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1. Introduction and preliminaries

Let X be a nonempty set and T : X → X be a mapping. By a fixed point of T ,
we understand a point x ∈ X such that

x = Tx.

The set of all fixed points of T is denoted by Fix(T ). In 1976, Caristi [2] proved the
following fixed point theorem in a metric space which is an extension of the well-known
Banach fixed point theorem.
Theorem C. Let (X, d) be a complete metric space and let T : X → X be a mapping
such that

d(x, Tx) + f(Tx) ≤ f(x) ∀x ∈ X,
where f : X → (−∞,∞] is a proper, bounded below and lower semicontinuous func-
tion. Then there exists u ∈ Fix(T ) such that f(u) <∞.

There are many results related to Theorem C. One of them we concern is the
following result proved by Du and Karapinar.

1Corresponding author.
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Theorem DK1. ([3, Theorem 3.4]) Let M be a nonempty subset of a metric space
(X, d). Let f : M → (−∞,∞] be a proper and bounded below function and ϕ : R →
(0,∞) be a nondecreasing function. Suppose that T : M →M is a mapping of Caristi
type dominated by ϕ and f , that is,

d(x, Tx) ≤ ϕ(f(x))(f(x)− f(Tx)) ∀x ∈M. (DK1)

Assume that M is closed and X is complete, and one of the following conditions is
satisfied:

(D1) T is continuous;
(D2) G(T ) := {(x, Tx) : x ∈M} is closed in M ×M ;
(D3) The function x 7→ g(x) := d(x, Tx) is lower semicontinuous.

Then, for any u ∈ M with f(u) < ∞, the sequence {Tnu} converges to a fixed point
of T .

It is clear that if ϕ(t) = 1 for all t ∈ R, then the mapping of Caristi type in
(DK1) of Theorem DK1 becomes the mapping in Theorem C. As mentioned by Du
and Karapinar [3], Theorem DK1 is different from Theorem C because it does not
require the lower semicontinuity of the dominated function f . Moreover, Theorem
DK1 is applied to conclude an interesting fixed point theorem for MT -contractions
due to Mizoguchi–Takahashi [7].
Remark 1.1. Let us discuss the statements of Theorem DK1.

(1) It suffices to consider (M,d) as a complete metric space.
(2) The quantity ϕ(f(x)) in the condition (DK1) is not defined unless f(x) <∞

because ∞ does not belong to the domain of ϕ. The term f(x) − f(Tx) in
the condition (DK1) is not determined if f(x) = f(Tx) = ∞. To illustrate
this, let X = [−1, 1] be equipped with the usual metric and T : X → X
be defined by Tx = x

2 for all x ∈ X. Let f : X → [0,∞] be defined by
f(x) = 2d(x, Tx) if x ∈ [0, 1] and f(x) =∞ if x ∈ [−1, 0) and ϕ(t) = 1 for all
t ∈ [0,∞]. However, it does not effect the proof given there. So we assume in
the ststement of Theorem DK1 that f is finite everywhere.

In the paper of Du and Karapinar [3], they also discuss the situation that T does
not have a fixed point. Let us recall the setting for this problem: Suppose that A and
B are nonempty subsets of a metric space (X, d). Now we are interested in the cyclic
mapping T : A ∪B → A ∪B, that is, T satisfies

T (A) ⊂ B and T (B) ⊂ A.

By a best proximity point of T , we understand a point x ∈ A ∪B such that

d(x, Tx) = D(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

The set of all best proximity points of T is denoted by BP(T ). If A = B = X, then
D(A,B) = 0 and hence BP(T ) = Fix(T ). In the other word, the problem of finding
a best proximity point includes that of finding a fixed point as a special case.

