ON PROPERTIES OF CONTRACTIONS AND NONEXPANSIVE MAPPINGS ON SPHERICAL CAPS IN HILBERT SPACES

KRZYSZTOF BOLIBOK* AND MARIUSZ SZCZEPANIK**
*Stanislaw Staszic High School, Al. Raclawickie 26, 20-043 Lublin, Poland
E-mail: kmbolibok@gmail.com
** Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
E-mail: szczepan@hektor.umcs.lublin.pl

Abstract

Let H be an at least two-dimensional real Hilbert space with the unit sphere S_{H}. For $\alpha \in[-1,1]$ and $n \in S_{H}$ we define an (α, n)-spherical cap by $S_{\alpha, n}=\left\{x \in S_{H}:\langle x, n\rangle \geq \alpha\right\}$. We show that the distance between the set of contractions $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ and the identity mapping is positive iff $\alpha<0$. We also study the fixed point property and the minimal displacement problem in this setting for nonexpansive mappings. Key Words and Phrases: Contractions, nonexpansive mappings, fixed point property, almost fixed point property, minimal displacement. 2010 Mathematics Subject Classification: 47H09, 47H10.

1. Introduction and preliminaries

Let (M, ρ) be a metric space. By $B_{M}(x, r)$ we denote the closed ball with center at $x \in M$ and radius r. A mapping $T: M \rightarrow M$ is said to be k-lipschitzian if there exists a constant $k \geq 0$ such that $\rho(T x, T y) \leq k \rho(x, y)$ for all $x, y \in M$. If $k=1$, then the map T is called nonexpansive. A contraction is a k-lipschitzian map with $k<1$. The space M has the fixed point property for nonexpansive mappings (FPP for short) if any nonexpansive mapping $T: M \rightarrow M$ has a fixed point. The quantity

$$
d_{T}=\inf _{x \in M} \rho(x, T x)
$$

(see [7]) is called the minimal displacement of a mapping $T: M \rightarrow M$. The space M has the almost fixed point property (AFPP for short) if $d_{T}=0$ for all nonexpansive mappings $T: M \rightarrow M$. If $d_{T}>0$, then we say that the map T has a positive minimal displacement.

Let C be the set of all contractions from M into itself. Put

$$
I_{M}=\inf _{T \in C}\left\{\sup _{x \in M} \rho(x, T x)\right\}
$$

This coefficient describes the degree of accuracy with which the identity can be estimated by contractions. We shall refer to I_{M} as the distance between the identity and contractions.

Throughout the paper, H denotes a real Hilbert space of dimension at least 2 with inner product $\langle\cdot, \cdot\rangle$. By B_{H} and S_{H} we denote the closed unit ball and the unit sphere of H, respectively. The angle between $x, y \in H \backslash\{0\}$ is defined by

$$
\angle(x, y)=\arccos \frac{\langle x, y\rangle}{\|x\|\|y\|}
$$

Given $n \in S_{H}$ ("the north pole"), and $\alpha, \beta \in[-1,1]$, we define a spherical segment by

$$
S_{\alpha, \beta, n}=\left\{x \in S_{H}: \alpha \leq\langle x, n\rangle \leq \beta\right\}
$$

and an (α, n)-spherical cap $S_{\alpha, n}$ by

$$
S_{\alpha, n}=S_{\alpha, 1, n}
$$

In the same way we define spherical rings and caps for any $z \in S_{H}$. The $(0, z)$-spherical cap is called a hemisphere.

The Banach contraction principle [1] states that if $T: M \rightarrow M$ is a contraction and M is complete, then T has a unique fixed point. Using the notion of I_{M} we get the following theorem.
Theorem 1.1. If (M, ρ) is a complete metric space such that $I_{M}=0$, then M has the almost fixed point property.
Proof. Let $\varepsilon>0$ and $T: M \rightarrow M$ be a nonexpansive mapping. In view of the definition of I_{M}, there exists a contraction $T_{\varepsilon}: M \rightarrow M$ such that $\rho\left(x, T_{\varepsilon} x\right) \leq \varepsilon$ for all $x \in M$. The composition $T_{\varepsilon} \circ T$ is a contraction on M. Therefore, by the Banach contraction principle, it has a fixed point x_{0}, and consequently $\rho\left(T x_{0}, x_{0}\right)=$ $\rho\left(T x_{0}, T_{\varepsilon}\left(T x_{0}\right)\right) \leq \varepsilon$. As $\varepsilon>0$ is arbitrary, this proves the result.

