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Abstract. We show here how recently proven fixed point theorems by Kuhlmann and Kuhlmann

can be derived from classical fixed point theorems from order theory.
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Kuhlmann and Kuhlmann have recently proven [4] a new type of fixed point theo-

rems, that they refer to as the fixed point theorems for ball spaces. Their results are

stated in a very general language of spaces which are neither metric nor even topo-

logical, but instead utilize the notion of so called balls, that is an arbitrary family of

some subsets. The authors then proceed to apply their theorems to some valuation

theoretic considerations. In this miniature note we investigate how their results relate

to other familiar fixed point theorems known from the order theory.

Let X be a nonempty set. A ball space is a pair (X,B), where B is a fixed family

of nonempty subsets of X called balls. A nest of balls is any nonempty chain N ⊂ B
ordered by inclusion. If f : X → X is a mapping, a ball B ∈ B is called f -contracting

if it is either a singleton consisting of a fixed point of f , or if f(B) ( B. The results

in [4] are the following ones:

Theorem 1.1 ([4, Theorem 1]) If (X,B) is a ball space and f : X → X a mapping

such that:

(1) there exists an f -contracting ball,

(2) f(B) contains an f -contracting ball, if B ∈ B is an f -contracting ball,

(3) for every nest of f -contracting balls N , the intersection
⋂
N contains an

f -contracting ball,
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then f has a fixed point.

Theorem 1.2. ([4, Theorem 2]) If (X,B) is a ball space and f : X → X a mapping

such that:

(1) X is an f -contracting ball,

(2) f(B) is an f -contracting ball, if B ∈ B is an f -contracting ball,

(3) for every nest of f -contracting balls N , the intersection
⋂
N is an f -

contracting ball,

then f has a unique fixed point.

Recall that a partial order is inductive if every chain (including the empty one) has

an upper bound, and is chain-complete if every chain has a supremum. By convention,

every element of a partial order is both an upper and lower bound of the empty subset,

and hence the supremum of the empty chain exists if and only if there exists a bottom

element ⊥. Thus the conditions (1) and (3) of Theorem 1.1 guarantee that, for a fixed

f -contracting ball B, the set of all f -contracting balls contained in B and reversely

ordered by inclusion is inductive. Similarly, the conditions (1) and (3) of Theorem

1.2 imply that the set of all f -contracting balls is chain-complete.

We recall the following fixed point theorem that was proven by Tasković in [7], and

can be also seen as a variant of the old result due to Bourbaki [1] and Witt [8]:

Theorem 1.3. Let (P,≤) be a nonempty inductive partial order, let f : P → P be

a mapping such that for the set

Sub f(P ) = f(P ) ∪ {a ∈ P : a = ubC for some chain C in P},

where ubC is an upper bound of C, the following condition is satisfied:

∀a ∈ Sub f(P ) [f(a) ≥ a].

Then f has a fixed point.

We shall show:

Theorem 1.4. Theorem 1.3 implies Theorem 1.1.

Proof. Let (X,B) be a ball space and f : X → X a mapping satisfying the hypotheses

of Theorem 1.1. By condition (1) of Theorem 1.1, there exists an f -contracting ball

B0 ∈ B. Let B0 be the subset of B consisting of all f -contracting balls contained

in B0. Then, clearly, (B0,⊇) is a nonempty partially ordered set. As noted before,

(B0,⊇) is inductive. Moreover, by condition (2) of Theorem 1.1, we may use the

axiom of choice to construct the choice function F that assigns to a given B ∈ B0 an

f -contracting ball contained in f(B). Then, clearly, F (B) ⊆ B, for all B ∈ B0, and,

consequently, F satisfies the hypotheses of Theorem 1.3 and hence has a fixed point

B′ ∈ B0. Thus B′ = F (B′) ⊆ f(B′) ⊆ B′, so that f(B′) = B′. By the definition of

an f -contracting ball it follows that B′ is a singleton consisting of a fixed point of f .
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Recall that a partial order is complete if every directed set (including the empty

one) has a supremum. By convention it follows that every complete partial order has

a bottom element ⊥. It can be shown using a certain version of Iwamura’s Lemma [5,

Theorem 1] that every chain-complete partial order is a complete partial order ([2, p.

33], [5, Corollary 2]). Thus the set of all f -contracting balls in Theorem 1.2 reversely

ordered by inclusion is complete.

The Bourbaki-Witt Fixed Point Theorem can be also stated in the following form:

Theorem 1.5. Let (P,≤) be a nonempty complete partial order, let f : P → P be

monotone. Then f has the least fixed point.

Giving a proper reference to the above stated result seems a bit problematic, as the

history of fixed point theorems appears to be long and tangled. The Bourbaki-Witt

Fixed Point Theorem seems to be the first that is substantially similar to the theorem

stated here; although it requires f to be progressive, the proof is easily modified for

the case where f is monotone. See [5, Theorem 9] for details. We also remark that

the celebrated Tarski-Knaster Fixed Point Theorem for complete lattices [3], [6] is an

easy consequence of Theorem 1.5 – again, see [5] for details.

With these remarks out of our way, we are now able to prove:

Theorem 1.6. Theorem 1.5 implies Theorem 1.2.

Proof. Let (X,B) be a ball space and f : X → X a function satisfying the hy-

potheses of Theorem 1.2. Let B0 be the subset of B consisting of all f -contracting

balls contained in B0. By condition (1) of Theorem 1.2, X ∈ B0, so that (B0,⊇) is

a nonempty partially ordered set which, by previous remarks, is complete. Define

the function F : B0 → B0 by F (B) = f(B), for all B ∈ B0. By condition (2) of

Theorem 1.2, F is well-defined, and since, for B1 ⊇ B2, B1, B2 ∈ B0, we clearly have

f(B1) ⊇ f(B2), F is monotone. Therefore, by Theorem 1.5, F has the least fixed

point B′. By the definition of an f -contracting ball it follows that B′ is a singleton

consisting of a fixed point of f , say x0. If x1 was another fixed point of f , then

B′′ = {x1} ∈ B0 is a fixed point of F , so that B′ ⊇ B′′ forcing x0 = x1.
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