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theorem according to Takahashi. Our version of Caristi’s fixed point theorem is used to prove

existence of fixed points on uniform spaces for some contractions such as weak, Chatterjea and

Kannan contractions defined by means of w-distances. The results introduced in this paper generalize
others existing in the literature of nonlinear analysis.

Key Words and Phrases: Caristi’s theorem, fixed point, uniform spaces, variational principle,

w-distance.
2010 Mathematics Subject Classification: 47H10, 58E30, 54E15, 06A06.

1. Introduction

Kada et al. in [14] introduced the concept of w-distance on a metric space. After
that, a number of papers have been written by different authors, thereon we mention
the references [17, 20, 21, 22, 23, 25]. The main interest by using this concept seems
to be the generalization of some classical results in the existing literature of nonlinear
analysis such as, Caristi’s fixed point theorem [6], Ekeland’s ε-variational principle
[9, 10] and the nonconvex minimization theorem according to Takahashi [24]. Du in
[8] proved the equivalence of these remarkable statements for w-distances on metric
spaces. Alternatively, some articles such as [20, 23], have been devoted for characteriz-
ing metric completeness by means of w-distances and others, such as [16, 17, 18], have
utilized this concept for proving existence of fixed points for set-valued mappings. All
results of works mentioned so far are situated in the context of metric spaces.

In a natural way, w-distances defined on metric space can be extended to uni-
form spaces and the main aim of this paper is to extend some results for mappings
defined on metric spaces to mappings defined on uniform spaces, by making use of
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the mentioned extension of w-distance. First, we prove Weston [26] and [3] Bishop-
Phelps type theorem, which enable us to obtain new versions, on uniform spaces with
w-distances, of Caristi’s fixed point theorem [6], Ekeland’s variational principle [10]
and the nonconvex minimization theorem according to Takahashi [24]. Other authors
have introduced related results on uniform spaces, which are different to ours, since
their statements are not based in w-distances. For instance, Brøndsted in [5] extended
the Bishop-Phelps type theorem in [3] to uniform spaces and a generalization of this
result was given by Mizoguchi in [19], where also a Caristi’s theorem type is presented
for mappings defined on uniform spaces. Ekeland’s variational principles in locally
convex and uniform spaces have been treated by Hamel in [11] and [12], respectively.
It is worth mentioning that in [1] some fixed point theorems are stated for mappings
defined on uniform spaces and by means of a generalization of the w-distance concept.
However, their assumptions are too restrictive due to strong continuity conditions are
imposed on these mappings.

Our version of Caristi’s fixed point theorem is used to prove existence of fixed
points on uniform spaces for some contractions appearing frequently in the literature
of nonlinear analysis, which in our case are defined by means of w-distances. Indeed,
some fixed point theorems for set-valued mappings satisfying a Banach orbital con-
dition with respect to a w-distance are proved. Among these types of extensions are
those based on weak contractions as in Berinde [2] and the Chatterjea and Kannan
contractions defined in [7] and [15], respectively. The results introduced in this paper
generalize, inter alia, some of those presented by Shioji et al. [20] and Takahashi et
al. [25].

Including this introduction, the paper is divided in four sections. In Section 2,
some preliminary facts are stated in order to prove in the next section the main
results of this paper. Indeed, Section 3 is devoted to state and prove Weston, Bishop-
Phelps and Caristi type theorems, which are based on w-distances defined on uniform
spaces. Also, in this section, versions of Ekeland’s ε-variational principle and the
nonconvex minimization theorem according to Takahashi, are stated. Finally, Section
4 is devoted to fixed point theorems for different set-valued contractions satisfying a
Banach orbital condition with respect to a w-distance.

2. Preliminaries

In this section, X stands for a nonempty set, f : X → (−∞,∞] is a proper function
bounded below and p : X × X → [0,∞) denotes a function satisfying the following
two conditions:

(w1) p(x, y) ≤ p(x, z) + p(z, y), for any x, y, z ∈ X, and
(w2) if p(u, u) = p(u, v) = 0, then u = v.