It is easy to see that Theorem 1.1 applies to any nonempty closed convex and bounded set in a Banach space. However, some non-convex sets also satisfy assumptions of Theorem 1.1.
Claim 1.2. If $w \in S_{H}$ and $\varepsilon \in(0,1]$, then the mapping $T_{\varepsilon}: S_{0, w} \rightarrow S_{0, w}$ defined by

$$
T_{\varepsilon} x=\frac{(1-\varepsilon) x+\varepsilon w}{\|(1-\varepsilon) x+\varepsilon w\|}
$$

is a contraction, which satisfies the inequality

$$
\begin{equation*}
\sup \left\{\left\|x-T_{\varepsilon} x\right\|: x \in S_{0, w}\right\} \leq \sqrt{2 \varepsilon} \tag{1.1}
\end{equation*}
$$

Proof. For arbitrary $u, v \in H \backslash\{0\}$ and $z \in S_{0, w}$, we have

$$
\begin{aligned}
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| & =\left(2-2\left\langle\frac{u}{\|u\|}, \frac{v}{\|v\|}\right\rangle\right)^{\frac{1}{2}} \leq\left(\frac{\|u\|^{2}-2\langle u, v\rangle+\|v\|^{2}}{\|u\|\|v\|}\right)^{\frac{1}{2}} \\
& \leq \frac{\|u-v\|}{\min \{\|u\|,\|v\|\}}
\end{aligned}
$$

and $\|(1-\varepsilon) z+\varepsilon w\|^{2}=(1-\varepsilon)^{2}+2(1-\varepsilon) \varepsilon\langle z, w\rangle+\varepsilon^{2} \geq(1-\varepsilon)^{2}+\varepsilon^{2}$. From this we obtain
$\left\|T_{\varepsilon} x-T_{\varepsilon} y\right\| \leq \frac{(1-\varepsilon)\|x-y\|}{\min \{\|(1-\varepsilon) x+\varepsilon w\|,\|(1-\varepsilon) y+\varepsilon w\|\}} \leq \frac{1-\varepsilon}{\sqrt{(1-\varepsilon)^{2}+\varepsilon^{2}}}\|x-y\|$, where $x, y \in S_{0, w} . T_{\varepsilon}$ is a contraction because $\frac{1-\varepsilon}{\sqrt{(1-\varepsilon)^{2}+\varepsilon^{2}}}<1$.

The inequality (1.1) follows from the estimate
$\left\|x-T_{\varepsilon} x\right\|^{2}=2-2\left\langle x, T_{\varepsilon} x\right\rangle \leq 2-2\langle x,(1-\varepsilon) x+\varepsilon w\rangle=2-2(1-\varepsilon)-2 \varepsilon\langle x, w\rangle \leq 2 \varepsilon$, where $x \in S_{0, w}$.

Claim 1.2 shows that the condition $I_{M}=0$ is satisfied for hemispheres of inner product spaces. Hence, by Theorem 1.1, we obtain:
Corollary 1.3. Hemispheres in Hilbert spaces have the almost fixed point property.
In the sequel, the following lemma will play an important role.
Lemma 1.4. Let $T: D \rightarrow S_{H}$, where $D \subset S_{H}$, be a nonexpansive mapping. Then:
(1) If for some $x \in D$ we have $-x \in D$ and $T(-x) \neq-T x$, then $T(D) \subset S_{0, w}$, where $w=\frac{T x+T(-x)}{\|T x+T(-x)\|}$.
(2) Let

$$
E=\{x \in D:-x \in D \wedge T(-x)=-T x\} .
$$

For any $y \in D$, the mapping $\left.T\right|_{E \cup\{y\}}$ is an isometry.
Proof. Choose $x \in D$ satisfying conditions $-x \in D$ and $T(-x) \neq-T x$. Next, choose an arbitrary $y \in D$. Since T is nonexpansive, $\langle T x, T y\rangle \geq\langle x, y\rangle$. Similarly, $\langle T(-x), T y\rangle \geq\langle-x, y\rangle$. Adding the last two inequalities, we find that

$$
\langle T x+T(-x), T y\rangle=\langle T x, T y\rangle+\langle T(-x), T y\rangle \geq\langle x, y\rangle+\langle-x, y\rangle=0 .
$$

This proves the first statement.
If $E=\emptyset$, then the second statement is trivial. Assume that $E \neq \emptyset$ and $y \in D$. Consider two distinct elements x, z such that $x \in E$ and $z \in E \cup\{y\}$. Since T is nonexpansive,

$$
\begin{equation*}
\langle T x, T z\rangle \geq\langle x, z\rangle \tag{1.2}
\end{equation*}
$$

and $\langle T(-x), T z\rangle \geq\langle-x, z\rangle$. Applying $T(-x)=-T x$, we get

$$
\begin{equation*}
\langle T x, T z\rangle \leq\langle x, z\rangle . \tag{1.3}
\end{equation*}
$$

