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Key Words and Phrases: Von Neumann sequences, relatively nonexpansive mappings, best prox-
imity points, fixed points.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

It is well known that if T is a non expansive self map of a closed bounded convex
subset of a uniformly convex Banach space and T (A) is contained in a compact subset,
then the sequence {xn} defined by

xn+1 = (1− αn)xn + αnTxn, αn ∈ (ε, 1− ε), n = 1, 2, . . .

and ε > 0 given, converges to a fixed point of T . In [1], the authors have obtained a
convergence result based on the Krasnoselkii iteration

xn+1 =
xn + Txn

2

for relatively nonexpansive mappings T : A ∪B → A ∪B, satisfying
i) T (A) ⊆ A and T (B) ⊆ B and
ii) ‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x ∈ A, y ∈ B.

These results are interesting because such mappings need not be nonexpansive, in fact
they need not be even continuous. In this paper we use the Mann’s iterative process
to obtain an extended version of Theorem 2.3 of [1], where the initial point belongs
to A0, which is contained in the boundary of the set A. We also discuss a stronger
iteration which converges to a fixed point in a Hilbert space setting. Here the initial
point is chosen arbitrarily. To prove our result, we assume the convergence of von
Neumann sequences.
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We state some of the results proved in that paper. Before that we give some basic
notations. Define

PA(x) = {y ∈ A : ‖x− y‖ = d(x,A)};
dist(A,B) = inf{‖x− y‖ : x ∈ A, y ∈ B};
A0 = {x ∈ A : ‖x− y′‖ = dist (A,B) for some y′ ∈ B} ;

B0 = {y ∈ B : ‖x′ − y‖ = dist (A,B) for some x′ ∈ A} .

PA(x) is singleton when A is a closed convex subset of a strictly convex and reflexive
space, and if A and B are closed, convex subsets of a reflexive space with one of them
being bounded, then A0 is nonempty.

Now let us see some basic concepts and known results which are related to our
work.

Let A and B be nonempty subsets of a Banach Space X.
A mapping T : A ∪B → A ∪B is relatively non expansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x ∈ A, y ∈ B.
These type of mappings were studied in [1].

Example 1.1. Let X = R, A = [−2,−1], B = [1, 2].
Define T1 and T2 on A and B respectively by

T1(x) = x+
(1− |2x+ 3|)

2
and T2(x) = x− (1− |2x− 3|)

2
.

Then both T1 and T2 are self maps on A and B. Now let x ∈ A and y ∈ B,

|T1(x)− T2(y)| = |x− y + 1/2(2− |2x+ 3| − |2y − 3|)|
≤ |x− y|,

since x − y is ≤ 0 and both |2x + 3|, |2y − 3| are ≤ 1. Here both T1 and T2 are not
nonexpansive.

Theorem 1.2. [1] Let A and B be nonempty closed convex bounded subsets of a
uniformly convex Banach Space. Let T : A ∪B → A ∪B satisfy

(i) T (A) ⊆ B and T (B) ⊆ A; and

(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B.
Then there exists (x, y) ∈ A×B such that ‖x− Tx‖ = ‖y − Ty‖ = dist (A,B) .

Such a point ’x’ is called as a best proximity point.

Theorem 1.3. [1] Let A and B be nonempty closed convex bounded subsets of a
uniformly convex Banach Space. Suppose T : A ∪B → A ∪B satisfies

(i) T (A) ⊆ A and T (B) ⊆ B; and

(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B.
Then there exist x0 ∈ A and y0 ∈ B such that

Tx0 = x0, T y0 = y0, and ‖x0 − y0‖ = dist (A,B) .
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The following three results based on Mann’s iteration process are well known.

Theorem 1.4. [6] Let K be a nonempty bounded closed convex subset of a uniformly
convex Banach space and suppose T : K → K is a non-expansive mapping. Let
x0 ∈ K and define

xn+1 = (1− αn)xn + αnTxn, αn ∈ (ε, 1− ε), n = 1, 2, . . .

and ε > 0 given. Then
lim
n
‖xn − Txn‖ = 0.

Moreover, if T (K) lies in a compact set, {xn} converges to a fixed point of T.

Theorem 1.5. [1] Let A and B be nonempty bounded closed convex subsets of a
uniformly convex Banach space and suppose T : A ∪B → A ∪B satisfies

(i) T (A) ⊆ A and T (B) ⊆ B; and

(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B.