Let dom(f) = {y ∈ X : f(y) < ∞}. A relation �f is defined on dom(f) as follows:
x �f y, if and only if, x = y or f(y) + p(x, y) ≤ f(x).

Proposition 2.1. The relation �f is an order relation on dom(f).
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Proof. It is clear that �f is reflexive. Suppose x �f y and y �f x with x 6= y. We
have

f(y) + p(x, y) ≤ f(x) ≤ f(y)− p(y, x)

and hence 0 ≤ p(x, x) ≤ p(x, y) + p(y, x) = 0. Consequently, p(x, x) = p(x, y) = 0
and from (w2), x = y. Thus, �f is antisymmetric. Next, suppose x �f z and
z �f y. If x = z or z = y, it is clear that x �f y. Hence we assume x 6= z and
z 6= y. I.e. f(z) + p(x, z) ≤ f(x) and f(y) + p(z, y) ≤ f(z). From this we obtain,
f(y) + p(z, y) + p(x, z) ≤ f(z) + p(x, z) ≤ f(x) and consequently,

f(y) + p(x, y) ≤ f(y) + p(z, y) + p(x, z)
≤ f(z) + p(x, z)
≤ f(x).

Therefore, the proof is complete. �

Remark 2.1. Let f∗ be the restriction of f to dom(f). Then, f∗ is non-increasing.

In what follows, we assume U is a uniformity defining a Hausdorff topology for X.
Moreover, the function p is said to be a w-distance on X, if additionally to (w1) and
(w2) the following two conditions hold:

(w3) for each x ∈ X, p(x, ·) is lower semicontinuous, and
(w4) for each U ∈ U , there exists δ > 0 such that p(z, x) < δ and p(z, y) < δ imply

(x, y) ∈ U .

Remark 2.2. Notice that condition (w4) implies condition (w2).

Let p be a w-distance on X. A p-Cauchy sequence in X is, naturally, defined as
a sequence {xn}n∈N in X such that for any ε > 0, there exists N ∈ N satisfying
p(xm, xn) < ε, whenever m,n ≥ N . We say X is p-complete whenever for any p-
Cauchy sequence {xn}n∈N in X, there exists x ∈ X such that limn→∞ p(xn, x) = 0.

Lemma 2.1. Let p be a w-distance on X, {xn}n∈N be a p-Cauchy sequence in X
and B = {Bn}n∈N be the filterbase in X defined as Bn = {xm;m ≥ n}. Then, B is a
Cauchy filterbase.

Proof. Let U ∈ U and δ > 0 such that p(z, u) < δ and p(z, v) < δ imply (u, v) ∈ U .
Since {xn}n∈N is a p-Cauchy sequence, there exists N ∈ N such that p(xm, xn) < δ
whenever m,n ≥ N . Hence, BN ×BN ⊆ U due to p(xN , xn) < δ and p(xN , xm) < δ
for m,n ≥ N . Thus, B is a Cauchy filterbase in X, which completes the proof. �

Proposition 2.2 below states that the completeness respect to the uniformity of the
space X is stronger that the p-completeness above defined.

Proposition 2.2. Let (X,U) be a complete Hausdorff uniform space. Then, for any
w-distance p on X, X is p-complete.

Proof. Let p be a w-distance on X, {xn}n∈N be a p-Cauchy sequence in X and
B = {Bn}n∈N be the filterbase defined as Bn = {xm;m ≥ n}. From Lemma 2.1, B is
a Cauchy filterbase and since X is complete, there exists x ∈ X such that B converges
to x. Let ε > 0 and N ∈ N such that p(xm, xn) < ε whenever m,n ≥ N . From the
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lower semicontinuity of p(xm, ·), we have p(xm, x) ≤ ε, for each m ≥ N . Therefore,
X is p-complete, which concludes the proof. �

Proposition 2.3 below shows that p-completeness is preserved for closed subspaces.