Combining (1.2) and (1.3), we obtain $\langle T x, T z\rangle=\langle x, z\rangle$. Therefore, $\left.T\right|_{E \cup\{y\}}$ is an isometry.
Corollary 1.5. Let $\alpha \in(-1,0), n \in S_{H}$ and $M=S_{\alpha, n}$. If $T: M \rightarrow M$ is a nonexpansive mapping, then there exists $w \in S_{H}$ such that $T(M) \subset S_{0, w}$, or T is an isometry
Proof. Assume that there is no $w \in S_{H}$ such that $T(M) \subset S_{0, w}$. Then by Lemma 1.4 , for any $y \in M$ the mapping $\left.T\right|_{N \cup\{y\}}$, where $N=S_{\alpha,|\alpha|, n}$, is an isometry. We shall prove that T is an isometry.

Clearly, it is sufficient to consider the case $u, v \in S_{|\alpha|, n}, u \neq v$. Choose $x \in N \cap$ span $\{u, v\}$ such that $\|x-u\| \leq\|x-v\|$. Observe that the conditions $\left\|T z_{1}-T z_{2}\right\|=$ $\left\|z_{1}-z_{2}\right\|$ and $\angle\left(T z_{1}, T z_{2}\right)=\angle\left(z_{1}, z_{2}\right)$ are equivalent for any $z_{1}, z_{2} \in M$. Since $\left.T\right|_{N \cup\{u\}}$ and $\left.T\right|_{N \cup\{v\}}$ are isometries, $\angle(T x, T u)=\angle(x, u)$ and $\angle(T v, T(-x))=$ $\angle(v,-x)$. It is easy to see that $\angle(x, u)+\angle(u, v)+\angle(v,-x)=\pi$. Applying the spherical triangle inequality, we get

$$
\begin{aligned}
\pi & =\angle(T x, T(-x)) \leq \angle(T x, T u)+\angle(T u, T v)+\angle(T v, T(-x)) \\
& \leq \angle(x, u)+\angle(u, v)+\angle(v,-x)=\pi
\end{aligned}
$$

which shows that $\angle(T u, T v)=\angle(u, v)$. Therefore, T is an isometry.

2. The property E and the nonexpansive extension property

Given two metric spaces (M, ρ) and $\left(M^{\prime}, \rho^{\prime}\right)$, a mapping T from M into M^{\prime} is called nonexpansive if

$$
\rho^{\prime}(T x, T y) \leq \rho(x, y)
$$

for all $x, y \in M$. We say that the pair $\left(M, M^{\prime}\right)$ has the nonexpansive extension property if for each subset $D \subset M$ and each nonexpansive mapping $T: D \rightarrow M^{\prime}$, there is a nonexpansive mapping $T^{\prime}: M \rightarrow M^{\prime}$ which extends T, that is, $\left.T^{\prime}\right|_{D}=T$.

In [12], F. A. Valentine showed that the pair $\left(M, M^{\prime}\right)$ has the nonexpansive extension property if it has the following property.
Property E. We say that the pair $\left(M, M^{\prime}\right)$ has the property E if for any at least two-element set I, and for any $x_{i} \in M, x_{i}^{\prime} \in M^{\prime}, r_{i}>0, i \in I$ such that

$$
\begin{equation*}
\rho^{\prime}\left(x_{i}^{\prime}, x_{j}^{\prime}\right) \leq \rho\left(x_{i}, x_{j}\right), \quad i, j \in I, \tag{2.1}
\end{equation*}
$$

the condition

$$
\begin{equation*}
\bigcap_{i \in I} B_{M}\left(x_{i}, r_{i}\right) \neq \emptyset \tag{2.2}
\end{equation*}
$$

implies

$$
\begin{equation*}
\bigcap_{i \in I} B_{M^{\prime}}\left(x_{i}^{\prime}, r_{i}\right) \neq \emptyset \tag{2.3}
\end{equation*}
$$

Applying this property, Valentine proved the nonexpansive extension property if each M and M^{\prime} is:
(1) a Hilbert space,
(2) a sphere of a n-dimensional Euclidean space.

The following theorem from Valentine's paper will be helpful later on.
Theorem 2.1. If H is finite-dimensional, then the pair of spaces $M=M^{\prime}=S_{H}$ has the property E.

The next corollary follows straightforwardly from the above theorem.
Corollary 2.2. Let H be finite-dimensional, $D \subset S_{H}$ and let $T: D \rightarrow S_{H}$ be a nonexpansive mapping. Then there exists a nonexpansive mapping $T^{\prime}: S_{H} \rightarrow S_{H}$ such that $\left.T^{\prime}\right|_{D}=T$.

