
Fixed Point Theory, 18(2017), No. 2, 569-578

DOI 10.24193/fpt-ro.2017.2.45

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON ORTHOGONAL SETS AND

BANACH FIXED POINT THEOREM

MADJID ESHAGHI GORDJI∗, MARYAM RAMEANI∗, MANUEL DE LA SEN∗∗

AND YEOL JE CHO∗∗∗

∗Department of Mathematics, Semnan University

P.O. Box 35195-363, Semnan, Iran
E-mail: meshaghi@semnan.ac.ir; madjid.eshaghi@gmail.com; mar.ram.math@gmail.com

∗∗Institute of Research and Development of Processes University of Basque Country

Campus of Leioa (Bizkaia)-Aptdo, 644-Bilbao, 48080-Bilbao, Spain
E-mail: manuel.delasen@ehu.es

∗∗∗Department of Mathematics Education and the RINS
Gyeongsang National University, Jinju 660-701, Korea

and

Center for General Education, China Medical University Taichung 40402, Taiwan
E-mail: yjcho@gnu.ac.kr

Abstract. We introduce the notion of the orthogonal sets and give a real generalization of Banach’
fixed point theorem. As an application, we find the existence of solution for a first-order ordinary

differential equation.

Key Words and Phrases: Orthogonal set, fixed point, differential equation, Picard operator.
2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction and preliminaries

The purpose of this paper is to introduce the notion of orthogonality of sets which
contains the notion of orthogonality in normed spaces (see [1] and [2]). By using this
concept, we discuss an analogue of [3] in orthogonal sets. The main result of [3] is the
following theorem:

Theorem 1.1. Let X be a partially ordered set such that every pair x, y ∈ X has
a lower bound and an upper bound. Furthermore, let d be a metric on X such that
(X, d) is a complete metric space. If F is a continuous, monotone mapping from X
into X such that
• there exists k ∈ (0, 1) with d(F (x), F (y)) ≤ kd(x, y),∀x ≥ y,
• there exists x0 ≤ F (x0) or x0 ≥ F (x0).

Then F is a Picard operator (briefly, PO), that is, F has a unique fixed point x∗ and
limn→∞ Fn(x) = x∗ for each x ∈ X.

∗∗∗ Corresponding author.
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In this paper, we introduce the notion of the orthogonal sets and then we give an
extension of Banach’ fixed point theorem. We give an example which says that our
main theorem is a real generalization of Banach’s fixed point theorem. Finally, we
study the existence and uniqueness of solution for a first-order ordinary differential
equation. Banach’ fixed point theorem and other fixed point theorems do not work
to prove this problem. There is also a set of examples in the paper which describe
the usefulness of orthogonality binary relations and orthogonal sets to describe.

2. Orthogonal sets

We start our work with the following definition, which can be consider the main
definition of our paper.

Definition 2.1. Let X 6= ∅ and ⊥ ⊆ X ×X be an binary relation. If ⊥ satisfies the
following condition:

∃x0 : (∀y, y⊥x0) or (∀y, x0⊥y),

then it is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

As an illustration, let us consider the following examples:

Example 2.2. Let X be the set of all peoples in the word. We define x⊥y if x can
give blood to y. According to the following table, if x0 is a person such that his (her)
blood type is O−, then we have x0⊥y for all y ∈ X. This means that (X,⊥) is an
O-set. In this O-set, x0 (in definition) is not unique.

Note that, in the above example, x0 may be a person with blood type AB+. In
this case, we have y⊥x0 for all y ∈ X.

Type You can give blood to You can receive blood from
A+ A+ AB+ A+ A– O+ O–
O+ O+ A+ B+ AB+ O+ O–
B+ B+ AB+ B+ B– O+ O–

AB+ AB+ Everyone
A– A+ A– AB+ AB– A– O–
O– Everyone O–
B– B+ B– AB+ AB– B– O–

AB– AB+ AB– AB– B– O– A–

Example 2.3. In graph theory, a wheel graph Wn is a graph with n vertices for each
n ≥ 4, formed by connecting a single vertex to all vertices of an (n− 1)-cycle. Let X
be the set of all vertices of Wn for each n ≥ 4. Define a⊥b if there is a connection
from a to b. Then (X,⊥) is an O-set.

