Fixed Point Theory, 18(2017), No. 2, 471-480 DOI 10.24193/fpt-ro.2017.2.37 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ON PROPERTIES OF CONTRACTIONS AND NONEXPANSIVE MAPPINGS ON SPHERICAL CAPS IN HILBERT SPACES

KRZYSZTOF BOLIBOK* AND MARIUSZ SZCZEPANIK**

*Stanislaw Staszic High School, Al. Raclawickie 26, 20-043 Lublin, Poland E-mail: kmbolibok@gmail.com

**Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland E-mail: szczepan@hektor.umcs.lublin.pl

Abstract. Let *H* be an at least two-dimensional real Hilbert space with the unit sphere S_H . For $\alpha \in [-1, 1]$ and $n \in S_H$ we define an (α, n) -spherical cap by $S_{\alpha,n} = \{x \in S_H : \langle x, n \rangle \ge \alpha\}$. We show that the distance between the set of contractions $T : S_{\alpha,n} \to S_{\alpha,n}$ and the identity mapping is positive iff $\alpha < 0$. We also study the fixed point property and the minimal displacement problem in this setting for nonexpansive mappings.

Key Words and Phrases: Contractions, nonexpansive mappings, fixed point property, almost fixed point property, minimal displacement.

2010 Mathematics Subject Classification: 47H09, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let (M, ρ) be a metric space. By $B_M(x, r)$ we denote the closed ball with center at $x \in M$ and radius r. A mapping $T: M \to M$ is said to be k-lipschitzian if there exists a constant $k \ge 0$ such that $\rho(Tx, Ty) \le k\rho(x, y)$ for all $x, y \in M$. If k = 1, then the map T is called nonexpansive. A contraction is a k-lipschitzian map with k < 1. The space M has the fixed point property for nonexpansive mappings (FPP for short) if any nonexpansive mapping $T: M \to M$ has a fixed point. The quantity

$$d_T = \inf_{x \in M} \rho\left(x, Tx\right)$$

(see [7]) is called the minimal displacement of a mapping $T: M \to M$. The space M has the almost fixed point property (AFPP for short) if $d_T = 0$ for all nonexpansive mappings $T: M \to M$. If $d_T > 0$, then we say that the map T has a positive minimal displacement.

Let C be the set of all contractions from M into itself. Put

$$I_{M} = \inf_{T \in C} \left\{ \sup_{x \in M} \rho(x, Tx) \right\}.$$

This coefficient describes the degree of accuracy with which the identity can be estimated by contractions. We shall refer to I_M as the distance between the identity and contractions.

Throughout the paper, H denotes a real Hilbert space of dimension at least 2 with inner product $\langle \cdot, \cdot \rangle$. By B_H and S_H we denote the closed unit ball and the unit sphere of H, respectively. The angle between $x, y \in H \setminus \{0\}$ is defined by

$$\angle (x, y) = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

Given $n \in S_H$ ("the north pole"), and $\alpha, \beta \in [-1, 1]$, we define a spherical segment by

$$S_{\alpha,\beta,n} = \{ x \in S_H : \alpha \le \langle x, n \rangle \le \beta \}$$

and an (α, n) -spherical cap $S_{\alpha,n}$ by

$$S_{\alpha,n} = S_{\alpha,1,n}.$$

In the same way we define spherical rings and caps for any $z \in S_H$. The (0, z)-spherical cap is called a hemisphere.

The Banach contraction principle [1] states that if $T: M \to M$ is a contraction and M is complete, then T has a unique fixed point. Using the notion of I_M we get the following theorem.

Theorem 1.1. If (M, ρ) is a complete metric space such that $I_M = 0$, then M has the almost fixed point property.

Proof. Let $\varepsilon > 0$ and $T : M \to M$ be a nonexpansive mapping. In view of the definition of I_M , there exists a contraction $T_{\varepsilon} : M \to M$ such that $\rho(x, T_{\varepsilon}x) \leq \varepsilon$ for all $x \in M$. The composition $T_{\varepsilon} \circ T$ is a contraction on M. Therefore, by the Banach contraction principle, it has a fixed point x_0 , and consequently $\rho(Tx_0, x_0) = \rho(Tx_0, T_{\varepsilon}(Tx_0)) \leq \varepsilon$. As $\varepsilon > 0$ is arbitrary, this proves the result.

It is easy to see that Theorem 1.1 applies to any nonempty closed convex and bounded set in a Banach space. However, some non-convex sets also satisfy assumptions of Theorem 1.1.