The following result is analogous to Theorem DK1 in this situation.
Theorem DK2. ([3, Theorem 2.2]) Let A and B be nonempty subsets of a met-
ric space (X, d). Let f : A ∪ B → R be a proper and bounded below function and
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ϕ : R → (0,∞) be a nondecreasing function. Suppose that T : A ∪ B → A ∪ B is a
cyclic mapping of Caristi type dominated by ϕ and f , that is, it is cyclic and satisfies

d(x, Tx)−D(A,B) ≤ ϕ(f(x))(f(x)− f(Tx)) ∀x ∈ A ∪B. (DK2)

Suppose that one of the following conditions is satisfied:

(H1) T is continuous on A ∪B;

(H2) d(Tx, Ty) ≤ d(x, y) for all (x, y) ∈ A×B;

(D3) The function x 7→ g(x) := d(x, Tx) is lower semicontinuous.

Let x0 ∈ A. Then the following statements hold true.

(a) If {T 2nx0} has a convergent subsequence in A, then there exists x̂ ∈ A such
that d(x̂, T x̂) = D(A,B).

(b) If {T 2n+1x0} has a convergent subsequence in B, then there exists x̂ ∈ B such
that d(x̂, T x̂) = D(A,B).

2. Main results

First, we start with a result of Eisenfeld and Lakshmikantham ([4]) in the setting
of cyclic mappings.

Theorem 2.1. Let (X, d) be a metric space and A,B be two nonempty subsets of
X. Let T : A ∪ B → A ∪ B be a cyclic mapping. Then the following statements are
equivalent.

(i) There exists a function f : A ∪B → [0,∞) such that

d(x, Tx)−D(A,B) ≤ f(x)− f(Tx) ∀x ∈ A ∪B.

(ii)

∞∑
n=0

(d(Tnx, Tn+1x)−D(A,B)) <∞ for all x ∈ A ∪B.

Proof. (i) ⇒ (ii) Assume that (i) holds. Let x ∈ A ∪ B. Since Tn+1x = T (Tnx), we
have

d(Tnx, Tn+1x)−D(A,B) ≤ f(Tnx)− f(Tn+1x) ∀n ≥ 0.

Hence f(Tn+1x) ≤ f(Tnx) for all n ≥ 0. Then lim
n→∞

f(Tnx) = α for some α ≥ 0.

Then
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∞∑
n=0

(d(Tnx, Tn+1x)−D(A,B))

= lim
k→∞

k∑
n=0

(d(Tnx, Tn+1x)−D(A,B))

≤ lim
k→∞

k∑
n=0

(f(Tnx)− f(Tn+1x))

= lim
k→∞

(f(x)− f(Tn+1x))

= f(x)− lim
k→∞

f(T k+1x)

= f(x)− α <∞.

(ii) ⇒ (i) Assume that (ii) holds. Define a function f : A ∪B → [0,∞) by

f(x) =

∞∑
n=0

(d(Tnx, Tn+1x)−D(A,B)) ∀x ∈ A ∪B.

Note that, for each k ∈ N, we have

d(x, Tx)−D(A,B)

=

k+1∑
n=0

(d(Tnx, Tn+1x)−D(A,B))−
k∑

n=0

(d(Tn+1x, Tn+2x)−D(A,B)).

Moreover,

lim
k→∞

k+1∑
n=0

(d(Tnx, Tn+1x)−D(A,B)) = f(x)

and

lim
k→∞

k∑
n=0

(d(Tn+1x, Tn+2x)−D(A,B)) = f(Tx).

Hence

d(x, Tx)−D(A,B) = f(x)− f(Tx).

This completes the proof. �
Setting A = B = X in Theorem 2.1 gives the following corollary which is a result

in [4] (see also [1]).
Corollary 2.2. Let (X, d) be a metric space and let T : X → X be any mapping.
Then the following statements are equivalent.

(i) There exists a function f : X → [0,∞) such that

d(x, Tx) ≤ f(x)− f(Tx) ∀x ∈ X.

(ii)

∞∑
n=0

d(Tnx, Tn+1x) <∞ for all x ∈ X.
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Let X be a set and T : X → X. Let x0 ∈ X. By O(x0,∞), we denote the set

O(x0,∞) = {x0, Tx0, T 2x0, . . .}.
Definition 2.3. Let (X, d) be a metric space, T : X → X and x0 ∈ X. A function
g : X → [0,∞) is said to be T -orbitally lower semicontinuous at x0 if {xn} is a
sequence in O(x0,∞) and lim

n→∞
xn = x∗ ∈ X implies g(x∗) ≤ lim inf

n→∞
g(xn).

