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Abstract. We consider multi-valued maps defined on a complete gauge space endowed with a

directed graph. We establish a fixed point result for maps which send connected points into connected

points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated

function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an

H-IIFS. Finally, we apply our fixed point result for multi-valued contractions on gauge spaces

endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we

construct a suitable gauge space endowed with a graph G and a suitable multi-valued G-contraction

such that its fixed points are sub-attractors of the H-IIFS.
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