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Abstract. Let H be an at least two-dimensional real Hilbert space with the unit sphere Sg. For
a € [-1,1] and n € Sy we define an («,n)-spherical cap by Sa,n = {z € Sy : (z,n) > a}. We
show that the distance between the set of contractions T": Sq,n — Sa,n and the identity mapping is
positive iff & < 0. We also study the fixed point property and the minimal displacement problem in
this setting for nonexpansive mappings.
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1. INTRODUCTION AND PRELIMINARIES

Let (M, p) be a metric space. By By (z,7) we denote the closed ball with center
at x € M and radius r. A mapping T : M — M is said to be k-lipschitzian if there
exists a constant k > 0 such that p (Tz,Ty) < kp(z,y) for all z,y € M. If k =1,
then the map T is called nonexpansive. A contraction is a k-lipschitzian map with
k < 1. The space M has the fixed point property for nonexpansive mappings (FPP
for short) if any nonexpansive mapping T : M — M has a fixed point. The quantity

dr = mlél]{[p (x,Tx)

(see [7]) is called the minimal displacement of a mapping T': M — M. The space M
has the almost fixed point property (AFPP for short) if dr = 0 for all nonexpansive
mappings T : M — M. If dp > 0, then we say that the map T has a positive minimal
displacement.

Let C be the set of all contractions from M into itself. Put

Iy = :Il“IelfC {;él]\pi[p(a:,Tx)}
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This coefficient describes the degree of accuracy with which the identity can be esti-
mated by contractions. We shall refer to I, as the distance between the identity and
contractions.

Throughout the paper, H denotes a real Hilbert space of dimension at least 2 with
inner product (-, ). By By and Sy we denote the closed unit ball and the unit sphere
of H, respectively. The angle between z, y € H \ {0} is defined by

(z,y)
| Iyl

Given n € Sy ("the north pole”), and a, 8 € [—1, 1], we define a spherical segment
by

Z (z,y) = arccos

Sa,[f,n = {l’ € SH ta< <.’E,’rL> < ﬂ}
and an (a,n)-spherical cap Sy, n by
Sa,n = Sa,l,nn

In the same way we define spherical rings and caps for any z € Sy . The (0, z)-spherical
cap is called a hemisphere.

The Banach contraction principle [1] states that if T : M — M is a contraction
and M is complete, then T has a unique fixed point. Using the notion of I; we get
the following theorem.

Theorem 1.1. If (M, p) is a complete metric space such that Ipy = 0, then M has
the almost fized point property.

Proof. Let € > 0 and T : M — M be a nonexpansive mapping. In view of the
definition of Iy, there exists a contraction T. : M — M such that p(z,T.x) < ¢
for all x € M. The composition T, o T is a contraction on M. Therefore, by the
Banach contraction principle, it has a fixed point z(, and consequently p (Txg,xo) =
p (T, T (T'zg)) < e. As € > 0 is arbitrary, this proves the result.

It is easy to see that Theorem 1.1 applies to any nonempty closed convex and
bounded set in a Banach space. However, some non-convex sets also satisfy assump-
tions of Theorem 1.1.

Claim 1.2. Ifw € Sy and € € (0,1], then the mapping T : So.. — Sow defined by

Tp— U=z tew
(1 —¢)z+ cw
is a contraction, which satisfies the inequality
sup {|l& — Tex|| : @ € So.w} < V2e. (1.1)

Proof. For arbitrary u,v € H \ {0} and z € Sy ,,, we have

il = o)< (M)

[u — o

u v

lull ol

min {[|u] , [Jv]|}
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and |(1—e)z+ew|®* = (1—e)’+2(1—e)e(z,w) +e2 > (1 —¢)” + <2 From this
we obtain

(1-9) [z~ ] -
min {[|(1 — &)z +ewl|, [|(1 — &)y + ewl|} ~

[Tex — Tey|| < = yll,

(1—e)® +e2

l—¢

NS

The inequality (1.1) follows from the estimate

where z, y € Sy, T¢ is a contraction because

|z —Tea|? =2-2 (2, Toa) <2—2(x,(1 — &)z +ew) =2—-2(1 — &) — 2¢ (2, w) < 2,

where = € Sp ..

Claim 1.2 shows that the condition Ij; = 0 is satisfied for hemispheres of inner
product spaces. Hence, by Theorem 1.1, we obtain:
Corollary 1.3. Hemispheres in Hilbert spaces have the almost fized point property.