Lemma 2.4. Let (X, d) be a metric space. Suppose that T : X → X and x0 ∈ X. If
{yn} is a sequence in O(x0,∞) such that lim

n→∞
yn = y ∈ X, then one of the following

statements holds.

(a) There exists a subsequence {ynk
} of {yn} such that {ynk

} is a subsequence of
{Tnx0}. In particular, there is a strictly increasing sequence {pk} of natural
numbers such that ynk

= T pkx0 for all k ∈ N.
(b) There exists N ∈ N such that yn = y for all n ≥ N .

Proof. Assume that {yn} is a sequence in O(x0,∞) and lim
n→∞

yn = y ∈ X. For each

n ∈ N, let m(n) be the smallest number k such that T kx0 = yn. We consider the set

K = {m(n) : n ∈ N}.
Case 1. K is an infinite set. So, there exists a strictly increasing sequence {nk} on N
such that m(nk) < m(nk+1) for all k ∈ N. Hence {ynk

} is a subsequence of {Tnx0}.
Case 2. K is a finite set. Since {yn} is a sequence in a finite set {T jx0 : j ∈ K} and
yn converges to y, there exist k ∈ K and N ∈ N such that yn = T kx0 for all n ≥ N .
Hence y = T kx0 and the conclusion follows. �

For a sequence {zn} in a metric space (X, d), we define

ω({zn}) =

{
z ∈ X : z = lim

k→∞
znk

for some subsequence {znk
} of {zn}

}
.

Theorem 2.5. Let A and B be nonempty subsets of a metric space (X, d). Assume
that T : A ∪ B → A ∪ B is a cyclic mapping and f : A ∪ B → [0,∞]. Suppose that
there exists an x0 ∈ A ∪B such that f(x0) <∞ and

d(y, Ty)−D(A,B) ≤ f(y)− f(Ty) ∀y ∈ O(x0,∞).

Then the following statements hold.

(a)

∞∑
n=0

(d(Tnx0, T
n+1x0)−D(A,B)) <∞.

(b) If ω({Tnx0}) = ∅, then g(x) := d(x, Tx) is T -orbitally lower semicontinuous
at x0.

(c) Assume that ω({Tnx0}) 6= ∅. Then the following statements are equivalent.
(i) ω({Tnx0}) ⊂ BP(T ).
(ii) ω({Tnx0}) ⊂ A ∪ B and g(x) := d(x, Tx) is T -orbitally lower semicon-

tinuous at x0.

Proof. (a) We can follow the proof of Theorem 2.1
(b) Suppose that ω({Tnx0}) = ∅. Let {yn} be a sequence in O(x0,∞) such that

lim
n→∞

yn = y
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for some y ∈ X. It follows from Lemma 2.4 that there exists N ∈ N such that
g(yn) = g(y) for all n ≥ N , that is, g is T -orbitally lower semicontinuous at x0.

(c) Suppose that ω({Tnx0}) 6= ∅.
(i) ⇒ (ii) Assume that ω({Tnx0}) ⊂ BP(T ). It is clear that ω({Tnx0}) ⊂ A ∪ B.

Let {yn} be a sequence in O(x0,∞) such that lim
n→∞

yn = y for some y ∈ X.

By Lemma 2.4, we consider the following two cases.
Case 1. There exists a subsequence {ynk

} of {yn} such that {ynk
} is a subsequence

of {Tnx0}. Then

y ∈ ω({Tnx0}) ⊂ BP(T ).

Hence

g(y) = d(y, Ty) = D(A,B) ≤ lim inf
n→∞

d(yn, T yn) = lim inf
n→∞

g(yn).

Case 2. There exists N ∈ N such that yn = y for all n ≥ N . Hence g(yn) = g(y) for
all n ≥ N .

