∆2i+1

(t1) =
m−1∑
k=2

y∆2i+1

(tk).
(1.2)

Conditions for the existence of at least one, two and three positive solutions were
obtained by using four functional fixed point theorem, Avery-Henderson fixed point
theorem and five functional fixed point theorem, respectively.

In this paper, motivated by the above results, first, we provide some preliminary
lemmas which are key tools for our main results. Second, we obtained the existence
of at least one positive solution for the BVP (1.1) by using the Krasnosel’skii fixed
point theorem. Finally, we use the Leggett-Williams fixed-point theorem to show the
existence of at least three positive solutions to the BVP (1.1).

To the best of our knowledge, the existence results for positive solutions of the BVP
(1.1) have not been studied previously. The results are even new for the difference
equations and differential equations as well as for dynamic equations on general time
scales.

We assume that the following conditions are satisfied:

(H1) β
α > t2.

(H2) If m ≥ 3, then γ
m−2∑
k=1

ak ≥ α
m−2∑
k=1

bk and if m > 3, then

αδ > γ
j−1∑
k=1

ak ≥ α
j−1∑
k=1

bk > βγ where 2 ≤ j ≤ m− 2.

(H3) αδ > α
m−2∑
p=1

bp + γ
m−2∑
p=1

ap.

2. Preliminaries

To state the main results of this paper, we will need the following lemmas.
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Lemma 2.1. If K := αγ(t2 − t1) + αδ − α
m−2∑
p=1

bp + γβ + γ
m−2∑
p=1

ap, then Green’s

function for the boundary value problem



−y∆2

(t) = 0, t ∈ [t1, t2],

αy(t1)− βy∆(t1) =
m−2∑
p=1

apy
∆(ξp),

γy(t2) + δy∆(t2) =
m−2∑
p=1

bpy
∆(ξp)

is given by

G(t, s) =
1

K



(α(s− t1) + β)(γ(t2 − t) + δ −
m−2∑
p=1

bp), t1 ≤ s ≤ ξ1, t ≥ s;

(α(t− t1) + β)(γ(t2 − s) + δ −
m−2∑
p=1

bp) + γ
m−2∑
p=1

ap(t− s),

t1 ≤ s ≤ ξ1, t ≤ s;

(α(s− t1) + β +
j−1∑
k=1

ak)(γ(t2 − t) + δ −
m−2∑
p=j

bp)

+
j−1∑
k=1

bk(α(t− s) +
m−2∑
p=j

ap), ξj−1 ≤ s ≤ ξj , t ≥ s, 2 ≤ j ≤ m− 2;

(α(t− t1) + β +
j−1∑
k=1

ak)(γ(t2 − s) + δ −
m−2∑
p=j

bp)

+
m−2∑
p=j

ap(γ(t− s) +
j−1∑
k=1

bk), ξj−1 ≤ s ≤ ξj , t ≤ s, 2 ≤ j ≤ m− 2;

(α(s− t1) + β +
m−2∑
k=1

ak)(γ(t2 − t) + δ) + α
m−2∑
k=1

bk(t− s),

ξm−2 ≤ s ≤ t2, t ≥ s;

(α(t− t1) + β +
m−2∑
k=1

ak)(γ(t2 − s) + δ), ξm−2 ≤ s ≤ t2, t ≤ s.

(2.1)

Proof. A direct calculation gives that if h ∈ C[t1, t2], then the following boundary
value problem



−y∆2

(t) = h(t), t ∈ [t1, t2],

αy(t1)− βy∆(t1) =
m−2∑
p=1

apy
∆(ξp),

γy(t2) + δy∆(t2) =
m−2∑
p=1

bpy
∆(ξp)
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has the unique solution

y(t) = −
t∫

t1

(t− s)h(s)∆ +
t

K

{
α

t2∫
t1

(γ(t2 − s) + δ)h(s)∆s

+

m−2∑
p=1

(γap − αbp)
ξp∫
t1

h(s)∆s

}

+
1

K

{(
β +

m−2∑
p=1

ap − αt1

) t2∫
t1

(γ(t2 − s) + δ)h(s)∆s

+

(
αt1 − (β +

m−2∑
p=1

ap)

)
m−2∑
p=1

bp

ξp∫
t1

h(s)∆s

+


γ(β +

m−2∑
p=1

ap)

α
− K

α
− γt1


m−2∑
p=1

ap

ξp∫
t1

h(s)∆s

}
.