The below lemma shows that the pair consisting of a spherical cap and a hemisphere of a Hilbert space also has the nonexpansive extension property.
Lemma 2.3. Let $w \in S_{H}$. The property E holds for the pair of spaces $M=S_{H}$ and $M^{\prime}=S_{0, w}$.
Proof. Consider a set I with at least two elements. Assume that $x_{i} \in M, x_{i}^{\prime} \in M^{\prime}$, $r_{i}>0, i \in I$ satisfy conditions (2.1) and (2.2). Consider a finite at least two-element subset J of I. Define sets $N=S_{Y}, N^{\prime}=S_{Y^{\prime}}$, where Y, Y^{\prime} are subspaces of H such that $\left\{x_{i}: i \in J\right\} \subset Y,\left\{x_{i}^{\prime}: i \in J\right\} \subset Y^{\prime}$ and $\operatorname{dim} Y=\operatorname{dim} Y^{\prime}=\operatorname{card}(J)$. Choose an arbitrary $x \in \bigcap_{i \in I} B_{M}\left(x_{i}, r_{i}\right)$. It is easy to see that there is $m \in N$ such that $\left\langle x_{i}, m\right\rangle \geq 0$ for all $i \in J$. Let \hat{x} be the orthogonal projection of x onto Y. Put $\check{x}=\hat{x}+\alpha m$, where $\alpha \geq 0$ is chosen so that $\check{x} \in N$. It is easy to see that $\check{x} \in \bigcap_{i \in J} B_{N}\left(x_{i}, r_{i}\right)$, and so $\bigcap_{i \in J} B_{N}\left(x_{i}, r_{i}\right) \neq \emptyset$. By Theorem 2.1, we have

$$
\begin{equation*}
\bigcap_{i \in J} B_{N^{\prime}}\left(x_{i}^{\prime}, r_{i}\right) \neq \emptyset \tag{2.4}
\end{equation*}
$$

Let $P: H \rightarrow\{w\}^{\perp}$ be the orthogonal projection. Sets $P\left(B_{M^{\prime}}\left(x_{i}^{\prime}, r_{i}\right)\right)$ are closed and convex. In view of (2.4) and $P\left(B_{M^{\prime}}\left(x_{i}^{\prime}, r_{i}\right)\right)=P\left(B_{S_{H}}\left(x_{i}^{\prime}, r_{i}\right)\right) \supset P\left(B_{N^{\prime}}\left(x_{i}^{\prime}, r_{i}\right)\right)$, these sets have the finite intersection property. The ball $B_{\{w\}^{\perp}}$ is weakly compact, hence

$$
Z:=\bigcap_{i \in I} P\left(B_{M^{\prime}}\left(x_{i}^{\prime}, r_{i}\right)\right) \neq \emptyset
$$

Since $\widetilde{P}=\left.P\right|_{M^{\prime}}$ is a bijection from M^{\prime} onto $B_{\{w\}^{\perp}}$, so $\widetilde{P}^{-1}(Z) \subset B_{M^{\prime}}\left(x_{i}^{\prime}, r_{i}\right)$ for all $i \in I$. This completes the proof.

3. The distance between the identity and contractions

By Claim 1.2, $I_{M}=0$ if M is a hemisphere of a Hilbert space. Using the same argument one can easily show that $I_{M}=0$ if M is a (α, n)-spherical cap and $\alpha \in(0,1]$. In this section we apply the result from the last section to obtain the distance between the identity and contractions for (α, n)-spherical caps in case of $\alpha \in[-1,0)$.
Theorem 3.1. If $\alpha \in[-1,0), n \in S_{H}$ and $M=S_{\alpha, n}$, then $I_{M}=2|\alpha|$.
Proof. Let us consider two cases:
i) H is a finite-dimensional Hilbert space. Let $T: M \rightarrow M$ be a contraction. By Corollary 2.2, there exists a nonexpansive mapping $T^{\prime}: S_{H} \rightarrow S_{H}$ such that $\left.T^{\prime}\right|_{M}=T$. In view of Lemma 1.4, $T^{\prime}(M) \subset S_{0, w}$ for some $w \in S_{H}$. Given $\varepsilon \in(0,1)$, let $T_{\varepsilon}: S_{0, w} \rightarrow S_{0, w}$ be the mapping defined in Claim 1.2. Put $\tilde{T}=T_{\varepsilon} \circ T^{\prime}$. The mapping $-\tilde{T}$ is a contraction, so it has a fixed point x_{0}, hence $\tilde{T} x_{0}=-x_{0}$.