Therefore, g is T -orbitally lower semicontinuous at x0.
(ii) ⇒ (i) Suppose that ω({Tnx0}) ⊂ A∪B and g is T -orbitally lower semicontin-

uous at x0. Let y ∈ ω({Tnx0}). So y ∈ A ∪ B. We show that d(y, Ty) = D(A,B).
Since y ∈ ω({Tnx0}) there exists a subsequence {Tnkx0} of {Tnx0} such that

lim
k→∞

Tnkx0 = y.

It follows from the T -obitally lower semicontinuity of g at x0 that

d(y, Ty) = g(y)

≤ lim inf
k→∞

g(Tnkx0)

= lim inf
k→∞

d(Tnkx0, T (Tnkx0))

= lim inf
k→∞

d(Tnkx0, T
nk+1x0)

= lim
n→∞

d(Tnx0, T
n+1x0) = D(A,B).

Hence y ∈ BP(T ). Therefore, ω({Tnx0}) ⊂ BP(T ). �
Remark 2.6. In the setting of Theorem 2.5, if g(x) := d(x, Tx) is T -orbitally lower
semicontinuous at x0, then

(a) ω({Tnx0}) ∩ (A ∪B) ⊂ BP(T ),
(b) (ω({T 2n+1x0}) ∩A) ∪ (ω({T 2nx0}) ∩B) ⊂ Fix(T ) provided that x0 ∈ A.

Proof. (a) It follows directly from Theorem 2.5(c).
(b) Assume that x0 ∈ A. Then {T 2nx0} is a sequence in A and {T 2n+1x0} is a

sequence in B. If

(ω({T 2n+1x0}) ∩A) ∪ (ω({T 2nx0}) ∩B) = ∅,

then we are done. Suppose that y ∈ ω({T 2n+1x0}) ∩ A. Then there exists a subse-
quence {T 2nk+1x0} of {T 2n+1x0} such that lim

k→∞
T 2nk+1x0 = y ∈ A. Then

D(A,B) ≤ lim
k→∞

d(y, T 2nk+1x0) = 0.
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It follows from (a) that y ∈ BP(T ) = Fix(T ), that is, (ω({T 2n+1x0}) ∩ A) ⊂ Fix(T ).
Similarly, we have (ω({T 2nx0}) ∩B) ⊂ Fix(T ). This completes the proof. �

We deduce the following result due to Bollenbacher and Hicks (see [1, Theorem 3]).
Corollary 2.7. Let (X, d) be a metric space and let x0 ∈ X. Suppose that f : X →
[0,∞) is any function and T : X → X is a mapping such that

d(y, Ty) + f(Ty) ≤ f(y) ∀y ∈ O(x0,∞).

Suppose that every Cauchy sequence in O(x0,∞) converges to an element in X. Then
the following statements are true.

(a) There exists an element x̂ ∈ X such that x̂ = lim
n
Tnx0.

(b) x̂ ∈ Fix(T ) if an only if g(x) := d(x, Tx) is T -orbitally lower semicontinuous
at x0.

Proof. Setting A = B = X in Theorem 2.5 gives D(A,B) = 0 and BP(T ) = Fix(T ).

It follows from (a) of Theorem 2.5 that

∞∑
n=0

d(Tnx0, T
n+1x0) < ∞, that is, {Tnx0}

is a Cauchy sequence in O(x0,∞). Hence lim
n→∞

Tnx0 = x̂ for some x̂ ∈ X and hence

ω({Tnx0}) = {x̂}. Moreover, by (c) of Theorem 2.5, we have x̂ ∈ Fix(T ) if an only if
g(x) = d(x, Tx) is T -orbitally lower semicontinuous at x0. �

Before we show that Theorem DK2 (and hence Theorem DK1) follows from our
Theorem 2.5, we observe the following facts.
Lemma 2.8. Let (X, d) be a metric space, T : X → X and x0 ∈ X. Define

g(x) = d(x, Tx) for all x ∈ X.

Then the following statements hold.

(a) If T is continuous, then g is lower semicontinuous and

G(T ) := {(x, Tx) : x ∈ X}

is closed in X ×X.
(b) If g is lower semicontinuous, then g is T -orbitally lower semicontinuous at

x0.