Let x0 ∈ A0. Define xn+1 =
xn + Txn

2
, n = 1, 2, . . .. Then

lim
n
‖xn − Txn‖ = 0.

Moreover, if T (A) lies in a compact set, {xn} converges to a fixed point of T.

Proposition 1.6. [4] If X is a uniformly convex space and α ∈ (0, 1) and ε > 0, then
for any d > 0, if x, y ∈ X are such that ‖x‖ ≤ d, ‖y‖ ≤ d, ‖x− y‖ ≥ ε, then there

exists δ = δ
( ε
d

)
> 0 such that

‖αx+ (1− α) y‖ ≤
(

1− 2δ
( ε
d

)
min (α, 1− α)

)
d.

Suppose X is a Hilbert Space and A is a closed convex subset of X. Then for any
x ∈ X, PA(x) is the unique point of A which is nearest to x. It is well known that
PA is nonexpansive and characterized by the Kolmogorov’s criterion:
〈x− PAx, PAx− z〉 ≥ 0, for allx ∈ X and z ∈ A.

Let A and B be two closed convex subsets of X. Suppose we define

P (x) = PA(PB(x)) for each x ∈ X,
then the sequences {Pn(x)} ∈ A and {PB(Pn(x))} ∈ B. These sequences were first
studied by von Neumann [7], who proved that both the sequences converges in norm
whenever A and B are closed subspaces. The sequences {Pn(x)} and {PB(Pn(x))}
are called von Neumann sequences or alternating projection algorithm for two sets.

The norm convergence of {Pn(x)} when A and B are arbitrary closed convex
subsets was an open problem before it was answered in negative by Hundal in [5].
However, one can find some positive results when the sets A or B is boundedly
compact. We summarize below some of the important facts from [3]:
(i) {Pn(x)} converges weakly to some y0 ∈ A0 and {PB(Pn(x))} converges weakly
to some w0 ∈ B0.
(ii) Pn(x)− PB(Pn(x))→ y0 − w0.
(iii) Pn(x), PB(Pn(x)) converges in norm whenever A or B is boundedly compact.
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The most general result for the norm convergence was given by Bauschke and Borwein
in [3].

Definition 1.7. [3] Let A and B be nonempty closed convex subsets of a Hilbert
space X. We say that (A,B) is boundedly regular if for each bounded subset S of X
and for each ε > 0 there exists δ > 0 such that

max{d(x,A), d(x,B − v)} ≤ δ ⇒ d(x,B) ≤ ε ∀x ∈ X,

where v = P B−A (0), the displacement vector from A to B. (v is the unique vector
satisfying ‖v‖ = dist(A,B)).

Theorem 1.8. [3] If (A,B) is boundedly regular, then the von Neumann sequences
converges in norm.

Theorem 1.9. [3] If A or B is boundedly compact, then (A,B) is boundedly regular.

Lemma 1.10. [2] Let A be a nonempty closed and convex subset and B be nonempty
closed subset of a uniformly convex Banach space. Let {xn}and{zn} be sequences in
A and {yn} be a sequence in B satisfying:
(i) ‖xn − yn‖ → dist(A,B), and
(ii) ‖zn − yn‖ → dist(A,B). Then ‖xn − zn‖ converges to zero.

Proposition 1.11. [1] Let A and B be two closed and convex subsets of a Hilbert
space X. Then PB (A) ⊆ B, PA (B) ⊆ A, and ‖PBx− PAy‖ ≤ ‖x− y‖ for x ∈ A and
y ∈ B.

Lemma 1.12. Let A and B be two closed convex subsets of a Hilbert Space X. For
each x ∈ X,

‖Pn+1(x)− z‖ ≤ ‖Pn(x)− z‖, for each z ∈ A0 ∪B0.

Proof. The lemma follows from proposition [1.11] and from the fact that PA is non-
expansive. �

2. Main Results

Theorem 2.1. Let A and B be nonempty bounded closed convex subsets of a uni-
formly convex Banach space and suppose T : A ∪B → A ∪B satisfies
(i) T (A) ⊆ A and T (B) ⊆ B; and
(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B.
Let x0 ∈ A, and define

xn+1 = (1− αn)xn + αnTxn, αn ∈ (ε, 1− ε),

where ε ∈ (0, 1/2] and n = 1, 2, . . .. Suppose d(xn, A0)→ 0, then

lim
n
‖xn − Txn‖ = 0.