Suppose that $x_{0} \in M$. Applying Claim 1.2, we obtain

$$
2=\left\|x_{0}-\tilde{T} x_{0}\right\| \leq\left\|x_{0}-T^{\prime} x_{0}\right\|+\left\|T^{\prime} x_{0}-T_{\varepsilon}\left(T^{\prime} x_{0}\right)\right\| \leq\left\|x_{0}-T x_{0}\right\|+\sqrt{2 \varepsilon}
$$

Hence

$$
\begin{equation*}
\left\|x_{0}-T x_{0}\right\| \geq 2-\sqrt{2 \varepsilon} \geq 2|\alpha|-\sqrt{2 \varepsilon} \tag{3.1}
\end{equation*}
$$

Assume now that $x_{0} \notin M$. Consider a two-dimensional subspace W of H such that $x_{0}, n \in W$. Let $u, v \in S_{\alpha, \alpha, n} \cap W$, where $u \neq v$, and $\angle\left(x_{0}, u\right) \leq \angle\left(x_{0}, v\right)$. Since $\angle\left(x_{0}, u\right)+\angle(u, \tilde{T} u)+\angle\left(\tilde{T} u,-x_{0}\right) \geq \pi$, so

$$
\begin{aligned}
\angle(u, \tilde{T} u) & \geq \pi-\angle\left(x_{0}, u\right)-\angle\left(\tilde{T} u,-x_{0}\right)=\pi-\angle\left(x_{0}, u\right)-\angle\left(\tilde{T} u, \tilde{T} x_{0}\right) \\
& \geq \pi-2 \angle\left(x_{0}, u\right) \geq \pi-\angle\left(x_{0}, u\right)-\angle\left(x_{0}, v\right)=2 \angle(u, n)-\pi .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|u-\tilde{T} u\|^{2} & =2-2\langle u, \tilde{T} u\rangle=2-2 \cos \angle(u, \tilde{T} u) \geq 2-2 \cos (2 \angle(u, n)-\pi) \\
& =2+2 \cos (2 \angle(u, n))=4(\cos \angle(u, n))^{2}=4\langle u, n\rangle^{2}=4 \alpha^{2} .
\end{aligned}
$$

From this we obtain $\|u-T u\| \geq 2|\alpha|-\sqrt{2 \varepsilon}$. Since $\varepsilon \in(0,1)$ is arbitrary, this and (3.1) show that $\sup _{x \in M}\|x-T x\| \geq 2|\alpha|$, and hence $I_{M} \geq 2|\alpha|$.

Observe that for the mapping $T: M \rightarrow M$,

$$
T x= \begin{cases}x, & x \in S_{0, n} \\ x-2\langle x, n\rangle n, & x \in M \backslash S_{0, n}\end{cases}
$$

we have $\sup _{x \in M}\|x-T x\|=2|\alpha|$, therefore $I_{M}=2|\alpha|$.
ii) H is an infinite-dimensional Hilbert space. We consider a contraction $T: M \rightarrow$ M. In view of Lemma 1.4, $T(M) \subset S_{0, w}$ for some $w \in S_{H}$. By Lemma 2.3 and Valentine theorem from the previous section, there is an extension T^{\prime} of T onto S_{H} such that $\left.T^{\prime}\right|_{M}=T$ and T^{\prime} is a nonexpansive mapping. Now, it is enough to repeat the reasoning from the proof of the previous case.

4. FPp, AFPP AND MINIMAL DISPLACEMENT

Let T be a nonexpansive mapping on an (α, n)-spherical cap. The problem of the existence of fixed points of such a mapping is trivial for $\alpha=-1$ and $\alpha=1$. Namely, if $\alpha=1$, then $S_{1, n}=\{n\}$. If $\alpha=-1$, then $S_{-1, n}=S_{H}$ and the map $T x=-x$ is fixed point free and moreover $d_{T}=2$. Next, observe that if $\alpha \in[0,1)$, then, in view of Corollary 1.3, we have $d_{T}=0$. More generally, it is easy to get the following lemma. Lemma 4.1. If $\alpha \in[-1,1]$ and $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ is a nonexpansive mapping such that $T\left(S_{\alpha, n}\right)$ is contained in a hemisphere \widetilde{S} which is contained in $S_{\alpha, n}$, then $d_{T}=0$. Proof. Define the mapping $\widetilde{T}: \widetilde{S} \rightarrow \widetilde{S}$ by the formula $\widetilde{T} x=T x$. Observe that

$$
d_{T} \leq d_{\widetilde{T}}=\inf _{x \in \widetilde{S}}\|x-T x\|=0
$$

which finishes the proof.
The situation is also completely clear if H is a finite-dimensional Hilbert space. Theorem 4.2. Let $\alpha \in(-1,1)$ and H be a finite-dimensional Hilbert space. Then every continuous mapping $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ has a fixed point.