Claim 1.2. If $w \in S_H$ and $\varepsilon \in (0,1]$, then the mapping $T_{\varepsilon} : S_{0,w} \to S_{0,w}$ defined by

$$T_{\varepsilon}x = \frac{(1-\varepsilon)x + \varepsilon w}{\|(1-\varepsilon)x + \varepsilon w\|}$$

is a contraction, which satisfies the inequality

$$\sup \{ \|x - T_{\varepsilon} x\| : x \in S_{0,w} \} \le \sqrt{2\varepsilon}.$$
(1.1)

Proof. For arbitrary $u, v \in H \setminus \{0\}$ and $z \in S_{0,w}$, we have

$$\begin{aligned} \left\| \frac{u}{\|u\|} - \frac{v}{\|v\|} \right\| &= \left(2 - 2\left\langle \frac{u}{\|u\|}, \frac{v}{\|v\|} \right\rangle \right)^{\frac{1}{2}} \le \left(\frac{\|u\|^2 - 2\left\langle u, v \right\rangle + \|v\|^2}{\|u\| \|v\|} \right)^{\frac{1}{2}} \\ &\le \frac{\|u - v\|}{\min\{\|u\|, \|v\|\}} \end{aligned}$$

and $||(1-\varepsilon)z + \varepsilon w||^2 = (1-\varepsilon)^2 + 2(1-\varepsilon)\varepsilon \langle z, w \rangle + \varepsilon^2 \ge (1-\varepsilon)^2 + \varepsilon^2$. From this we obtain

$$\|T_{\varepsilon}x - T_{\varepsilon}y\| \le \frac{(1-\varepsilon)\|x - y\|}{\min\{\|(1-\varepsilon)x + \varepsilon w\|, \|(1-\varepsilon)y + \varepsilon w\|\}} \le \frac{1-\varepsilon}{\sqrt{(1-\varepsilon)^2 + \varepsilon^2}} \|x - y\|,$$

where $x, y \in S_{0,w}$. T_{ε} is a contraction because $\frac{1-\varepsilon}{\sqrt{(1-\varepsilon)^2+\varepsilon^2}} < 1$. The inequality (1.1) follows from the estimate

 $\|x - T_{\varepsilon}x\|^{2} = 2 - 2 \langle x, T_{\varepsilon}x \rangle \leq 2 - 2 \langle x, (1 - \varepsilon)x + \varepsilon w \rangle = 2 - 2 (1 - \varepsilon) - 2\varepsilon \langle x, w \rangle \leq 2\varepsilon,$

where $x \in S_{0,w}$.

Claim 1.2 shows that the condition $I_M = 0$ is satisfied for hemispheres of inner product spaces. Hence, by Theorem 1.1, we obtain:

Corollary 1.3. Hemispheres in Hilbert spaces have the almost fixed point property.

In the sequel, the following lemma will play an important role.

- **Lemma 1.4.** Let $T: D \to S_H$, where $D \subset S_H$, be a nonexpansive mapping. Then:
 - (1) If for some $x \in D$ we have $-x \in D$ and $T(-x) \neq -Tx$, then $T(D) \subset S_{0,w}$, where $w = \frac{Tx+T(-x)}{\|Tx+T(-x)\|}$.
 - (2) Let

$$E = \{ x \in D : -x \in D \land T(-x) = -Tx \}.$$

For any $y \in D$, the mapping $T|_{E \cup \{y\}}$ is an isometry.

Proof. Choose $x \in D$ satisfying conditions $-x \in D$ and $T(-x) \neq -Tx$. Next, choose an arbitrary $y \in D$. Since T is nonexpansive, $\langle Tx, Ty \rangle \geq \langle x, y \rangle$. Similarly, $\langle T(-x), Ty \rangle \geq \langle -x, y \rangle$. Adding the last two inequalities, we find that

$$\langle Tx + T(-x), Ty \rangle = \langle Tx, Ty \rangle + \langle T(-x), Ty \rangle \ge \langle x, y \rangle + \langle -x, y \rangle = 0.$$

This proves the first statement.