Moreover, if T (A) lies in a compact set, {xn} converges to a fixed point of T.
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Proof. If dist (A,B) = 0, then A0 = B0 = A ∩ B and the conclusion follows from
Theorem 1.4 and the fact that T : A∩B → A∩B is nonexpansive. So let us assume
that dist (A,B) > 0. By Theorem 1.3 there exists y ∈ B0 such that Ty = y. Since
{‖xn − y‖} is nonincreasing, there exists d > 0 such that lim

n
‖xn − y‖ = d.

Suppose there exists a subsequence {xnk
} of {xn} and an ε > 0 such that

‖xnk
− Txnk

‖ ≥ ε > 0 for all k.
Since the modulus of convexity δ of X is an increasing function (and continuous) it
is possible to choose ξ > 0 so small such that(

1− cδ
(

ε

d+ ξ

))
(d+ ξ) < d, where c > 0.

Choose k, such that ‖xnk
− y‖ ≤ d+ ξ. From proposition 1.1,

‖y − xnk+1
‖ = ‖y − ((1− αn)xnk

+ αnTxnk
)‖

= ‖(1− αn)y + αny − ((1− αn)xnk
+ αnTxnk

)‖
= ‖(1− αn)(y − xnk

) + αn(y − Txnk
)‖

≤
(

1− 2δ

(
ε

d+ ξ

)
min{αn, 1− αn}

)
(d+ ξ).

Since we can find l > 0 such that 2 ·min{αn, 1− αn} ≥ l,(
1− 2δ

(
ε

d+ ξ

)
min{αn, 1− αn}

)
(d+ ξ) ≤

(
1− lδ

(
ε

d+ ξ

))
(d+ ξ).

By choosing ξ > 0 as small as we wish, we get(
1− lδ

(
ε

d+ ξ

))
(d+ ξ) < d,

a contradiction. This proves that

lim
n
‖xn − Txn‖ = lim

n
‖xn − xn+1‖ = 0.

If T (A) is compact then {xn} has a subsequence {xnk
} that converges to a point

z ∈ A.
Since lim

n
‖xn − Txn‖ = 0, ‖Txn − y‖ → d, for any y ∈ B0.

As d(xn, A0)→ 0, ∃ an ∈ A0 such that ‖xn − an‖ → 0.

∴ ank
→ z, which implies z ∈ A0.

Thus ∃ w ∈ B0 such that ‖z − w‖ = d(A,B).
But ‖xn − w‖ → ‖z − w‖ = d(A,B) = d. ∴ xn → z.
Also, ‖Txn−w‖ → d(A,B) and ‖Txn−Tw‖ ≤ ‖xn−w‖ → d(A,B), giving Tw = w.
It follows that Tz = z. �

Example 2.2. Let X = R2,

A = {(x, y) : −2 ≤ x ≤ −1,−1 ≤ y ≤ 1} and

B = {(x, y) : 1 ≤ x ≤ 2,−1 ≤ y ≤ 1}.
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Define

T : A→ A by T (x, y) =

(
x− 2

3
,−y

)
and

T : B → B by T (x, y) =

(
x+ 2

3
,−y

)
.

Let (x, y) ∈ A , (x′, y′) ∈ B. Then,

‖T (x, y)− T (x′, y′)‖ =

∥∥∥∥(x− 2

3
,−y

)
−
(
x′ + 2

3
,−y′

)∥∥∥∥
=

∥∥∥∥x− x′ − 4

3
, y′ − y

∥∥∥∥
=

√(
x− x′ − 4

3

)2

+ (y′ − y)2

≤
√

(x− x′)2 + (y − y′)2, since x′ − x ≥ 2.

∴ ‖T (x, y)− T (x′, y′)‖ ≤
√

(x− x′)2 + (y − y′)2.

Hence T is a relatively non-expansive mapping.
Let (x, y) ∈ A and set x1 = (1− α1)x+ α1Tx.
We have

Tx =
x− 2

3
.

∴ x1 =
x(3− 2α1)− 2α1

3

Now,

Tx1 =
x1 − 2

3
=
x(3− 2α1)− 2α1 − 6

9

We have, x2 = (1− α2)x− 1 + α2Tx1

∴ x2 =
x(3− 2α1)(3− 2α2)− 2α1(3− 2α1)− 6α2

9

In general,

xn =
1

3n

{
x(3− 2α1)...(3− 2αn)− 2α1(3− 2α2)...(3− 2αn)− 2.3α2(3− 2α3)

...(3− 2αn)− · · · · · · − 2.3n−2αn−1(3− 2αn)− 2.3n−1αn

}
To see xn → −1, set

βn = 2α1(3− 2α2)...(3− 2αn) + 2.3α2(3− 2α3)...(3− 2αn) + 2.32α3(3− 2α4)

...(3− 2αn) + ......+ 2.3n−2αn−1(3− 2αn) + 2.3n−1αn.
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Then

xn =
x(3− 2α1)(3− 2α2)...(3− 2αn)− βn

3n

=
1

3n
(x(3− 2α1)(3− 2α2)...(3− 2αn))− βn

3n
.