Proof. Observe that $S_{\alpha, n}$ is homeomorphic with B_{Y}, where $Y=\{n\}^{\perp}$. According to Brouwer's fixed point theorem [5], every continuous self-map of B_{Y} has a fixed point, which finishes the proof.

If H is an infinite-dimensional Hilbert space, then the situation for nonexpansive mappings $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ is more complicated. We present an example showing that d_{T} can be positive. But before, recall that in all infinite-dimensional Banach spaces X there exist Lipschitz retractions of B_{X} onto S_{X}. This fact was proved by Nowak [11] for some spaces and extended to all spaces by Benyamini and Sternfeld [3]. Let $k_{0}(X)$ denote the so-called retraction constant, being the infimum of the set of all positive k for which there exists a Lipschitz retraction $R: B_{X} \rightarrow S_{X}$ with the constant k. It is known that $k_{0}(H) \geq 4.55$ [8]. On the other hand, there are known some constructions of such retractions [10], [2], [4] and the best known estimation from above is $k_{0}(H)<28.99$ [2].
Example 4.3. Let $k>k_{0}(H), \alpha \in\left(-1, \frac{-k}{\sqrt{1-k^{2}}}\right)$ and $n \in S_{H}$. Define the mapping $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ by the formula

$$
T x= \begin{cases}-\left(T_{3} \circ T_{2} \circ T_{1}\right)(x) & \text { if } x \in S_{0, n} \\ -T_{3}(x) & \text { if } x \in S_{\alpha, n} \backslash S_{0, n}\end{cases}
$$

where T_{1} is the orthogonal projection on the subspace $Y=\{n\}^{\perp}, T_{2}$ is a Lipschitz retraction of the ball B_{Y} onto the sphere S_{Y} with the Lipschitz constant k, and T_{3} : $S_{\alpha, 0, n} \rightarrow S_{\alpha, \alpha, n}$ is the closest point projection. We shall show that T is a nonexpansive mapping. Obviously, if $x, y \in S_{0, n}$ or $x, y \in S_{\alpha, 0, n}$, then $\|T x-T y\| \leq\|x-y\|$. Assume now that $x \in S_{0, n}$ and $y \in S_{\alpha, n} \backslash S_{0, n}$. Choose $z \in S_{Y}$ such that $\angle(x, z)+$ $\angle(z, y)=\angle(x, y)$. Then $\angle(T x, T z) \leq \angle(x, z)$ and $\angle(T z, T y) \leq \angle(z, y)$, and therefore

$$
\angle(T x, T y) \leq \angle(T x, T z)+\angle(T z, T y) \leq \angle(x, z)+\angle(z, y)=\angle(x, y),
$$

so T is a nonexpansive mapping. The mapping T has the minimal displacement equal to $\frac{2}{k}$.

Now we present some lemmas and theorems, which guarantee AFPP in an infinitedimensional Hilbert space H for $\alpha \in(-1,0)$.
Lemma 4.4. Let $\alpha \in(-1,0), n \in S_{H}, M=S_{\alpha, n}$ and let $T: M \rightarrow M$ be an isometry. Then the mapping $\tilde{T}: H \rightarrow H$ defined by the formula

$$
\tilde{T}(\beta x)= \begin{cases}\beta T x, & x \in M \\ -\beta T(-x), & x \in S_{H} \backslash M,\end{cases}
$$

where $\beta \in[0, \infty)$, is an isometry such that $\left.\tilde{T}\right|_{M}=T$.
Proof. First, we shall prove that $\left.\tilde{T}\right|_{S_{H}}$ is an isometry. Let $u, v \in S_{H}$. The case $u, v \in M$ is obvious. If $u, v \notin M$, then $\|\tilde{T} u-\tilde{T} v\|=\|T(-u)-T(-v)\|=\|u-v\|$. Assume now that $u \notin M, v \in M$. Then

$$
\angle(\tilde{T} u, \tilde{T} v)=\angle(-T(-u), T v)=\pi-\angle(T(-u), T v)=\pi-\angle(-u, v)=\angle(u, v) .
$$

Therefore, $\left.\tilde{T}\right|_{S_{H}}$ is an isometry. Any two elements of H can be expressed in the forms $\beta x, \gamma y$, where $\beta, \gamma \geq 0$ and $x, y \in S_{H}$. Then

$$
\|\tilde{T}(\beta x)-\tilde{T}(\gamma y)\|^{2}=\beta^{2}-2 \beta \gamma\langle\tilde{T} x, \tilde{T} y\rangle+\gamma^{2}=\beta^{2}-2 \beta \gamma\langle x, y\rangle+\gamma^{2}=\|\beta x-\gamma y\|^{2} .
$$

Thus \tilde{T} is an isometry.
Theorem 4.5. (Baker) [6, Theorem 1.3.8] If T is an isometry from a real normed space X into a strictly convex, real normed space Y such that $T(0)=0$, then T is a linear mapping.