If $E = \emptyset$, then the second statement is trivial. Assume that $E \neq \emptyset$ and $y \in D$. Consider two distinct elements x, z such that $x \in E$ and $z \in E \cup \{y\}$. Since T is nonexpansive,

$$\langle Tx, Tz \rangle \ge \langle x, z \rangle \tag{1.2}$$

and $\langle T(-x), Tz \rangle \ge \langle -x, z \rangle$. Applying T(-x) = -Tx, we get $\langle Tx, Tz \rangle < \langle x, z \rangle$

$$|Tx, Tz\rangle \le \langle x, z \rangle.$$
 (1.3)

Combining (1.2) and (1.3), we obtain $\langle Tx, Tz \rangle = \langle x, z \rangle$. Therefore, $T|_{E \cup \{y\}}$ is an isometry.

Corollary 1.5. Let $\alpha \in (-1,0)$, $n \in S_H$ and $M = S_{\alpha,n}$. If $T : M \to M$ is a nonexpansive mapping, then there exists $w \in S_H$ such that $T(M) \subset S_{0,w}$, or T is an isometry.

Proof. Assume that there is no $w \in S_H$ such that $T(M) \subset S_{0,w}$. Then by Lemma 1.4, for any $y \in M$ the mapping $T|_{N \cup \{y\}}$, where $N = S_{\alpha,|\alpha|,n}$, is an isometry. We shall prove that T is an isometry.

Clearly, it is sufficient to consider the case $u, v \in S_{|\alpha|,n}, u \neq v$. Choose $x \in N \cap$ span $\{u, v\}$ such that $||x - u|| \leq ||x - v||$. Observe that the conditions $||Tz_1 - Tz_2|| =$ $||z_1 - z_2||$ and $\angle (Tz_1, Tz_2) = \angle (z_1, z_2)$ are equivalent for any $z_1, z_2 \in M$. Since $T|_{N \cup \{u\}}$ and $T|_{N \cup \{v\}}$ are isometries, $\angle (Tx, Tu) = \angle (x, u)$ and $\angle (Tv, T(-x)) =$ $\angle (v, -x)$. It is easy to see that $\angle (x, u) + \angle (u, v) + \angle (v, -x) = \pi$. Applying the spherical triangle inequality, we get

$$\pi = \angle (Tx, T(-x)) \le \angle (Tx, Tu) + \angle (Tu, Tv) + \angle (Tv, T(-x))$$

$$\le \angle (x, u) + \angle (u, v) + \angle (v, -x) = \pi,$$

which shows that $\angle (Tu, Tv) = \angle (u, v)$. Therefore, T is an isometry.

2. The property E and the nonexpansive extension property

Given two metric spaces (M, ρ) and (M', ρ') , a mapping T from M into M' is called nonexpansive if

$$\rho'\left(Tx, Ty\right) \le \rho\left(x, y\right)$$

for all $x, y \in M$. We say that the pair (M, M') has the nonexpansive extension property if for each subset $D \subset M$ and each nonexpansive mapping $T : D \to M'$, there is a nonexpansive mapping $T' : M \to M'$ which extends T, that is, $T'|_D = T$.

In [12], F. A. Valentine showed that the pair (M, M') has the nonexpansive extension property if it has the following property.

Property E. We say that the pair (M, M') has the property E if for any at least two-element set I, and for any $x_i \in M$, $x'_i \in M'$, $r_i > 0$, $i \in I$ such that

$$\rho'\left(x'_{i}, x'_{j}\right) \le \rho\left(x_{i}, x_{j}\right), \quad i, j \in I,$$

$$(2.1)$$

the condition

$$\bigcap_{i \in I} B_M(x_i, r_i) \neq \emptyset \tag{2.2}$$

implies

$$\bigcap_{i \in I} B_{M'}\left(x'_i, r_i\right) \neq \emptyset.$$
(2.3)

Applying this property, Valentine proved the nonexpansive extension property if each M and M' is:

- (1) a Hilbert space,
- (2) a sphere of a n-dimensional Euclidean space.

The following theorem from Valentine's paper will be helpful later on.

Theorem 2.1. If H is finite-dimensional, then the pair of spaces $M = M' = S_H$ has the property E.

The next corollary follows straightforwardly from the above theorem.

Corollary 2.2. Let H be finite-dimensional, $D \subset S_H$ and let $T : D \to S_H$ be a nonexpansive mapping. Then there exists a nonexpansive mapping $T' : S_H \to S_H$ such that $T'|_D = T$.

The below lemma shows that the pair consisting of a spherical cap and a hemisphere of a Hilbert space also has the nonexpansive extension property.

Lemma 2.3. Let $w \in S_H$. The property E holds for the pair of spaces $M = S_H$ and $M' = S_{0,w}$.