Hence, we obtain (2.1). �

Lemma 2.2. The Green’s function G(t, s) in (2.1) satisfies

0 < G(t, s) ≤ G(s, s)

for (t, s) ∈ [t1, t2]× [t1, t2].

Proof. From (H1), (H2), (H3) and (2.1), G(t, s) > 0.
Now we will show that G(t, s) ≤ G(s, s).

(i) Let s ∈ [t1, ξ1] and t ≥ s. Since G(t, s) is decreasing in t, we have
G(t, s) ≤ G(s, s).

(ii) Let s ∈ [t1, ξ1] and t ≤ s. Since G(t, s) is increasing in t, we get
G(t, s) ≤ G(s, s).

(iii) Take s ∈ (ξj−1, ξj ], 2 ≤ j ≤ m− 2 and t ≥ s. From (H2), G(t, s) is decreasing
in t. So, we obtain G(t, s) ≤ G(s, s).

(iv) Take s ∈ (ξj−1, ξj ], 2 ≤ j ≤ m− 2 and t ≤ s. Since G(t, s) is increasing in t,
we have G(t, s) ≤ G(s, s).

(v) Let s ∈ (ξm−2, t2] and t ≥ s. From (H2), G(t, s) is decreasing in t. So, we
get G(t, s) ≤ G(s, s).

(vi) Let s ∈ (ξm−2, t2] and t ≤ s. Since G(t, s) is increasing in t, we obtain
G(t, s) ≤ G(s, s). �

Lemma 2.3. Green’s function G(t, s) in (2.1) satisfies

min
t∈[t1,t2]

G(t, s) ≥ z‖G(·, s)‖,
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with
z = min{z1, z2, z3, z4, z5, z6} (2.2)

where

z1 =

δ −
m−2∑
p=1

bp

γ(t2 − t1) + δ −
m−2∑
p=1

bp

, z2 =

(αδ − α
m−2∑
p=1

bp − γ
m−2∑
p=1

ap)(t2 − t1)

γ(t2 − t1) + δ −
m−2∑
p=1

bp)(α(t2 − t1) + β

z3 =

δ −
m−2∑
p=2

bp

γ(t2 − t1) + δ −
m−2∑
p=2

bp

, z4 =
β
α − t2

α(t2 − t1) + β +
m−3∑
k=1

ak

, z5 =
δ

γ(t2 − t1) + δ

z6 =
β
α − t2

α(t2 − t1) + β +
m−2∑
k=1

ak

and ‖ · ‖ is defined by ‖x‖ = max
t∈[t1,t2]

|x(t)|.

Proof.

(i) Take s ∈ [t1, ξ1] and t ≥ s. Since G(t, s) is decreasing in t and 0 < z1 < 1, we
have min

t∈[t1,t2]
G(t, s) = G(t2, s) and min

t∈[t1,t2]
G(t, s) ≥ z1G(s, s) = z1‖G(·, s)‖.

(ii) Take s ∈ [t1, ξ1] and t ≤ s. Since G(t, s) is increasing in t and 0 < z2 < 1, we
get min

t∈[t1,t2]
G(t, s) = G(t1, s) and min

t∈[t1,t2]
G(t, s) ≥ z2G(s, s) = z2‖G(·, s)‖.

(iii) Let s ∈ (ξj−1, ξj ], 2 ≤ j ≤ m− 2 and t ≥ s. From (H2), G(t, s) is decreasing
in t and it is clear that 0 < z3 < 1. So, we find min

t∈[t1,t2]
G(t, s) = G(t2, s) and

min
t∈[t1,t2]

G(t, s) ≥ z3G(s, s) = z3‖G(·, s)‖.