Example 2.4. Let X = Z. Define m⊥n if there exists k ∈ Z such that m = kn. It
is easy to see that 0⊥n for all n ∈ Z. Hence (X,⊥) is an O-set.
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Example 2.5. Let us make a famous fractal called the Sierpinski Triangle.
Sierpinski’s triangle starts as a shaded triangle of equal lengths in page R × R with
vertices (−1, 0), (1, 0) and (0,

√
3). We split the triangle into four equal triangles by

connecting the centers of each side together and remove this central triangle. We then
repeat this process on the 3 newly created smaller triangles. This process is repeated
several times on each newly created smaller triangle to arrive at the displayed picture.
A Sierpinski’s triangle is created by infinitely repeating this construction process. Let
X be the set of all (infinite) removed triangles in above process. For all a, b ∈ X, we
define a⊥b if

inf{y : (x, y) ∈ a for some x ∈ R} ≤ inf{y : (x, y) ∈ b for some x ∈ R}.
Then (X,⊥) is an O-set.

Example 2.6. Let X = [2,∞) and define x⊥y if x ≤ y. Then, by putting x0 = 2,
(X,⊥) is an O-set.

Example 2.7. Let X = [0,∞) and define x⊥y if xy ∈ {x, y}. Then, by setting
x0 = 0 or x0 = 1, (X,⊥) is an O-set.

Example 2.8. Let (X, d) be a metric space and T : X → X be a Picard operator,
that is, there exists x∗ ∈ X such that limn→∞ Tn(y) = x∗ for all y ∈ X. We define
x⊥y if

lim
n→∞

d(x, Tn(y)) = 0.

Then (X,⊥) is an O-set.

By the following example, again we can see that x0 is not necessary unique:

Example 2.9. Suppose M(n) is the set of all n × n matrices and Q is a positive
definite matrix. Define the relation ⊥ on M(n) by

A⊥B ⇐⇒ ∃X ∈M(n) : AX = B.

It is easy to see that I⊥B, B⊥0 and Q
1
2⊥B for all B ∈M(n).

In the last example, the orthogonal relation is reflexive and transitive, but it is not
antisymmetry. Now, we would like to give an orthogonal relation which is a symmetry.

Example 2.10. For C ∈M(n), consider the orthogonal relation ⊥C onM(n) which
respect to C given by

A⊥CB ⇐⇒ tr(ABC) = tr(CBA).

Note that C⊥CB for all B ∈M(n).

Finally, we have the following example for O-sets.

Example 2.11. Let X be a inner product space with the inner product 〈·, ·〉. Define
x⊥y if 〈x, y〉 = 0. It is easy to see that 0⊥x for all x ∈ X. Hence (X,⊥) is an O-set.
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3. The main theorems

In this section, we prove the main theorem of the present paper. To this end, we
need the following definitions:

Definition 3.1. Let (X,⊥) be O-set. A sequence {xn}n∈N is called an orthogonal
sequence (briefly, O-sequence) if

(∀n, xn⊥xn+1) or (∀n, ∀xn+1⊥xn).

Definition 3.2. Let (X,⊥, d) be an orthogonal metric space ((X,⊥) is an O-set and
(X, d) is a metric space). Then f : X → X is said to be orthogonally continuous (or
⊥−continuous) in a ∈ X if, for each O-sequence {an}n∈N in X with an → a, we have
f(an)→ f(a). Also, f is said to be ⊥−continuous on X if f is ⊥−continuous in each
a ∈ X.

It is easy to see that every continuous mapping is ⊥−continuous. The following
example shows that the converse is not true.

Example 3.3. Let X = R and suppose that x⊥y if

x, y ∈
(
n+

1

3
, n+

2

3

)
for some n ∈ Z or

x = 0.

It is easy to see that (X,⊥) is an O-set. Define f : X → X by f(x) = [x]. Then f
is ⊥−continuous on X. Because if {xk} is an arbitrary O-sequence in X such that
{xk} converges to x ∈ X, then the following cases hold:

Case 1: If xk = 0 for all k, then x = 0 and f(xk) = 0 = f(x).
Case 2: If xk0 6= 0 for some k0, then there existsm ∈ Z such that xk ∈ (m+ 1

3 ,m+ 2
3 )

for all k ≥ k0. Thus x ∈ [m+ 1
3 ,m+ 2

3 ] and f(xk) = m = f(x).

This means that f is ⊥−continuous on X while it is not continuous on X.

We can not prove the following problem about the continuity of functions on inner
product spaces:

Problem 3.4. Let X be an inner product space with the inner product 〈·, ·〉. Define
x⊥y if 〈x, y〉 = 0. Let f : X → X be ⊥−continuous on X. Is f continuous on X?

We cannot prove the above problem for X = Rn and its inner product.