Proposition 2.3. Let (X,U) be a p-complete Hausdorff uniform space and F a closed
subset of X. Then, F is p-complete.

Proof. Let {xn}n∈N be a p-Cauchy sequence in F . From assumption and Proposition
2.2, there exists x ∈ X such that p(xn, x) → 0. Suppose x /∈ F . Hence there exists
U ∈ U such that U [x] ∩ F = ∅, where U [x] = {y ∈ X : (x, y) ∈ U}. From (w4), there
exists δ > 0 such that p(z, u) < δ and p(z, v) < δ implies (u, v) ∈ U . Choose N ∈ N
such that p(xN , xm) < δ and p(xm, x) < δ whenever m ≥ N . Hence p(xN , xN ) < δ
and p(xN , x) < δ. Consequently, (x, xN ) ∈ U , which is a contradiction due to xN ∈ F .
Therefore, x ∈ F and the proof is complete. �

Given a uniformity U on X, in Proposition 2.4 below we show that there exists a
natural nontrivial w-distance compatible with this uniformity.

Proposition 2.4. Let (X,U) be a Hausdorff uniform space. Then, there exists a
metric d which is a w-distance on X.

Proof. From Theorem 1, Chapter IX in [4], there exists a family of pseudometrics
{dλ}λ∈Λ defining the uniformity U . Let d : X ×X → R be the metric defined as

d(x, y) = sup
λ∈Λ

dλ(x, y) ∧ 1.

Since for each x ∈ X, dλ(x, ·)∧1 is continuous, we have d(x, ·) is lower semicontinuous.
Moreover, for each U ∈ U , there exist λ1, . . . , λr ∈ Λ and δ > 0 such that {(x, y) ∈
X × X : max1≤i≤r dλi(x, y) < 2δ} ⊆ U . Consequently d(z, x) < δ and d(z, y) < δ
imply (x, y) ∈ U . Therefore, d is a w-distance and the proof is complete. �

Remark 2.3. Given a w-distance p on X and a function f : X → R ∪ {+∞}, we
say f is sequentially lower semicontinuous at x ∈ X, if and only if, for any sequence
{xn}n∈N in X such that limn→∞ p(xn, x) = 0, one has f(x) ≤ lim inf f(xn). It is
easy to provide examples of w-distances showing that there is no general relation-
ship between the lower semicontinuity of f with respect to the topology of X and the
sequential semicontinuity with respect to the w-distance.

3. Main results

Let LS(X) be the space of all lower semicontinuous proper functions defined on X
and bounded below, i.e., f ∈ LS(X), if and only if, f : X → R ∪ {+∞} is bounded
below, dom(f) is nonempty and for each α ∈ R, the set {x ∈ X : f(x) > α} is open.

Let p be a w-distance on X and f ∈ LS(X). By a p-point for f , we mean a point
x∗ ∈ X such that,

f(y) + p(x∗, y) > f(x∗), for all y 6= x∗.

In the setting of the w-distances, we state the following Weston [26] type theorem,
which in turn is an extension of the Bishop-Phelps lemma [3] and, in a some sense,
extends the lemma by Mizoguchi in [19].



w-DISTANCES ON UNIFORM SPACES 559

Theorem 3.1. Let p be a w-distance on X and suppose (X,U) is a p-complete Haus-
dorff uniform space. Then, the following two equivalent conditions hold:

(3.1.1) for each f ∈ LS(X) and x0 ∈ dom(f) there exists a maximal element x∗ ∈ X
such that x0 �f x∗, and

(3.1.2) for each f ∈ LS(X) and x0 ∈ dom(f) there exists a p-point x∗ ∈ X for f
such that x0 �f x∗.

Reciprocally, if p is symmetric and these conditions hold, then X is p-complete.