In the sequel, the following lemma will play an important role.
Lemma 1.4. Let T : D — Sy, where D C Sy, be a nonexpansive mapping. Then:

(1) If for some z € D we have —x € D and T (—z) # —Tx, then T(D) C Sow,
Ta+T(—x)

where W = —m——=7 .
T2+T (=)l

(2) Let
E={xeD:—xeDANT(—x)=-Tz}.
For any y € D, the mapping T|gugy) is an isometry.
Proof. Choose = € D satisfying conditions —z € D and T (—x) # —Tx. Next,

choose an arbitrary y € D. Since T is nonexpansive, (T'z,Ty) > (z,y). Similarly,
(T (—z),Ty) > (—z,y) . Adding the last two inequalities, we find that

<T33‘ + T(—JZ) aTy> = <T$’Ty> + <T (—Z‘) 7Ty> 2 <$’y> + <—x,y> = 0.

This proves the first statement.

If E = (), then the second statement is trivial. Assume that E # () and y € D.
Consider two distinct elements z, z such that © € E and z € EU {y}. Since T is
nonexpansive,

(T, Tz) > (x,2) (1.2)
and (T (—z),Tz) > (—x,z). Applying T (—z) = —T'z, we get
(Tx,Tz) <(z,2). (1.3)

Combining (1.2) and (1.3), we obtain (T'z,Tz) = (z,2). Therefore, T|gygy} is an
isometry.

Corollary 1.5. Let oo € (—1,0), n € Sy and M = Sapn. IfT : M — M is a
nonezxpansive mapping, then there exists w € Sy such that T (M) C Sp., or T is an
isometry.

Proof. Assume that there is no w € Sy such that T (M) C Sy .. Then by Lemma
1.4, for any y € M the mapping T|nugy}, where N = S, 4| n, is an isometry. We
shall prove that T is an isometry.
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Clearly, it is sufficient to consider the case u, v € S|q|,n, u # v. Choose x € N N
span {u, v} such that ||z — u|| < || — v||. Observe that the conditions |7z — Tz2|| =
lz1 — 22| and £ (Tz1,T2) = Z(z1,22) are equivalent for any z;, 22 € M. Since
T|nuguy and T|yugey are isometries, / (Tx,Tu) = £ (v,u) and £ (Tv,T (-x)) =
Z(v,—x). It is easy to see that £ (z,u) + £ (u,v) + £(v,—z) = 7. Applying the
spherical triangle inequality, we get

7 = L(Tz,T(-x)) <ZL(Tx,Tu)+ £(Tu,Tv) + £ (Tv,T (—x))
< ZL(zyu) + ZL(u,v) + £L(v,—x) =,
which shows that £ (T'u, Tv) = £ (u,v). Therefore, T is an isometry.

2. THE PROPERTY E AND THE NONEXPANSIVE EXTENSION PROPERTY

Given two metric spaces (M, p) and (M’,p'), a mapping T from M into M’ is

called nonexpansive if
p (T, Ty) < p(z,y)

for all x,y € M. We say that the pair (M, M’) has the nonexpansive extension
property if for each subset D C M and each nonexpansive mapping T : D — M’,
there is a nonexpansive mapping 7’ : M — M’ which extends T, that is, T'|p = T.

In [12], F. A. Valentine showed that the pair (M, M’) has the nonexpansive ex-
tension property if it has the following property.
Property E. We say that the pair (M, M') has the property E if for any at least
two-element set I, and for any x; € M, z, € M', r; > 0, i € I such that

o, 2h) < plaiay), i,5€l, (2.1)
the condition
() B (wiri) # 0 (2.2)
iel
implies
() B (am3) # 0. (2.3)
iel

Applying this property, Valentine proved the nonexpansive extension property if
each M and M’ is:
(1) a Hilbert space,
(2) a sphere of a n-dimensional Euclidean space.
The following theorem from Valentine’s paper will be helpful later on.
Theorem 2.1. If H is finite-dimensional, then the pair of spaces M = M' = Sy has
the property E.