Proof. The proof is straightforward, so it is omitted. �
Lemma 2.9. Let (X, d) be a metric space and x0 ∈ X. Suppose that T : X → X is a
mapping such that lim

n→∞
d(Tnx0, T

n+1x0) = 0. If G(T ) := {(x, Tx) : x ∈ X} is closed

in X ×X, then g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0.
Proof. Let {yn} be a sequence in O(x0,∞) such that lim

n→∞
yn = y for some y ∈ X.

By Lemma 2.4, we consider the following two cases.
Case 1. There exists a subsequence {ynk

} of {yn} such that {ynk
} is a subsequence

of {Tnx0}. Note that lim
k→∞

d(ynk
, T ynk

) = 0. Since lim
k→∞

d(ynk
, y) = 0, we have

lim
k→∞

d(Tynk
, y) = 0. Since G(T ) is closed, we have (y, y) ∈ G(T ), that is, y = Ty.

Then

g(y) = d(y, Ty) = 0 ≤ lim inf
n→∞

d(yn, T yn) = lim inf
n→∞

g(yn).
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Case 2. There exists N ∈ N such that yn = y for all n ≥ N . Hence

g(y) = d(y, Ty) = lim inf
n→∞

d(yn, T yn) = lim inf
n→∞

g(yn).

Therefore, g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0. �
Lemma 2.10. Let A and B be nonempty subsets of a metric space (X, d) and x0 ∈
A ∪B. Suppose that T : A ∪B → A ∪B is a cyclic mapping such that

ω({Tnx0}) ⊂ A ∪B and lim
n→∞

d(Tnx0, T
n+1x0) = D(A,B).

If d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B, then g(x) := d(x, Tx) is T -orbitally
lower semicontinuous at x0.
Proof. Let {yn} be a sequence in O(x0,∞) such that lim

n→∞
yn = y for some y ∈ X. It

is obvious that

lim inf
n→∞

g(yn) = lim inf
n→∞

d(yn, T yn) ≥ D(A,B).

By Lemma 2.4, we consider the following two cases.
Case 1. There exists a subsequence {ynk

} of {yn} such that {ynk
} is a subsequence

of {Tnx0}. We may assume without loss of generality that ynk
∈ A for all k ∈ N. We

also assume that there is a strictly increasing sequence {pk} of natural numbers such
that ynk

= T pkx0 for all k ∈ N. Since ω({Tnx0}) ⊂ A∪B and lim
k→∞

ynk
= y, we have

y ∈ A ∪B. Then we consider the following two subcases.
Subcase 1.1. y ∈ A. Then

D(A,B) ≤ d(y, Ty) ≤ lim inf
k→∞

(d(y, T pkx0) + d(T pkx0, T y))

= lim
k→∞

d(y, T pkx0) + lim inf
k→∞

d(T pkx0, T y)

= lim inf
k→∞

d(T (T pk−1x0), T y)

≤ lim inf
k→∞

d(T pk−1x0, y)

≤ lim inf
k→∞

(d(T pk−1x0, T
pkx0) + d(T pkx0, y))

= lim
k→∞

d(T pk−1x0, T
pkx0) + lim

k→∞
d(T pkx0, y)

= lim
n→∞

d(Tnx0, T
n+1x0)

= D(A,B).

Thus g(y) = d(y, Ty) = D(A,B) ≤ lim inf
n→∞

g(yn).

Subcase 1.2. y ∈ B. Since ynk
∈ A for all k ∈ N and lim

n→∞
yn = y ∈ B, we have

D(A,B) = 0. Since lim
n→∞

d(Tnx0, T
n+1x0) = D(A,B), we have

lim
k→∞

d(T pkx0, T
pk+1x0) = D(A,B) = 0.

Hence

lim
k→∞

Tynk
= lim

k→∞
T pk+1x0 = y.



CARISTI-TYPE CYCLIC MAPPINGS 489

Then

d(y, Ty) ≤ lim inf
k→∞

(d(y, Tynk
) + d(Tynk

, T y))

≤ lim inf
k→∞

(d(y, Tynk
) + d(ynk

, y))

≤ lim inf
k→∞

d(y, Tynk
) + lim

k→∞
d(ynk

, y)

= 0.