Proof. It is clear that conditions (3.1.1) and (3.1.2) are equivalent.
Suppose (X,U) is p-complete, fix x0 ∈ dom(f) and let S(x) = {y ∈ X : x �f y}.

If for some x ∈ S(x0), f(y) + p(x, y) > f(x) for all y ∈ S(x) \ {x}, then x is maximal
and we can take x∗ = x. Next, if for each x ∈ S(x0), there exists y ∈ S(x) \ {x} such
that f(y) + p(x, y) ≤ f(x), we define recursively an increasing sequence {xn}n∈N in
dom(f) by

xn ∈ S(xn−1) \ {xn−1} with f(xn) < Ln + 1/n,

where Ln = inf{f(y) : y ∈ S(xn−1) \ {xn−1}}. Consequently, for each n, p ∈ N \ {0}
and y ∈ S(xn+p−1) \ {xn+p−1} ⊆ S(xn−1) \ {xn−1}, we have

p(xn, y) ≤ f(xn)− f(y) ≤ f(xn)− Ln < 1/n.

In particular, p(xn, xn+p) < 1/n and hence {xn}n∈N is a p-Cauchy sequence. Thus
there exists x∗ ∈ X such that limn→∞ p(xn, x

∗) = 0 and since for each x ∈ X,
S(x) = {y ∈ X : f(y) + p(x, y) ≤ f(x)} ∪ {x}, the lower semicontinuity of f + p(x, ·)
implies S(x) is a closed set. By Proposition 2.3, for any n ∈ N, x∗ ∈ S(xn) and thus
x0 �f xn �f x∗. Suppose y ∈ dom(f) satisfies x∗ �f y. Hence, x∗ = y or for each
n ∈ N, p(xn, y) ≤ f(xn)− f(y) < 1/n. Consequently, x∗ = y or limn→∞ p(xn, y) = 0.
But from (w4), the limit respect to p is unique and thus x∗ = y. Therefore x∗ ∈
dom(f) is a maximal element satisfying x0 �f x∗, which proves (3.1.1).

Suppose p is symmetric and that (3.1.2) holds. Let {xn}n∈N be a p-Cauchy se-
quence in X and observe that, by the symmetry of p, for each x ∈ X and m,n ∈ N,

|p(x, xm)− p(x, xn)| ≤ p(xm, xn).

Hence, since there exists limn→∞ p(x, xn), we can define f : X → R such that f(x) =
2 limn→∞ p(x, xn). Moreover, for each α ∈ R,

{x ∈ X : f(x) > α} =

∞⋃
n=0

⋃
γ>α

∞⋃
m=n

{x ∈ X : p(x, xm) > γ}

and since for each m ∈ N, p(·, xm) ∈ LS(X), we have f ∈ LS(X). From (3.1.2) there
exists x∗ ∈ X a p-point for f , which implies

f(xn) + p(x∗, xn) ≥ f(x∗), for all n ∈ N.

Since limn→∞ f(xn) = 0, we have f(x∗) ≥ 2f(x∗) and f(x∗) = 0. The symmetry of p
implies that limn→∞ p(xn, x

∗) = 0. Therefore, X is p-complete, which concludes the
proof. �
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Remark 3.1. Notice that the maximal element x∗ ∈ X, in the preceding theorem,
satisfies p(x∗, x∗) = 0, if and only if, there exists y ∈ X such that f(y) + p(x∗, y) ≤
f(x∗).

In the sequel, 2X stands for the family of all nonempty subsets of X and in what
follows of this section, p and (X,U) stand for a w-distance on X and a p-complete
Hausdorff uniform space, respectively.

A Caristi type theorem is stated as follows.

Theorem 3.2. Let T : X → 2X be a set-valued mapping and f ∈ LS(X) such that
the following condition holds:

(3.2.1) for each x ∈ X, there exists y ∈ Tx such that f(y) + p(x, y) ≤ f(x).

Then, there exists x∗ ∈ X such that f(x∗) <∞, p(x∗, x∗) = 0 and x∗ ∈ Tx∗.