The next corollary follows straightforwardly from the above theorem.
Corollary 2.2. Let H be finite-dimensional, D C Sy and let T : D — Sy be a
nonezxpansive mapping. Then there exists a monexpansive mapping T' : Sy — Sy
such that T'\p =T.
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The below lemma shows that the pair consisting of a spherical cap and a hemisphere
of a Hilbert space also has the nonexpansive extension property.
Lemma 2.3. Let w € Sy. The property E holds for the pair of spaces M = Sy and
M = SO,w'
Proof. Consider a set I with at least two elements. Assume that x; € M, z € M’,
r; >0, ¢ € I satisfy conditions (2.1) and (2.2). Consider a finite at least two-element
subset J of I. Define sets N = Sy, N’ = Sy, where Y, Y/ are subspaces of H such
that {z;:ie J} CcY,{z}:i€J} CY' and dimY = dimY’ = card (J). Choose an

arbitrary « € () Bas (z;,7:). It is easy to see that there is m € N such that (x;, m) >0
iel
for all i € J. Let & be the orthogonal projection of x onto Y. Put & = & + am, where

a > 0 is chosen so that & € N. It is easy to see that & € () By (z;,74), and so
icJ

N Bn (z;,7;) # 0. By Theorem 2.1, we have
icJ

(") B (s13) # 0. (2.4)

icJ
Let P: H — {w}" be the orthogonal projection. Sets P (By (xf,7;)) are closed and
convex. In view of (2.4) and P (B (z},7;)) = P(Bs, (x},7;)) D P (Bn: (z},1;)),
these sets have the finite intersection property. The ball B {w}+ 18 weakly compact,
hence

Z =\ P (B (2},74)) # 0.

iel
Since P = P|y is a bijection from M’ onto By, 0 P~1(Z) C By (2}, 7;) for all
i € I. This completes the proof.

3. THE DISTANCE BETWEEN THE IDENTITY AND CONTRACTIONS

By Claim 1.2, Iy = 0 if M is a hemisphere of a Hilbert space. Using the same
argument one can easily show that Ip; = 0if M is a («, n)-spherical cap and « € (0, 1].
In this section we apply the result from the last section to obtain the distance between
the identity and contractions for (a,n)-spherical caps in case of « € [—1,0).
Theorem 3.1. Ifa € [-1,0), n € Sy and M = S, ,,, then Ip = 2 |al.

Proof. Let us consider two cases:

i) H is a finite-dimensional Hilbert space. Let T : M — M be a contraction.
By Corollary 2.2, there exists a nonexpansive mapping 7' : Sy — Sy such that
T'|p =T. In view of Lemma 1.4, T' (M) C Sy, for some w € Sy. Given ¢ € (0,1),
let T. : So. — So.w be the mapping defined in Claim 1.2. Put T = T. o T". The
mapping —T is a contraction, so it has a fixed point z¢, hence Tzo = —zo.

Suppose that 2o € M. Applying Claim 1.2, we obtain

9 — on . TxOH < lwo — T'zo|| + | T 20 — Te (T"20)|| < |lzo — Tol| + V2.

Hence

lxo — Txol| > 2 — V2 > 2|a| — V2. (3.1)
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Assume now that xo ¢ M. Consider a two-dimensional subspace W of H such
that zg,n € W. Let w,v € Sq,a,n N W, where u # v, and £ (zg,u) < £ (zo,v). Since

Z(zo,u) + £ (u, Tu) + £ (Tu, 71’0) > T, 80

Z (u,Tu) > 7w —L(xg,u) — L (Tu, —;v0> =n—L(zg,u) —~L (Tu,Tx())
> 7w —2L(xg,u) > 71— L(x0,u) — L(x0,v) = 2L (0,n) — 7.
Hence
~ 112 ~ ~
Hu—TuH = 2—2<u,Tu>=2—2cosl<u,Tu)22—2c05(2£(u,n)—7r)

= 24 2cos (24 (u,n)) =4 (cos Z (u,n))* = 4 (u,n)* = 40>

From this we obtain ||u — Tu|| > 2|a| — v/2e. Since € € (0,1) is arbitrary, this and
(3.1) show that sup |z — Tx|| > 2]|«|, and hence Iy > 2|al.

Observe that for the mapping T': M — M,

x, x € Son,
Tx = '
x—2(x,n)n, x &M\ Son,

we have sup || — Tz|| = 2|«|, therefore In; = 2|«
zeEM
ii) H is an infinite-dimensional Hilbert space. We consider a contraction T’ : M —

M. In view of Lemma 1.4, T (M) C Sy, for some w € Sy. By Lemma 2.3 and
Valentine theorem from the previous section, there is an extension 7" of T onto Sy
such that 775 = T and T” is a nonexpansive mapping. Now, it is enough to repeat
the reasoning from the proof of the previous case.