Theorem 4.6. Let $\alpha \in(-1,0), n \in S_{H}$ and $M=S_{\alpha, n}$. If $T: M \rightarrow M$ is an isometry, then $d_{T}=0$.
Proof. Let \tilde{T} be the isometry defined in Lemma 4.4. By Theorem 4.5, \tilde{T} is a linear mapping. Clearly, $\tilde{T}(H)$ is a closed subspace of H. Assume that $\tilde{T}(H)=H$. Then $T\left(S_{\alpha, \alpha, n}\right) \subset S_{\alpha, \alpha, T n}$. For an arbitrary $y \in S_{\alpha, \alpha, T n}$ there is $x \in S_{H}$ such that $y=\tilde{T} x$. Since $\langle\tilde{T} x, \tilde{T} n\rangle=\langle x, n\rangle$, we have $x \in S_{\alpha, \alpha, n}$. It follows that $T\left(S_{\alpha, \alpha, n}\right)=S_{\alpha, \alpha, T n}$. But $S_{\alpha, \alpha, T n} \subset M$, so $T n=n$, and therefore $d_{T}=0$.

Now consider the case where $\tilde{T}(H) \neq H$. Choose an arbitrary $w \in(\tilde{T}(H))^{\perp} \cap$ $S_{0, n}$. Then $T\left(S_{0, w} \cap M\right) \subset S_{0, w} \cap M$. Let $\varepsilon \in(0,1)$ and T_{ε} be the mapping defined in Claim 1.2. We have $T_{\varepsilon}\left(S_{0, w} \cap M\right) \subset S_{0, w} \cap M$, since

$$
\left\langle T_{\varepsilon} x, n\right\rangle=\left\langle\frac{(1-\varepsilon) x+\varepsilon w}{\|(1-\varepsilon) x+\varepsilon w\|}, n\right\rangle \geq \frac{1-\varepsilon}{\|(1-\varepsilon) x+\varepsilon w\|}\langle x, n\rangle \geq \alpha
$$

for any $x \in S_{0, w} \cap M$. Applying the reasoning similar to that in the proof of Theorem 1.1 for the mapping $T_{\varepsilon} \circ T$ from $S_{0, w} \cap M$ into itself, we obtain $d_{T}=0$.

Note that, by Lemma 4.1, the above theorem is also true for $\alpha \in[0,1]$.
Lemma 4.7. Given $\alpha \in(-1,0)$, let $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ be a nonexpansive mapping for which $T\left(S_{\alpha, n}\right)$ is contained in a hemisphere \widetilde{S} such that $\widetilde{S} \not \subset S_{\alpha, n}$, and let $T^{\prime}: S_{H} \rightarrow \widetilde{S}$ be a nonexpansive extension of T. If:
(1) $T^{\prime}(-n) \neq-n$, or
(2) $T^{\prime}(-n)=-n$ and $\left.T\right|_{S_{\alpha, \alpha, n}}$ is not an isometry onto $S_{\alpha, \alpha, n}$,
then $d_{T}=0$.
Proof. (1) Assume that $d_{T}>0$. Let $r=\min \left\{\frac{1}{3}\left\|n+T^{\prime}(-n)\right\|, d_{T}\right\}$. Given $\varepsilon \in(0, r)$, observe that, if $x \in B_{S_{H}}(-n, r)$ or $x \in S_{\alpha, n}$, then $\left\|x_{\varepsilon}-T^{\prime} x_{\varepsilon}\right\|>\varepsilon$, and therefore, by Lemma 4.1, there exists $x_{\varepsilon} \in \widetilde{S} \backslash\left(S_{\alpha, n} \cup B_{S_{H}}(-n, r)\right)$ such that $\left\|x-T^{\prime} x\right\| \leq \varepsilon$. It is easy to see that for any such x_{ε} there exists a unique $y_{\varepsilon} \in S_{\alpha, \alpha, n}$ such that $\left\|x_{\varepsilon}-y_{\varepsilon}\right\|=$ $\operatorname{dist}\left(x_{\varepsilon}, S_{\alpha, \alpha, n}\right)$. From the triangle inequality, we have $T y_{\varepsilon} \in B_{H}\left(x_{\varepsilon},\left\|x_{\varepsilon}-y_{\varepsilon}\right\|+\varepsilon\right) \cap$ $S_{\alpha, n}$. Using the cosine rule, one can prove that

$$
\operatorname{diam}\left(B_{H}\left(x_{\varepsilon},\left\|x_{\varepsilon}-y_{\varepsilon}\right\|+\varepsilon\right) \cap S_{\alpha, n}\right) \leq 2 \sqrt{\frac{\pi^{2} \varepsilon^{2}}{r^{2}\left(4-r^{2}\right)}+3 \varepsilon}
$$