(iv) Let s ∈ (ξj−1, ξj ], 2 ≤ j ≤ m − 2 and t ≤ s. Since G(t, s) is increasing in
t and 0 < z4 < 1, we obtain min

t∈[t1,t2]
G(t, s) = G(t1, s) and min

t∈[t1,t2]
G(t, s) ≥

z4G(s, s) = z4‖G(·, s)‖.
(v) Take s ∈ (ξm−2, t2] and t ≥ s. From (H2), G(t, s) is decreasing in t. It is clear

that 0 < z5 < 1. So, we have min
t∈[t1,t2]

G(t, s) = G(t2, s) and min
t∈[t1,t2]

G(t, s) ≥

z5G(s, s) = z5‖G(·, s)‖.
(vi) Take s ∈ (ξm−2, t2] and t ≤ s. Since G(t, s) is increasing in t and 0 < z6 < 1,

we get min
t∈[t1,t2]

G(t, s) = G(t1, s) and min
t∈[t1,t2]

G(t, s) ≥ z6G(s, s) = z6‖G(·, s)‖.

Thus, min
t∈[t1,t2]

G(t, s) ≥ z‖G(·, s)‖ where z = min{z1, z2, z3, z4, z5, z6}. �

If we let G1(t, s) := G(t, s) for G as in (2.1), then we can recursively define

Gj(t, s) =

t2∫
t1

Gj−1(t, r)G(r, s)∆r
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for 2 ≤ j ≤ n and Gn(t, s) is Green’s function for the homogeneous problem

(−1)ny∆2n

(t) = 0, t ∈ [t1, t2],

αy∆2i

(t1)− βy∆2i+1

(t1) =
m−2∑
p=1

apy
∆2i+1

(ξp),

γy∆2i

(t2) + δy∆2i+1

(t2) =
m−2∑
p=1

bpy
∆2i+1

(ξp),

where m ≥ 3 and 0 ≤ i ≤ n− 1.

Lemma 2.4. The Green’s function Gn(t, s) satisfies the following inequalities

0 ≤ Gn(t, s) ≤ Ln−1‖G(·, s)‖, (t, s) ∈ [t1, t2]× [t1, t2]

and

Gn(t, s) ≥ znLn−1‖G(·, s)‖, (t, s) ∈ [t1, t2]× [t1, t2]

where z is given in (2.2) and

L =

t2∫
t1

‖G(·, s)‖∆s > 0. (2.3)

Proof. Use induction on n and Lemma 2.3. �
Let E denote the Banach space C[t1, t2] with the norm ‖y‖ = max

t∈[t1,t2]
|y(t)|. Define

the cone P ⊂ E by

P = {y ∈ E : y(t) ≥ 0, min
t∈[t1,t2]

y(t) ≥ zn‖y‖} (2.4)

where z and L are given in (2.2) and (2.3), respectively.
(1.1) is equivalent to the nonlinear integral equation

y(t) =

t2∫
t1

Gn(t, s)f(s, y(s))∆s. (2.5)

We can define the operator A : P → E by

Ay(t) =

t2∫
t1

Gn(t, s)f(s, y(s))∆s, (2.6)

where y ∈ P. Therefore solving (2.5) in P is equivalent to finding fixed points of the
operator A.

Lemma 2.5. If the conditions (H1), (H2), (H3) hold, then A : P → P is completely
continuous.
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Proof. If y ∈ P , then Ay(t) ≥ 0 on [t1, t2] and by using Lemma 2.4,

min
t∈[t1,t2]

Ay(t) = min
t∈[t1,t2]

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≥ zn
t2∫
t1

max
t∈[t1,t2]

Gn(t, s)f(s, y(s))∆s

= zn‖Ay‖.
Thus Ay ∈ P and therefore AP ⊂ P .

Recall that an operator (nonlinear, in general) acting in a Banach space is called
completely continuous if it is continuous and transforms every bounded set into rel-
atively compact set. From Lemma 2.4 and the continuity of f , it is clear that A is
continuous. Now, we take arbitrary bounded set Y ⊂ P and show that its image
A(Y ) is relatively compact in P . Since the continuity of f , there exists a constant
c > 0 such that

f(s, y(s)) < c (2.7)

for all s ∈ [t1, t2] and y ∈ Y . By using Lemma 2.4 and (2.7), A(Y ) is equibounded.
Also, A(Y ) is equicontinuous from (2.7) and the continuity of Gn(t, s). Applying the
Arzela-Ascoli theorem, we obtain A(Y ) is relatively compact. Hence, A : P → P is
completely continuous. �

In order to follow the main results of this paper easily, now we state the fixed point
theorems which we applied to prove main theorems.