Definition 3.5. Let (X,⊥, d) be an orthogonal set with the metric d. Then X is
said to be orthogonally complete (briefly, O-complete) if every Cauchy O-sequence is
convergent.

It is easy to see that every complete metric space is O-complete and the converse
is not true. In the next example, X is O-complete and it is not complete.

Example 3.6. Let X = [0, 1) and suppose that

x⊥y ⇐⇒

{
x ≤ y ≤ 1

2 ,

or x = 0.
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Then (X,⊥) is an O-set. Clearly, X with the Euclidian metric is not complete metric
space, but it is O-complete. In fact, if {xk} is an arbitrary Cauchy O-sequence in X,
then there exists a subsequence {xkn} of {xk} for which xkn = 0 for all n ≥ 1 or there
exists a monotone subsequence {xkn} of {xk} for which xkn ≤ 1

2 for all n ≥ 1. It

follows that {xkn} converges to a point x ∈ [0, 12 ] ⊆ X. On the other hand, we know
that every Cauchy sequence with a convergent subsequence is convergent. It follows
that {xk} is convergent.

Definition 3.7. Let (X,⊥, d) be an orthogonal metric space and 0 < λ < 1. A
mapping f : X → X is called an orthogonal contraction (briefly, ⊥-contraction) with
Lipschitz constant λ if, for all x, y ∈ X with x⊥y,

d(fx, fy) ≤ λd(x, y).

It is easy to show that every contraction is ⊥-contraction, but the converse is not
true. See the following examples:

Example 3.8. Let X = [0, 10) and the metric on X be the Euclidian metric. Define
x⊥y if xy ≤ (x ∨ y) where x ∨ y = x or y. Let f : X → X be a mapping defined by

f(x) =

{
x
2 , x ≤ 2,

0, x > 2.

Let x⊥y and xy ≤ x, then the following cases are satisfied:
Case 1: If x = 0 and y ≤ 2, then f(x) = 0 and f(y) = y

2 .
Case 2: If x = 0 and y > 2, then f(x) = f(y) = 0.
Case 3: If y ≤ 1 and x ≤ 2, then f(y) = y

2 and f(x) = x
2 .

Case 4: If y ≤ 1 and x > 2, then x− y > y , f(y) = y
2 and f(x) = 0.

This implies that |f(x)− f(y)| ≤ 1
2 |x− y| and hence f is an ⊥-contraction. But f is

not a contraction. To see this, for each c < 1,

|f(3)− f(2)| = 1 > c = c|3− 2|.
Example 3.9. Let X = [0, 1) and let the metric on X be the euclidian metric. Define
x⊥y if xy ∈ {x, y} for all x, y ∈ X. Let f : X → X be a mapping defined by

f(x) =

{
x
2 , x ∈ Q ∩X,
0, x ∈ Qc ∩X.

Then it is easy to show that f is an ⊥−contraction on X, but it is not a contraction.

Definition 3.10. Let (X,⊥) be an O-set. A mapping f : X → X is said to be
⊥−preserving if f(x)⊥f(y) if x⊥y . Also, f : X → X is said to be weakly ⊥-preserving
if f(x)⊥f(y) or f(y)⊥f(x) if x⊥y.

It is easy to see that every ⊥-preserving mapping is weakly ⊥−preserving. But
the converse is not true. For instance, let (X,⊥) be the O-set in Example 2.2. Let
o1 ∈ X be a person with blood type O−, a1 ∈ X be a person with blood type A+.
Define a mapping f : X → X by

f(x) =

{
a1, x = o1

o1, x ∈ X − {o1}.
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Let o2 ∈ X − {o1} be a person with blood type O−. Then we have o1⊥o2, but we
have not f(o1)⊥f(o2). This means that f is not ⊥-preserving. It is easy to see that
f is weakly ⊥-preserving.

Now, we are ready to prove the main theorem of this paper which can be consider
as a real extension of Banach contraction principle.

Theorem 3.11. Let (X,⊥, d) be an O-complete metric space (not necessarily com-
plete metric space) and 0 < λ < 1. Let f : X → X be ⊥-continuous, ⊥-contraction
with Lipschitz constant λ and ⊥-preserving. Then f has a unique fixed point x∗ ∈ X.
Also, f is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ X.

Proof. By the definition of orthogonality, there exists x0 ∈ X such that

(∀y ∈ X,x0⊥y )or( ∀y ∈ X, y⊥x0).