Since αn ≥ ε for all n,
(3− 2α1)(3− 2α2)...(3− 2αn)

3n
→ 0.

Now, 3n − 2.3n−1αn = 3n−1(3− 2αn).

∴ 3n − 2.3n−1αn − 2.3n−2αn−1(3− 2αn) = 3n−1(3− 2αn)− 2.3n−2αn−1(3− 2αn)

= 3n−2(3− 2αn)(3− 2αn−1)

Inductively.,
3n − βn = (3− 2αn)(3− 2αn − 1)...(3− 2α1).

∴
3n − βn

3n
=

(3− 2αn)(3− 2αn − 1)...(3− 2α1)

3n
,

which converges to 0.

Thus
βn
3n
→ to 1.

∴ xn =
x(3− 2α1)(3− 2α2)...(3− 2αn)

3n
− βn

3n
→ −1.

Also, yn = y(1− 2α1)(1− 2α2)...(1− 2αn)→ 0.
Hence (xn, yn)→ (−1, 0), which is a fixed point for T .
In a similar fashion we can show that if (x′, y′) ∈ B, then (x′n, y

′
n)→ (1, 0), which is

also a fixed point for T .

Corollary 2.3. Let A and B be nonempty bounded closed convex subsets of a uni-
formly convex Banach space and suppose T : A ∪B → A ∪B satisfies

(i) T (A) ⊆ A and T (B) ⊆ B; and

(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B.
Let x0 ∈ A0, and define xn+1 = (1 − αn)xn + αnTxn, αn ∈ (ε, 1 − ε), n = 1, 2, . . .
and ε > 0 given. Then lim

n
‖xn − Txn‖ = 0. Moreover, if T (A) lies in a compact set,

{xn} converges to a fixed point of T .

The following modification of Example 1.1 shows it was necessary to choose the
initial point x0 in A0. Let X=R, A = [−2, 0] and B = [1, 2].
Define T : AUB → AUB by

T (x) = x+
(1− |2x+ 3|)

2
, x ∈ [−2,−1)

T (−1) = 0

T (x) = x, x ∈ (−1, 0]

T (x) = x− (1− |2x− 3|)
2

, x ∈ [1, 2].
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Then it is easy to see that ‖Tx − Ty‖ ≤ ‖x − y‖ ∀x ∈ A, y ∈ B. Also T is not
continuous, if x0 ∈ [−2,−1], then xn → −1, which is not a fixed point.
In the next result, we shall give a stronger algorithm in a Hilbert Space setting, where
the initial point can be chosen arbitrarily.

Theorem 2.4. Let A and B be two nonempty bounded closed convex subsets of a
Hilbert space such that (A,B) is boundedly regular. Suppose T : A ∪ B → A ∪ B
satisfies

(i) T (A) ⊆ A and T (B) ⊆ B; and
(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for x ∈ A, y ∈ B. Let x0 ∈ A, and define

xn+1 = Pn ((1− αn)xn + αnTxn) , n = 1, 2, . . . , αn ∈ (ε, 1− ε) .

Then lim
n
‖xn − Txn‖ = 0. Moreover, if T (A) lies in a compact set, {xn} converges

to a fixed point of T.

Proof. If dist (A,B) = 0, then A0 = B0 = A ∩ B and T : A ∩ B → A ∩ B is
nonexpansive with xn+1 = Pn ((1− αn)xn + αnTxn) = (1− αn)xn + αnTxn, the
usual Mann’s iteration. So we assume dist (A,B) > 0. By Theorem 1.3 there exists
y ∈ B0 such that Ty = y.