The above diameter tends to 0 as $\varepsilon \rightarrow 0$, which contradicts with $d_{T}>0$.
(2) Since the mapping T^{\prime} is nonexpansive, we have that $T\left(S_{\alpha, \alpha, n}\right) \subset S_{\alpha, \alpha, n}$. We can treat the affine hull of $S_{\alpha, \alpha, n}$ as a Hilbert space G so that $S_{\alpha, \alpha, n}$ is the unit sphere, i.e. $S_{G}=S_{\alpha, \alpha, n}$. Put $T_{1}=\left.T\right|_{S_{G}}$. Applying Lemma 1.4 to T_{1}, we see that $T_{1}\left(S_{G}\right)$ is contained in a hemisphere \widetilde{S}_{G} of G, or T_{1} is an isometry. In the first case, by Lemma 4.1, we get $d_{T_{1}}=0$. In the second case, since T_{1} is not onto S_{G}, so, applying the reasoning from the proof of Theorem 4.6, we obtain $d_{T_{1}}=0$. In view of $d_{T} \leq d_{T_{1}}$, we have $d_{T}=0$, as claimed.

From Lemmas 4.1 and 4.7, we have that if $\alpha \in(-1,0)$ and $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ is a nonexpansive mapping but not an isometry, then d_{T} can be positive only if $\widetilde{S} \not \subset S_{\alpha, n}$ and $\left.T\right|_{S_{\alpha, \alpha, n}}$ is an isometry onto $S_{\alpha, \alpha, n}$. We shall use this observation in the proof of the following theorem.
Theorem 4.8. Let $\alpha \in\left(-\frac{1}{2}, 0\right)$ and $T: S_{\alpha, n} \rightarrow S_{\alpha, n}$ be a nonexpansive mapping, then $d_{T}=0$.
Proof. Suppose that $d_{T}>0$. Theorem 4.6 implies that T is not an isometry. From Lemmas 1.4 and 4.1, we have that $T\left(S_{\alpha, n}\right)$ is contained in a hemisphere \widetilde{S} such that $\widetilde{S} \not \subset S_{\alpha, n}$. By Lemma 4.7, $T^{\prime}(-n)=-n$, where $T^{\prime}: S_{H} \rightarrow \widetilde{S}$ is a nonexpansive extension of T, and $\left.T\right|_{S_{\alpha, \alpha, n}}$ is an isometry onto $S_{\alpha, \alpha, n}$. Observe that $S_{\alpha, \alpha, n} \subset \widetilde{S}$, hence $n \notin \widetilde{S}$. Let $y \in S_{\alpha, \alpha, n}$ be such that $T y=-(P \circ T) n$, where P is the closest point projection onto $S_{\alpha, \alpha, n}$. Since P is nonexpansive on $\widetilde{S} \cap S_{\alpha, n}$,

$$
\|T n-T y\| \geq\|(P \circ T) n-(P \circ T) y\|=2\|T y\|=2 \sqrt{1-\alpha^{2}}
$$

and $\|n-y\|=\sqrt{2-2 \alpha}$.
It is easy to check that if $\alpha \in\left(-\frac{1}{2}, 0\right)$, then $\|T n-T y\|>\|n-y\|$, which is a contradiction.

It is an open problem to find the supremum of α such that the minimal displacement is positive.

Acknowledgment. The authors are grateful to Professor Kazimierz Goebel for valuable comments and suggestions.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3(1922), 133-181.
[2] M. Baronti, E. Casini, C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory, 120(2003), 296-308.
[3] Y. Benyamini, Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88(1983), 439-445.
[4] K. Bolibok, Minimal displacement and retraction problems in infinite-dimensional Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), no. 4, 1103-1111.
[5] L. E. J. Brouwer, Über Abbildungen vom Mannigfaltigkeiten, Math. Ann., 71(1911), 97-115.
[6] R. Fleming, J. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman \& Hall/CRC, Boca Raton, 2003.
[7] K. Goebel, On the minimal displacement of points under lipschitzian mappings, Pacific J. Math., 45(1973), 151-163.
[8] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[9] M.D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., 22(1934), 77-108.
[10] T. Komorowski, J. Wosko, A remark on the retracting of a ball onto a sphere in an infinite dimensional Hilbert space, Math. Scand., 67(1990), 223-226.
[11] B. Nowak, On the Lipschitz retraction of the unit ball in infinite dimensional Banach spaces onto boundary, Bull. Acad. Polon. Sci., 27(1979), 861-864.
[12] F.A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math., 67(1945), 83-93.

Received: April 30, 2015; Accepted: October 8, 2015.