Proof. From (3.1.1), �f has a maximal element x∗ ∈ dom(f) and (3.2.1) implies that
there exists y ∈ Tx∗ such that

f(y) + p(x∗, y) ≤ f(x∗) <∞. (3.1)

Hence, x∗ �f y and the maximality of x∗ implies y = x∗. Consequently, condition
(3.1) becomes f(x∗)+p(x∗, x∗) ≤ f(x∗) <∞. Therefore, p(x∗, x∗) = 0 and x∗ ∈ Tx∗,
which concludes the proof. �

For single-valued mappings the following corollary holds.

Corollary 3.1. Let T : X → X be a mapping and f ∈ LS(X) such that the following
condition holds:

(3.1.1) for each x ∈ X, f(Tx) + p(x, Tx) ≤ f(x).

Then, there exists x∗ ∈ X such that f(x∗) <∞, p(x∗, x∗) = 0 and x∗ = Tx∗.

An extension of the nonconvex minimization theorem according to Takahashi [24]
can be stated as follows.

Theorem 3.3. Let f ∈ LS(X) such that for any u ∈ X which satisfies infx∈X f(x) <
f(u) <∞, the following condition holds:

(3.3.1) there exists v ∈ X \ {u} such that f(v) + p(u, v) ≤ f(u).

Then there exists y ∈ X such that infx∈X f(x) = f(y).

Proof. Suppose for every y ∈ X, infx∈X f(x) < f(y) and let u ∈ dom(f). From
Theorem (3.1.1), �f has a maximal element x∗ ∈ dom(f) such that u �f x∗, and
since f(x∗) ≤ f(u) < ∞, (3.3.1) implies that there exists v ∈ dom(f) \ {x∗} such
that x∗ �f v. But, the maximality of x∗ implies v = x∗, which is a contradiction.
Therefore, there exists y ∈ X such that infx∈X f(x) = f(y). This completes the
proof. �

The following is an extension of Theorem 1.1 by Ekeland in [9].

Theorem 3.4. Let ε > 0, λ > 0 and f ∈ LS(X). Then, for every u ∈ X satisfying
infx∈X f(x) < f(u) < infx∈X f(x)+ε, there exists v ∈ X such that the following three
conditions hold:
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(3.4.1) f(v) ≤ f(u);
(3.4.2) p(u, v) < λ, whenever u 6= v; and
(3.4.3) for every w ∈ X \ {v}, f(w) + (ε/λ)p(v, w) > f(v).

Proof. Let u ∈ X satisfy infx∈X f(x) < f(u) < infx∈X f(x) + ε and g = (λ/ε)f .
Since u ∈ dom(f) = dom(g) and g ∈ LS(X), (3.1.1) implies �g has a maximal
element v ∈ dom(f) such that u �g v. This fact implies that u = v or (ε/λ)p(u, v) ≤
f(u) − f(v) < ε, whenever u 6= v. Consequently, condition (3.4.2) holds and since f
is non-increasing on dom(f), condition (3.4.1) so does. Finally, since v is a p-point
for g, condition (3.4.3) follows and the proof is complete. �

4. Contractions

In this section, p stands for a w-distance on X.
Let k ∈ [0, 1). A set-valued mapping T : X → 2X , with nonempty images, is said

to satisfy the (p, k)-Banach orbital condition, if for any u0 ∈ X and u1 ∈ Tu0, there
exists u2 ∈ Tu1 such that p(u1, u2) ≤ kp(u0, u1). The mapping T is said to be a
(p, k)-contraction, if for any x1, x2 ∈ X and y1 ∈ Tx1, there exists y2 ∈ Tx2 such that
p(y1, y2) ≤ kp(x1, x2).

Remark 4.1. Each (p, k)-contraction satisfies the (p, k)-Banach orbital condition.