4. FPP, AFPP AND MINIMAL DISPLACEMENT

Let T' be a nonexpansive mapping on an (a,n)-spherical cap. The problem of the
existence of fixed points of such a mapping is trivial for a = —1 and o = 1. Namely,
if @ =1, then Sy, = {n}. If « = —1, then S_y, = Sy and the map Tz = —z is
fixed point free and moreover dr = 2. Next, observe that if « € [0,1), then, in view of
Corollary 1.3, we have dr = 0. More generally, it is easy to get the following lemma.
Lemma 4.1. Ifa € [—1,1] and T : Sq,n — Sa,n is a nonexpansive mapping such that
T (Sa.n) is contained in a hemisphere S which is contained in Sa,n, then dr = 0.
Proof. Define the mapping T:5—>8 by the formula Tz = Tz. Observe that

dr <dg = inf || — Tx|| =0,
€S

which finishes the proof.

The situation is also completely clear if H is a finite-dimensional Hilbert space.
Theorem 4.2. Let « € (—1,1) and H be a finite-dimensional Hilbert space. Then
every continuous mapping 1 : Sq.n — San has a fized point.
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Proof. Observe that S, , is homeomorphic with By, where ¥ = {n}J‘ According
to Brouwer’s fixed point theorem [5], every continuous self-map of By has a fixed
point, which finishes the proof.

If H is an infinite-dimensional Hilbert space, then the situation for nonexpansive
mappings T : So.n, — Sa,n is more complicated. We present an example showing
that dr can be positive. But before, recall that in all infinite-dimensional Banach
spaces X there exist Lipschitz retractions of Bx onto Sx. This fact was proved by
Nowak [11] for some spaces and extended to all spaces by Benyamini and Sternfeld
[3]. Let ko (X) denote the so-called retraction constant, being the infimum of the set
of all positive k for which there exists a Lipschitz retraction R : Bx — Sx with the
constant k. It is known that ko (H) > 4.55 [8]. On the other hand, there are known
some constructions of such retractions [10], [2], [4] and the best known estimation
from above is ko (H) < 28.99 [2].

Example 4.3. Let k > ko (H), a € (—17 %’22) and n € Sy. Define the mapping
T :San = San by the formula

Tw — —(T30Ty0Ty)(x) if © € Son,
- T3 (I’) if v € Sa,n \ S()JL,

where 11 is the orthogonal projection on the subspace Y = {n}l, Ty is a Lipschitz
retraction of the ball By onto the sphere Sy with the Lipschitz constant k, and T3 :
Sa,0n = Sa,a,n 18 the closest point projection. We shall show thatT is a nonexpansive
mapping. Obuviously, if x,y € Son or &,y € Sa0n, then |Tx—Ty|| < [z —y.
Assume now that x € Sy, and y € San \ Son. Choose z € Sy such that £ (z, z) +
Z(z,y) = L(z,y). Then £(Tx,Tz) < L(x,z) and £L(Tz, Ty) < Z(z,y), and
therefore

L(Tz, Ty) < LTz, T2)+ LTz, Ty) < L(z, 2)+ L(z,y) = L(z, y),

so T is a nonexpansive mapping. The mapping T has the minimal displacement equal
to %

Now we present some lemmas and theorems, which guarantee AFPP in an infinite-
dimensional Hilbert space H for « € (—1,0).
Lemma 4.4. Let a« € (—-1,0), n € Sy, M = Sy, and let T : M — M be an
isometry. Then the mapping T : H — H defined by the formula

~ 6Tz, r e M,

T =
(bz) { —BT (—z), € Su\M,

where B € [0,00), is an isometry such that T|y; = T.
Proof. First, we shall prove that T|g, is an isometry. Let u, v € Sy. The case

u, v € M is obvious. If u, v ¢ M, then HTU - TUH =T (—u) =T (—v)|| = ||lu—v].
Assume now that u ¢ M, v € M. Then

A(TU,TU) = L (=T (—u),Tv) =7 — Z(T(—u),Tv) =7 — £ (—u,v) = £ (u,) .
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Therefore, T |s;, is an isometry. Any two elements of H can be expressed in the forms
Bx, vy, where 3, v >0 and z, y € Sy. Then

|762) T (|| = 82 — 26 (T, T) +42 = 8% — 28 (a9 + 4% = 182 — .

Thus T is an isometry.

Theorem 4.5. (Baker) [6, Theorem 1.3.8] If T' is an isometry from a real normed
space X into a strictly convex, real normed space Y such that T (0) =0, then T is a
linear mapping.