Thus g(y) = d(y, Ty) = 0 ≤ lim inf
n→∞

g(yn).

Case 2. There exists N ∈ N such that yn = y for all n ≥ N . Hence

g(y) = d(y, Ty) = lim inf
n→∞

d(yn, T yn) = lim inf
n→∞

g(yn).

Therefore, g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0. �
We show that Theorem DK2 follows from our result.

Theorem DK2 (revisited). Let A and B be nonempty subsets of a metric space
(X, d). Let f : A ∪ B → R be a bounded below function and ϕ : R → (0,∞) be a
nondecreasing function. Suppose that T : A ∪ B → A ∪ B is a cyclic mapping of
Caristi type dominated by ϕ and f , that is, it is cyclic and satisfies

d(x, Tx)−D(A,B) ≤ ϕ(f(x))(f(x)− f(Tx)) ∀x ∈ A ∪B. (DK2)

Suppose that one of the following conditions is satisfied:

(H1) T is continuous on A ∪B;
(H2) d(Tx, Ty) ≤ d(x, y) for all (x, y) ∈ A×B;
(D3) The function x 7→ g(x) := d(x, Tx) is lower semicontinuous.

Let x0 ∈ A. Then the following statements hold true.

(a) If {T 2nx0} has a convergent subsequence in A, then there exists x̂ ∈ A such
that d(x̂, T x̂) = D(A,B).

(b) If {T 2n+1x0} has a convergent subsequence in B, then there exists x̂ ∈ B such
that d(x̂, T x̂) = D(A,B).

Proof of Theorem DK2 (revisited) via Theorem 2.5 and Remark 2.6. Let x0 ∈ A.
Then T 2nx0 ∈ A for all n ≥ 0 and T 2n+1x0 ∈ B for all n ≥ 0. Let α = ϕ(f(x0)).
Siunce f is bounded below, there exists a real number m such that f(x) ≥ m for all

x ∈ A ∪B. Define a function f̂ : A ∪B → [0,∞) by

f̂(x) = αf(x)− αm for all x ∈ A ∪B.
Then, for each n ∈ N ∪ {0}, we have

0 ≤ d(Tnx0, T
n+1x0)−D(A,B) ≤ ϕ(f(Tnx0))(f(Tnx0)− f(Tn+1x0)).

In particular, since ϕ(f(Tnx0)) > 0, we have f(Tn+1x0) ≤ f(Tnx0) for all n ≥ 0.
Consequently, since ϕ is nondecreasing, we have ϕ(f(Tnx0)) ≤ α for all n ≥ 0. We
now conclude that

d(y, Ty)−D(A,B) ≤ f̂(y)− f̂(Ty) ∀y ∈ O(x0,∞).

Assume that (H1) or (H2) or (D3) holds. Then by Lemma 2.8 and Lemma 2.10, we
have g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0.
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We assume that {T 2nx0} has a convergent subsequence in A. Then there are an
element x̂ ∈ A and a subsequence {T 2nkx0} of {T 2nx0} such that lim

k→∞
T 2nkx0 = x̂.

Hence x̂ ∈ ω({Tnx0}) ∩A. It follows then that x̂ ∈ BP(T ).
For the case that {T 2n+1x0} has a convergent subsequence in B, we can prove

similarly. �
Finally, we present a nonself version of a Banach type fixed point theorem of Hicks

and Rhoades [5] with an assumption of Kada, Suzuki and Takahashi [6].
Theorem 2.11. Let A and B be nonempty subsets of a metric space (X, d). Assume
that T : A ∪ B → A ∪ B is a cyclic mapping. Suppose that there exist a constant
k ∈ (0, 1) and an element x0 ∈ A ∪B such that

d(Ty, T 2y) ≤ kd(y, Ty) + (1− k)D(A,B) ∀y ∈ O(x0,∞).

Suppose that the following conditions hold:

(C1) ∅ 6= ω({Tnx0}) ⊂ A ∪B.
(C2) If d(z, Tz) > D(A,B), then

inf{d(y, z) + d(y, Ty) : y ∈ O(x0,∞)} > D(A,B).