It follows that x0⊥f(x0) or f(x0)⊥x0. Let

x1 := f(x0), x2 = f(x1) = f2(x0), · · · , xn+1 = f(xn) = fn+1(x0)

for all n ∈ N. Since f is ⊥-preserving, {xn}n∈N is an O-sequence. On the other hand,
f is an ⊥-contraction. Then we have

d(xn, xn+1) ≤ λnd(x0, x1)

for all n ∈ N. If m,n ∈ N and n ≤ m, then

d(xn, xm) ≤ (d(xn, xn+1) + · · ·+ d(xm−1, xm))

≤ (λnd(x0, x1) + · · ·+ λm−1d(x0, x1))

≤ λn

1− λ
d(x0, x1).

So, d(xn, xm)→ 0 as m,n→∞. Therefore, {xn}n∈N is a Cauchy O-sequence. Since
X is O-complete, there exists x∗ ∈ X such that xn → x∗. On the other hand, f is
⊥-continuous and then f(xn)→ f(x∗) and f(x∗) = f(limn(f(xn)) = limn xn+1 = x∗.
Hence x∗ is a fixed point of f .

To prove the uniqueness property of fixed point, let y∗ ∈ X be a fixed point of f .
Then we have fn(x∗) = x∗ and fn(y∗) = y∗ for all n ∈ N. By the choice of x0 in the
first part of proof, we have

[x0⊥x∗ and x0⊥y∗] or [x∗⊥x0 and y∗⊥x0].

Since f is ⊥-preserving, we have

[fn(x0)⊥fn(x∗) and fn(x0)⊥fn(y∗)]

or

[fn(x∗)⊥fn(x0) and fn(y∗)⊥fn(x0)]
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for all n ∈ N. Therefore, by the triangle inequality, we have

d(x∗, y∗) = d(fn(x∗), fn(y∗))

≤ d(fn(x∗), fn(x0)) + d(fn(x0), fn(y∗))

≤ λnd(x∗, x0) + λnd(x0, y
∗)

→ 0

as n→∞. Thus it follows that x∗ = y∗.
Finally, let x ∈ X be arbitrary. Similarly, we have

[x0⊥x∗ and x0⊥x] or [x∗⊥x0 and x⊥x0]

and

[fn(x0)⊥fn(x∗) and fn(x0)⊥fn(x)]

or

[fn(x∗)⊥fn(x0) and fn(x)⊥fn(x0)]

for all n ∈ N. Hence, for all n ∈ N, we get

d(x∗, fn(x)) = d(fn(x∗), fn(x))

≤ d(fn(x∗), fn(x0)) + d(fn(x0), fn(x))

≤ λnd(x∗, x0) + λnd(x0, x)

→ 0

as n→∞. This completes the proof. �

Now, we show that our theorem is a real extension of Banach’s contraction princi-
ple.

Corollary 3.12. (Banach’s contraction principle) Let (X, d) be a complete metric
space and f : X → X be a mapping such that, for some λ ∈ (0, 1],

d(f(x), f(y)) ≤ λd(x, y)

for all x, y ∈ X. Then f has a unique fixed point in X.

Proof. Suppose that
x⊥y ⇐⇒ d(f(x), f(y)) ≤ d(x, y).

Fix x0 ∈ X. Since f is a contraction, for all y ∈ X, x0⊥y. Hence (X,⊥) is an O-set.
It is obviously that X is O-complete and f is an ⊥-contraction, ⊥-continuous and
⊥-preserving. By applying Theorem 3.11, f has a unique fixed point in X. �

The following examples show that our theorem is a real extension of Banach’s fixed
point theorem:

Example 3.13. Suppose that X = [0, 10), ⊥, d and f : X → X are defined as in the
Example 3.8. It is easy to see that X is O-complete (not complete), f is ⊥-continuous
(not continuous on X), an ⊥-contraction and ⊥-preserving on X. By our theorem,
f has a unique fixed point in X. However, f is not a contraction on X and so, by
Banach’s contraction principle, we cannot find any fixed point of f in X.
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Example 3.14. Suppose that X = [0, 1), ⊥, d and f : X → X are defined as in the
Example 3.9. We can see that X is O-complete (not complete), f is ⊥-continuous
(not continuous on X), an ⊥-contraction and ⊥-preserving on X. Applying Theorem
3.11, f has a unique fixed point in X, but, by Banach’s contraction principle, we
cannot find any fixed point of f in X.