Theorem 2.6. ([4]) (Krasnosel’skii Fixed Point Theorem) Let E be a Banach space,
and let K ⊂ E be a cone. Assume Ω1 and Ω2 are open bounded subsets of E with
0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that either
(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2;

or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 2.7. ([12]) (Leggett-Williams Fixed Point Theorem) Let P be a cone in a
real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r}
P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative
continuous concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exists
0 < p < q < l ≤ r such that the following condition hold,

(i) {u ∈ P (ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P (ψ, q, l);
(ii) ‖Au‖ < p for ‖u‖ ≤ p;
(iii) ψ(Au) > q for u ∈ P (ψ, q, r) with ‖Au‖ > l,
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then A has at least three fixed points u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

3. Main results

Now, we will give the sufficient conditions to have at least one positive solution for
the BVP (1.1). Krasnosel’skii Fixed Point Theorem will be used to prove the next
theorem.

Theorem 3.1. Suppose (H1), (H2) and (H3) hold. In addition let there exist numbers
0 < r < R <∞ such that the function f satisfies the following conditions:

(i) f(t, y) ≤ 1
Ln y(t) for (t, y) ∈ [t1, t2]× [0, r],

(ii) f(t, y) ≥ 1
z2nLn y(t) for (t, y) ∈ [t1, t2]× [R,∞).

Then the BVP (1.1) has at least one positive solution.

Proof. Define the open bounded subsets of E by Ω1 = {y ∈ P : ‖y‖ < r} and

Ω2 =

{
y ∈ P : ‖y‖ < R

zn

}
. From Lemma 2.5, A : P ∩ (Ω2 \ Ω1) → P is completely

continuous operator.
We now verify one of the conditions of Theorem 2.6.
If y ∈ P ∩ ∂Ω1, then ‖y‖ = r. Therefore, by using the hypothesis (i) and Lemma

2.4, we have

Ay(t) =

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≤ 1

Ln

t2∫
t1

Gn(t, s)y(s)∆s

≤ 1

L
‖y‖

t2∫
t1

‖G(·, s)‖∆s

= ‖y‖.

Thus, we obtain ‖Ay‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1.
On the other hand, y ∈ P ∩ ∂Ω2 implies

y(t) ≥ zn‖y‖ = R
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for t ∈ [t1, t2] and we get

Ay(t) =

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≥ 1

z2nLn

t2∫
t1

Gn(t, s)y(s)∆s

≥ 1

znLn
‖y‖

t2∫
t1

Gn(t, s)∆s

≥ ‖y‖,
from (ii) and Lemma 2.4. Hence, ‖Ay‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2.

By the first part of Theorem 2.6, A has a fixed point in P ∩ (Ω2 \ Ω1), such that
r ≤ ‖y‖ ≤ R

zn . Therefore BVP (1.1) has at least one positive solution. �
Now we will use the Leggett-Williams fixed point theorem to prove the next theo-

rem.

Theorem 3.2. Assume that (H1), (H2) and (H3) hold. Suppose that there exist num-
bers 0 < p < q < q

zn ≤ r such that the function f satisfies the following conditions:

(i) f(t, y) ≤ r
Ln for (t, y) ∈ [t1, t2]× [0, r],

(ii) f(t, y) < p
Ln for (t, y) ∈ [t1, t2]× [0, p],

(iii) f(t, y) > q
znLn for (t, y) ∈ [t1, t2]× [q, qzn ],

where z and L are as in (2.2) and (2.3), respectively. Then the BVP (1.1) has at
least three positive solutions y1, y2 and y3 satisfying

max
t∈[t1,t2]

y1(t) < p, min
t∈[t1,t2]

y2(t) > q,

max
t∈[t1,t2]

y3(t) > p with min
t∈[t1,t2]

y3(t) < q.