Then ω({Tnx0}) ⊂ BP(T ).
Lemma 2.12. Let A and B be nonempty subsets of a metric space (X, d) and x0 ∈
A ∪B. Suppose that T : A ∪B → A ∪B is a cyclic mapping such that

lim
n→∞

d(Tnx0, T
n+1x0) = D(A,B).

Assume that the following condition holds.

(C1) ω({Tnx0}) ⊂ A ∪B.
(C2) If d(z, Tz) > D(A,B), then

inf{d(y, z) + d(y, Ty) : y ∈ O(x0,∞)} > D(A,B).

Then g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0.
Proof. Let {yn} be a sequence in O(x0,∞) such that lim

n→∞
yn = y for some y ∈ X.

Then y ∈ A ∪B. By Lemma 2.4, we consider the following two cases.
Case 1. There exists a subsequence {ynk

} of {yn} such that {ynk
} is a subsequence

of {Tnx0}. Then

lim
k→∞

d(ynk
, y) + lim

k→∞
d(ynk

, Tynk
) = D(A,B).

Hence

inf{d(x, y) + d(x, Tx) : x ∈ O(x0,∞)} = D(A,B).

Then, by (C2), we have d(y, Ty) = D(A,B). Hence

g(y) = D(A,B) ≤ lim inf
n→∞

d(yn, T yn) = lim inf
n→∞

g(yn).

Case 2. There exists N ∈ N such that yn = y for all n ≥ N . Hence

g(y) = d(y, Ty) = lim inf
n→∞

d(yn, Tyn) = lim inf
n→∞

g(yn).

Therefore, g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0. �
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Proof of Theorem 2.11. Define a function f : A ∪B → [0,∞) by

f(x) =
1

1− k
d(x, Tx) for all x ∈ A ∪B.

Let y ∈ O(x0,∞). Then we have

d(Ty, T 2y) ≤ kd(y, Ty) + (1− k)D(A,B).

It follows that

d(Ty, T 2y) + (1− k)d(y, Ty) ≤ d(y, Ty) + (1− k)D(A,B).

Hence

d(y, Ty)−D(A,B) ≤ 1

1− k
d(y, Ty)− 1

1− k
d(Ty, T 2y) = f(y)− f(Ty).

Then, by Lemma 2.12, g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0.
Hence, by Theorem 2.5, we have ω({Tnx0}) ⊂ BP(T ). �

Set A = B = X in Theorem 2.11 gives the following one which is a result of Kada,
Suzuki and Takahashi (see [6]) in the setting of a metric space.
Corollary 2.13. Let (X, d) be a complete metric space and k ∈ (0, 1). Assume that
T : X → X is a mapping such that

d(Tx, T 2x) ≤ kd(x, Tx) ∀x ∈ X.
Suppose that inf{d(x, z) + d(x, Tx) : x ∈ X} > 0 for all z 6= Tz. Then, for every
x ∈ X, the sequence {Tnx} converges to a fixed point of T .

Finally, we illustrate our Theorem 2.5 by the following two examples.
Example 2.14. Let A = [−2,−1], B = [1, 2] and X = A ∪ B be equiped with the
usual metric. Note that D(A,B) = 2. Let T : A ∪ B → A ∪ B be a cyclic mapping
defined by Tx = −x+1

2 if x ∈ A and Tx = −x−1
2 if x ∈ B. Let f : A ∪B → [0,∞) be

defined by f(x) = −4x for all x ∈ A and f(x) = 4x for all x ∈ B. Then

d(x, Tx)−D(A,B) ≤ f(x)− f(Tx) ∀x ∈ A ∪B.
It is easy to see that ω({Tnx0}) = BP(T ) = {−1, 1} for all x0 ∈ X.
Example 2.15. We modify the sets A and B in the preceding example, that is,
A = [−2,−1) and B = (1, 2]. Let X,T, f be the same as in Example 2.14. Now,
BP(T ) = ∅ = ω({Tnx0}) for all x0 ∈ X.
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