Theorem 4.1. Suppose (X,U) is a complete Hausdorff uniform space, k ∈ [0, 1) and
T : X → 2X is a set-valued mapping satisfying the (p, k)-Banach orbital condition.
Then, there exists a symmetric w-distance q on X, such that

(4.1.1) T is a (q, k)-contraction; and
(4.1.2) there exists x∗ ∈ X such that p(x∗, x∗) = q(x∗, x∗) = 0 and x∗ ∈ Tx∗.

Proof. For a given u0 ∈ X fixed, there exists a sequence {un}n∈N in X such that
un+1 ∈ Tun and p(un, un+1) ≤ knp(u0, u1). Thus, for any m,n ∈ N with m ≥ n,

p(un, um) ≤ kn

1− k
p(u0, u1). (4.2)

Let β : X → R be the function defined by β(x) = limn→∞ p(un, x) and q : X ×X →
[0,∞) such that q(x, y) = β(x) + β(y). We need to prove that β is well-defined and
q is a w-distance. From (4.2), for each x ∈ X and m,n ∈ N, we have

|p(un, x)− p(um, x)| ≤ kmin{m,n}

1− k
p(u0, u1).

Hence, β is well-defined and for each α ∈ R,

{x ∈ X : β(x) > α} =

∞⋃
n=0

⋃
γ>α

∞⋃
m=n

{x ∈ X : p(um, x) > γ}.

Consequently, β is lower semicontinuous, which additionally implies that q satisfies
condition (w3). Clearly, q is symmetric and enjoys condition (w1). Let U ∈ U
and choose δ > 0 such that p(z, x) < δ and p(z, y) < δ imply (x, y) ∈ U . Suppose
q(z, x) < δ and q(z, y) < δ. Accordingly, β(x) < δ and β(y) < δ, and thus, there exists
n0 ∈ N such that p(un0 , x) < δ and p(un0 , y) < δ. Hence (x, y) ∈ U , which proves that
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q is a symmetric w-distance on X and it is easy to see that T is a (q, k)-contraction.
This proves (4.1.1). Let f : X → (−∞,∞] such that f(x) = (1 + k)β(x)/(1 − k).
For each x ∈ X, we can choose any y ∈ Tx and, since β(y) ≤ kβ(x), we have
f(y) + q(x, y) ≤ f(x). By Proposition 2.2, X is q-complete and Theorem 3.2 can be
applied. Consequently, there exists x∗ ∈ X such that f(x∗) < ∞, q(x∗, x∗) = 0 and
x∗ ∈ Tx∗. Moreover, p(x∗, x∗) ≤ kp(x∗, x∗) and hence p(x∗, x∗) = 0, which concludes
the proof. �

From Remark 4.1, we have the following corollary.

Corollary 4.1. Suppose (X,U) is a complete Hausdorff uniform space, k ∈ [0, 1) and
T : X → 2X is a (p, k)-contraction. Then, there exists x∗ ∈ X such that x∗ ∈ Tx∗and
p(x∗, x∗) = 0.

For single-valued contraction mappings, uniqueness of the fixed point is obtained
as follows.

Corollary 4.2. Suppose (X,U) is a complete uniform space, k ∈ [0, 1) and T : X →
X is a function satisfying p(Tx, Ty) ≤ kp(x, y), for all x, y ∈ X. Then there exists a
unique x∗ ∈ X such that x∗ = Tx∗. Moreover p(x∗, x∗) = 0.

Proof. We only need to prove the uniqueness. If y∗ ∈ X is another point satisfying
y∗ = Ty∗, we have

p(x∗, y∗) = p(Tx∗, T y∗) ≤ kp(x∗, y∗)
and hence p(x∗, y∗) = 0. This fact along with p(x∗, x∗) = 0 and (w2) imply x∗ = y∗,
concluding the proof. �

In [25], Takahashi et al. defined the concept of Kannan mappings for w-distances
in metric spaces. For α ∈ [0, 1/2) and a w-distance p on a uniform space X, within
our context, a set-valued mapping T : X → 2X , with nonempty and closed images, is
said to be a (p, α)-Kannan mapping, if for any x1, x2 ∈ X and y1 ∈ Tx1, there exists
y2 ∈ Tx2 such that p(y1, y2) ≤ α(p(x1, y1) + p(x2, y2)). It is easy to see that each
(p, α)-Kannan mapping satisfies the (p, k)-Banach orbital condition. Consequently,
the following two corollaries hold.