Proof. Define the nonnegative, continuous, concave functional ψ : P → [0,∞) to be
ψ(y) = min

t∈[t1,t2]
y(t) and the cone P as in (2.4). For all y ∈ P , we have ψ(y) ≤ ‖y‖. If

y ∈ Pr, then 0 ≤ y(t) ≤ r for all t ∈ [t1, t2]. We get,

‖Ay‖ = max
t∈[t1,t2]

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≤ Ln−1

t2∫
t1

‖G(·, s)‖f(s, y(s))∆s

≤ r

by hypothesis (i) and Lemma 2.4. This proves that A : Pr → Pr. From Lemma 2.5,
A : Pr → Pr is completely continuous.
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Since z < 1, y(t) = q
zn ∈ P (ψ, q, qzn ) and ψ( q

zn ) > q. Then

{y ∈ P (ψ, q,
q

zn
) : ψ(y) > q} 6= ∅.

On the other hand, for all y ∈ P (ψ, q, qzn ) and t ∈ [t1, t2], we have q ≤ y(t) ≤ q
zn .

Using assumption (iii) and Lemma 2.4, we find

ψ(Ay) = min
t∈[t1,t2]

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≥ znLn−1

t2∫
t1

‖G(·, s)‖f(s, y(s))∆s

> q.

Thus condition (i) of Theorem 2.7 holds.
For ‖y‖ ≤ p, we have 0 ≤ y(t) ≤ p for t ∈ [t1, t2]. Then from assumption (ii) and

Lemma 2.4, we obtain

‖Ay‖ = max
t∈[t1,t2]

t2∫
t1

Gn(t, s)f(s, y(s))∆s

≤ Ln−1

t2∫
t1

‖G(·, s)‖f(s, y(s))∆s

< p.

Consequently, condition (ii) of Theorem 2.7 is satisfied.
Finally we will check that condition (iii) of Theorem 2.7. We suppose that y ∈

P (ψ, q, r) with ‖Ay‖ > q
zn . Then using Lemma 2.4 we obtain

ψ(Ay) = min
t∈[t1,t2]

Ay(t) ≥ zn‖Ay‖ > q.

Since all conditions of the Leggett-Williams fixed point theorem are satisfied. The
BVP (1.1) has at least three positive solutions y1, y2 and y3 such that

max
t∈[t1,t2]

y1(t) < p, min
t∈[t1,t2]

y2(t) > q,

max
t∈[t1,t2]

y3(t) > p with min
t∈[t1,t2]

y3(t) < q.

�

Example 3.3. Let T = {( 2
3 )n : n ∈ N0} ∪ {0} ∪ [2, 3]. Taking n = 1, m = 3, t1 = 2

3 ,
ξ1 = 1, t2 = 3, α = γ = δ = 3, β = 12, a1 = b1 = 1, we consider the following
boundary value problem:

−y∆2

(t) = f(t, y), t ∈ [ 2
3 , 3] ⊂ T,

3y( 2
3 )− 12y∆( 2

3 ) = y∆(1),

3y(3) + 3y∆(3) = 3y∆(1).

(3.1)
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Then we get L = 291
2 = 145.5, z = 0.041.

If we take f(t, y) = 1000y3

y2+1 , r = 10−6 and R = 1, then 0 < r < R <∞ and all the

conditions in Theorem 3.1 are satisfied. Thus, by Theorem 3.1, the BVP (3.1) has at
least one positive solution y such that 10−6 ≤ max

t∈[2/3,3]
y(t) ≤ 1/(0.041).

If we take f(t, y) = 1000y2

y2+1 , p = 7.10−7, q = 3.10−4 and r = 146000, then 0 < p <

q < q
z < r and all the conditions in Theorem 3.2 are fulfilled. Hence, by Theorem 3.2,

the BVP (3.1) has at least three positive solutions y1, y2 and y3 satisfying

max
t∈[ 23 ,3]

y1(t) < p, min
t∈[ 23 ,3]

y2(t) > q

max
t∈[ 23 ,3]

y3(t) > p with min
t∈[ 23 ,3]

y3(t) < q.
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