Theorem 4.6. Let o € (—1,0), n € Sy and M = So . If T : M — M is an
isometry, then dr = 0.

Proof. Let T be the isometry defined in Lemma 4.4. By Theorem 4.5, T is a linear
mapping. Clearly, T (H) is a closed subspace of H. Assume that T'(H) = H. Then
T (Sa.an) C Sa,a,rn- For an arbitrary y € S, o,1n there is z € Sy such that y = Tz.

Since <Tx,Tn> = (x,n), we have © € Sy a,n. It follows that T (Saan) = Sa,a,1n-
But Sq 0,7 C M, so T'n = n, and therefore dg = 0.

. . L
Now consider the case where T (H) # H. Choose an arbitrary w € (T (H )) N

So.n- Then T (So N M) C Sow N M. Let € € (0,1) and T, be the mapping defined
in Claim 1.2. We have T, (Sp,,w N M) C Sp.., N M, since

(Toz, n) = <(1_6)”7+5w, n> > - (z,n) > a
(1 —¢)x+ ew| (1 —¢)x+ ew|
for any « € So . N M. Applying the reasoning similar to that in the proof of Theorem
1.1 for the mapping T, o T from Sy, N M into itself, we obtain dr = 0.
Note that, by Lemma 4.1, the above theorem is also true for a € [0, 1].

Lemma 4.7. Given o € (—1,0), let T : So, — Sa,n be a nonexpansive mapping for
which T (Sq,n) is contained in a hemisphere S such that S ¢ San, andletT' : Sy — S
be a nonexpansive extension of T. If:

(1) T/ (—n) # —n, or

(2) T"(—n) = —n and Ts
then dr = 0.
Proof. (1) Assume that dr > 0. Let r = min {$ [|n + T’ (=n)||,dr}. Given e € (0,7),
observe that, if x € Bg,, (—n,T) or & € Sy p, then ||x. — T'z.|| > €, and therefore, by
Lemma 4.1, there exists z. € S\ (San U Bsy, (—n, 7)) such that ||z — T"z| <e. It is
easy to see that for any such z. there exists a unique ye € Sq o, such that ||z, — y|| =
dist (zz, Sa,a,n). From the triangle inequality, we have Ty. € By (xe, ||z: — y:|| + & )N
Sa,n. Using the cosine rule, one can prove that

is not an isometry onto Sy, an,

a,a,n

, w22
diam (By (ze, |2e — yel| +€ ) N San) <2 ey T— + 3.

The above diameter tends to 0 as € — 0, which contradicts with dr > 0.
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(2) Since the mapping 7" is nonexpansive, we have that 7' (Sa,an) C Sa,an. We
can treat the affine hull of S, ., as a Hilbert space G so that S, o, is the unit sphere,
ie. S¢ = Sa,an- Put Th = T|s,. Applying Lemma 1.4 to T3, we see that 17 (S¢) is
contained in a hemisphere §G of G, or T is an isometry. In the first case, by Lemma
4.1, we get dy, = 0. In the second case, since T3 is not onto Sg, so, applying the
reasoning from the proof of Theorem 4.6, we obtain dp, = 0. In view of dr < dr,, we
have dp = 0, as claimed.

From Lemmas 4.1 and 4.7, we have that if o« € (=1,0) and T : S, = Sa,n IS a
nonexpansive mapping but not an isometry, then dr can be positive only if S Z San
and T'|s, , , is an isometry onto Sy o,n. We shall use this observation in the proof of
the following theorem.

Theorem 4.8. Let o € (—%,0) and T : S — Sa.n be a nonexpansive mapping,
then dr = 0.

Proof. Suppose that dr > 0. Theorem 4.6 implies that 7' is not an isometry. From
Lemmas 1.4 and 4.1, we have that T (S,,,) is contained in a hemisphere S such that
S ¢ Sen- By Lemma 4.7, T (—n) = —n, where 7" : Sy — S is a nonexpansive
extension of T', and T|So¢,a,n is an isometry onto So.an. Observe that S, on C g,
hence n ¢ S. Let y € Se,a,n be such that Ty = — (P oT)n, where P is the closest

point projection onto Sy q,n. Since P is nonexpansive on S N Sq n,

[Tn =Ty = |(PeT)n—(PoT)yll =2|Tyl| = 2V1 - a?
and [[n -yl = v2 - 2a.

It is easy to check that if « € (—%,0), then || Tn — Ty| > ||n — y||, which is a contra-
diction.

It is an open problem to find the supremum of « such that the minimal displacement
is positive.
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