Now, ‖xn+1 − y‖ = ‖Pn ((1− αn)xn + αnTxn)− y‖
≤ ‖ (1− αn)xn + αnTxn − y‖
= ‖ (1− αn)xn + αnTxn − ((1− αn) y + αny) ‖
= ‖ (1− αn)xn + αnTxn − ((1− αn) y + αnTy) ‖
= ‖ (1− αn) (xn − y) + αn (Txn − Ty) ‖
≤ (1− αn) ‖xn − y‖+ αn‖Txn − Ty‖
≤ ‖xn − y‖

Thus, |xn+1 − y‖ ≤ ‖xn − y‖

Hence {‖xn − y‖} is a non-increasing sequence and limn ‖xn − y‖ = d > 0.
As in the proof of Theorem 1.1, ‖xn−Txn‖ and ‖xn−xn+1‖ converges to 0. If T (A)
is compact then {xn} has a subsequence {xnk

} that converges to a point v0 ∈ A. Also
{Txnk

} converge to v0. Now,

‖Txnk
− T (PB(v0))‖ ≤ ‖xnk

− PB(v0)‖

which implies

‖v0 − T (PB(v0))‖ ≤ ‖v0 − PB(v0)‖.
Hence T (PB(v0)) = PB(v0).
Also,

‖T (P (v0))− PB(v0)‖ = ‖T (P (v0))− T (PB(v0))‖ ≤ ‖P (v0)− PB(v0)‖.

So T (P (v0)) = P (v0).
Now,

‖TPB((P (v0))− P (v0)‖ = ‖TPB((P (v0))− T (P (v0))‖ ≤ ‖PB(P (v0))− P (v0)‖.
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Thus TPB((P (v0)) = PB(P (v0)).
Indeed for any n, T (Pn(v0)) = Pn(v0) and T (PB(Pn(v0))) = PB(Pn(v0). By Theo-
rem 1.8, for each x ∈ A the sequence {Pn(x)} converges to some u(x) ∈ A0.

Now, ‖u(v0)− PB(u(v0))‖ ≤ lim
n→∞

‖T (u(v0))− PB(Pn(v0))‖

= lim
n→∞

‖T (u(v0))− T (PB(Pn(v0)))‖

≤ lim
n→∞

‖u(v0)− PB(Pn(v0))‖

= ‖u(v0)− PB(u(v0))‖.

So

‖T (u(v0))− PB(u(v0))‖ = ‖u(v0)− PB(u(v0))‖.

Therefore T (u(v0)) = u(v0) and similarly T (PB(u(v0)) = PB(u(v0)).
Define gn : A→ R by gn(x) = ‖Pn(x)− u(x)‖.
Since ‖u(x)−u(y)‖ = lim

n→∞
‖Pn(x)−Pn(y)‖ ≤ ‖x−y‖|, u is continuous. Thus gn(x)

is continuous and converges pointwise to zero. Since u(x) ∈ A0, by lemma (1.12),
gn+1 ≤ gn. Therefore gn converges uniformly on the compact set

S = [{(1− αnk
)xnk

+ αnk
Txnk

}U{v0}] .

∴ lim
k→∞

‖Pnk ((1− αnk
)xnk

+ αnk
Txnk

)− u ((1− αnk
)xnk

+ Txnk
) ‖ = 0.

Since u ((1− αn)xnk
+ αnTxnk

)→ u(v0), we have xnk+1
→ u(v0).

∴ lim
n
‖xn − PB(u(v0))‖ = lim

k
‖xnk+1

− PB(u(v0))‖ = d(A,B).

By Lemma 1.10 xn → u(v0), which implies u(v0) = v0.
Therefore Tv0 = Tu(v0) = u(v0) = v0.
This completes the proof. �

Suppose X is a Hilbert space and let T be as in Theorem 1.2. Consider

PAT : A→ A and PBT : B → B

From Proposition 1.11, ‖PAT (x) − PBT (y)‖ ≤ ‖x − y‖ for x ∈ A and y ∈ B, by
Theorem 2.1 and Theorem 2.4 we have the following two results on convergence of
best proximity points.

Corollary 2.5. Let A and B be nonempty, closed, bounded and convex subsets of a
Hilbert space X. Let T be as in Theorem 1.2. If T (A) is mapped into a compact subset
of B, then for any x0 ∈ A0 the sequence defined by xn+1 = (1− αn)xn +αnPA (Txn)
converges to x in A0 such that ‖x− Tx‖ = d(A,B).

Corollary 2.6. Let A and B be nonempty, closed, bounded and convex subsets of
a Hilbert space X. Let T be as in Theorem 1.3. If T (A) is mapped into a compact
subset of B, then for any x0 ∈ A the sequence defined by xn+1 = Pn((1− αn)xn +
αnPA (Txn)) converges to x in A0 such that ‖x− Tx‖ = d(A,B).
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