4. Applications to ordinary differential equations

Our purpose here is to apply Theorem 3.11 to prove the existence of a solution for
the following differential equation:{

u′(t) = f(t, u(t)), a.e. t ∈ I = [0, T ],

u(0) = a, a ≥ 1,
(4.1)

where f : I × R→ R is an integrable function satisfying the following conditions:
(c1) f(s, x) ≥ 0 for all x ≥ 0 and s ∈ I,
(c2) there exists α ∈ L1(I) such that

|f(s, x)− f(s, y)| ≤ α(s)|x− y|
for all t ∈ I and x, y ≥ 0 with xy ≥ (x ∨ y), where x ∨ y = x or y.

Note that f : I ×R→ R is not necessarily Lipschitz from the given condition (c2).
For example, the function

f(s, x) =

{
sx, x ≤ 1

2 ,

0, x > 1
2

satisfies the conditions (c1) and (c2) while f is not continuous and monotone. Also,
for s 6= 0, ∣∣∣∣f (s, 1

2

)
− f

(
s,

2

3

)∣∣∣∣ = s
1

2
> s

1

6
= s

∣∣∣∣12 − 2

3

∣∣∣∣ .
Theorem 4.1. Under these conditions, for all T > 0, the differential equation 4.1
has a unique positive solution.

Proof. Let X = {u ∈ C(I,R) : u(t) > 0, ∀t ∈ I}. We consider the following orthogo-
nality relation in X:

x⊥y ⇐⇒ x(t)y(t) ≥ (x(t) ∨ y(t))

for all t ∈ I. Let A(t) =
∫ t
0
|α(s)|ds. Then A′(t) = |α(t)| for almost every t ∈ I.

Define
‖x‖A = sup

t∈I
e−A(t)|x(t)|, d(x, y) := ‖x− y‖A

for all x, y ∈ X. It is easy to see that (X, d) is a metric space.
Now, we show that X is O-complete (not necessarily complete). Take a Cauchy

O-sequence {xn} in X. It is easy to show that {xn} is convergent to a point x ∈ C(I).
It is enough to show the x ∈ X. Fix t ∈ I. The definition of ⊥ implies that

xn(t) xn+1(t) ≥ (xn(t) ∨ xn+1(t))

for each n ∈ N. Since xn(t) > 0 for all n ∈ N, there exists a subsequence {xnk
} in

{xn} for which xnk
(t) ≥ 1 for each k ∈ N. The convergence of this sequence of real
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numbers to x(t) implies that x(t) ≥ 1. But since t ∈ I is arbitrary, it follows that
x ≥ 1 and hence x ∈ X. Define a mapping F : X → X by

Fu(t) =

∫ t

0

f(s, u(s))ds+ a.

Note that the fixed points of F are the solutions of (4.1). To complete the proof,
we need the following three steps:

Step 1: F is ⊥−preserving. In fact, for all x, y ∈ X with x⊥y and t ∈ I,

Fx(t) =

∫ t

0

f(s, x(s))ds+ a ≥ 1,

which implies that Fx(t)Fy(t) ≥ Fx(t) and so Fx⊥Fy.
Step 2: F is ⊥−contraction. In fact, for all x, y ∈ X with x⊥y and t ∈ I, the

condition (c2) implies that

e−A(t)|Fx(t)−Fy(t)| ≤ e−A(t)

∫ t

0

|f(s, x(s))− f(s, y(s))|ds

≤ e−A(t)

∫ t

0

|α(s)|eA(s)e−A(s) |x(s)− y(s)|ds

≤ e−A(t)
(∫ t

0

|α(s)|eA(s)ds
)
‖x− y‖A

≤ e−A(t)(eA(t) − 1) ‖x− y‖A
≤ (1− e−‖α‖1) ‖x− y‖A

and so

‖Fx−Fy‖A ≤ (1− e−‖α‖1) ‖x− y‖A.
Since 1− e−‖α‖1 < 1, F is an ⊥−contraction.

Step 3: F is ⊥−continuous. In fact, let {xn} ⊆ X be an O-sequence converging to
a point x ∈ X. By using the first part of the proof, we can see that x(t) ≥ 1 for all
t ∈ I and hence xn⊥x for all n ∈ N. Applying the condition (c2), we get

e−A(t)|Fxn(t)−Fx(t)| ≤ e−A(t)

∫ t

0

|f(s, xn(s))− f(s, x(s))|ds

≤ (1− e−‖α‖1)‖xn − x‖A
for all n ∈ N and t ∈ I. Hence we have

‖Fxn −Fx‖A ≤ (1− e−‖α‖1)‖xn − x‖A
for all n ∈ N. It follows that Fxn → Fx.

The uniqueness of the solution follows from Theorem 3.11. This completes the
proof. �
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