Corollary 4.3. Suppose (X,U) is a complete Hausdorff uniform space, α ∈ [0, 1/2)
and T : X → 2X is a (p, α)-Kannan mapping. Then, there exists x∗ ∈ X such that
x∗ ∈ Tx∗and p(x∗, x∗) = 0.

Corollary 4.4. Suppose (X,U) is a complete Hausdorff uniform space, α ∈ [0, 1/2)
and T : X → X is a single-valued (p, α)-Kannan mapping, i.e. p(Tx, Ty) ≤
α(p(x, Tx) + p(y, Ty)), for all x, y ∈ X. Then there exists a unique x∗ ∈ X such
that x∗ = Tx∗. Moreover p(x∗, x∗) = 0.

The concept of weak contraction based in metrics was introduced by Berinde in
[2] and it is naturally extended for w-distances. Let δ ∈ (0, 1) and L ≥ 0. We say
T : X → 2X is a (p, δ, L)-weak contraction, if for any x1, x2 ∈ X and y1 ∈ Tx1, there
exists y2 ∈ Tx2 such that p(y1, y2) ≤ δp(x1, x2) + Lp(x2, y1). In order to this type of
mappings satisfy a (p, k)-Banach orbital condition, for k ∈ (0, 1), we need to aggregate
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an additional property to p. On the other hand, a set-valued extension of the concept
of p-contractively nonspreading mapping for w-distances, defined in [13] (see also [25]),
is given as follows: let α ∈ [0, 1) and T : X → 2X be a set-valued mapping. We say
T is (p, α)-contractively nonspreading mapping, if for any x1, x2 ∈ X and y1 ∈ Tx1,
there exists y2 ∈ Tx2 such that p(y1, y2) ≤ α(p(x1, y2) + p(y1, x2)). It is easy to
see, whenever p is symmetric, that a (p, α)-contractively nonspreading mapping is a
(p, δ, L)-weak contraction, where δ = α/(1− α) and L = 2α/(1− α).

Proposition 4.1. Let (X,U) be a complete Hausdorff uniform space, δ ∈ [0, 1) and
T : X → 2X be a (p, δ, L)-weak contraction. Suppose for each x ∈ X, p(x, x) = 0.
Then, there exists a symmetric w-distance q on X, such that

(4.1.1) T is a (q, δ)-contraction; and
(4.1.2) there exists x∗ ∈ X such that p(x∗, x∗) = q(x∗, x∗) = 0 and x∗ ∈ Tx∗.

Proof. For each u0 ∈ X and u1 ∈ Tu0, there exists u2 ∈ Tu1 such that p(u1, u2) ≤
δp(u0, u1)+Lp(u1, u1), i.e. p(u1, u2) ≤ δp(u0, u1). Hence, T satisfies the (p, δ)-Banach
orbital condition and the result follows from Theorem 4.1. �

Proposition 4.2. Let (X,U) be a complete Hausdorff uniform space, α ∈ [0, 1/2)
and T : X → 2X be a (p, α)-contractively nonspreading mapping. Suppose for each
x ∈ X, p(x, x) = 0. Then, there exists a symmetric w-distance q on X, such that

(4.2.1) T is a (q, α/(1− α))-contraction; and
(4.2.2) there exists x∗ ∈ X such that p(x∗, x∗) = q(x∗, x∗) = 0 and x∗ ∈ Tx∗.

Proof. Similar to the proof of Proposition 4.1. �
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