Proof. Consider a set I with at least two elements. Assume that $x_i \in M$, $x'_i \in M'$, $r_i > 0$, $i \in I$ satisfy conditions (2.1) and (2.2). Consider a finite at least two-element subset J of I. Define sets $N = S_Y$, $N' = S_{Y'}$, where Y, Y' are subspaces of H such that $\{x_i : i \in J\} \subset Y$, $\{x'_i : i \in J\} \subset Y'$ and dim $Y = \dim Y' = \operatorname{card}(J)$. Choose an arbitrary $x \in \bigcap_{i \in I} B_M(x_i, r_i)$. It is easy to see that there is $m \in N$ such that $\langle x_i, m \rangle \ge 0$ for all $i \in J$. Let \hat{x} be the orthogonal projection of x onto Y. Put $\check{x} = \hat{x} + \alpha m$, where $\alpha \ge 0$ is chosen so that $\check{x} \in N$. It is easy to see that $\check{x} \in \bigcap_{i \in J} B_N(x_i, r_i)$, and so $\bigcap_{i \in J} B_N(x_i, r_i) \neq \emptyset$. By Theorem 2.1, we have

$$\bigcap_{i \in J} B_{N'}(x'_i, r_i) \neq \emptyset.$$
(2.4)

Let $P: H \to \{w\}^{\perp}$ be the orthogonal projection. Sets $P(B_{M'}(x'_i, r_i))$ are closed and convex. In view of (2.4) and $P(B_{M'}(x'_i, r_i)) = P(B_{S_H}(x'_i, r_i)) \supset P(B_{N'}(x'_i, r_i))$, these sets have the finite intersection property. The ball $B_{\{w\}^{\perp}}$ is weakly compact, hence

$$Z := \bigcap_{i \in I} P\left(B_{M'}\left(x'_i, r_i\right)\right) \neq \emptyset.$$

Since $\widetilde{P} = P|_{M'}$ is a bijection from M' onto $B_{\{w\}^{\perp}}$, so $\widetilde{P}^{-1}(Z) \subset B_{M'}(x'_i, r_i)$ for all $i \in I$. This completes the proof.

3. The distance between the identity and contractions

By Claim 1.2, $I_M = 0$ if M is a hemisphere of a Hilbert space. Using the same argument one can easily show that $I_M = 0$ if M is a (α, n) -spherical cap and $\alpha \in (0, 1]$. In this section we apply the result from the last section to obtain the distance between the identity and contractions for (α, n) -spherical caps in case of $\alpha \in [-1, 0)$. **Theorem 3.1.** If $\alpha \in [-1, 0)$, $n \in S_H$ and $M = S_{\alpha,n}$, then $I_M = 2 |\alpha|$. *Proof.* Let us consider two cases:

i) H is a finite-dimensional Hilbert space. Let $T: M \to M$ be a contraction. By Corollary 2.2, there exists a nonexpansive mapping $T': S_H \to S_H$ such that $T'|_M = T$. In view of Lemma 1.4, $T'(M) \subset S_{0,w}$ for some $w \in S_H$. Given $\varepsilon \in (0, 1)$, let $T_{\varepsilon}: S_{0,w} \to S_{0,w}$ be the mapping defined in Claim 1.2. Put $\tilde{T} = T_{\varepsilon} \circ T'$. The mapping $-\tilde{T}$ is a contraction, so it has a fixed point x_0 , hence $\tilde{T}x_0 = -x_0$.

Suppose that $x_0 \in M$. Applying Claim 1.2, we obtain

...

Hen

$$2 = \|x_0 - \tilde{T}x_0\| \le \|x_0 - T'x_0\| + \|T'x_0 - T_{\varepsilon}(T'x_0)\| \le \|x_0 - Tx_0\| + \sqrt{2\varepsilon}.$$

ce
$$\|x_0 - Tx_0\| \ge 2 - \sqrt{2\varepsilon} \ge 2|\alpha| - \sqrt{2\varepsilon}.$$
(3.1)

Assume now that $x_0 \notin M$. Consider a two-dimensional subspace W of H such that $x_0, n \in W$. Let $u, v \in S_{\alpha,\alpha,n} \cap W$, where $u \neq v$, and $\angle (x_0, u) \leq \angle (x_0, v)$. Since $\angle (x_0, u) + \angle (u, \tilde{T}u) + \angle (\tilde{T}u, -x_0) \geq \pi$, so

$$\angle \left(u, \tilde{T}u\right) \geq \pi - \angle \left(x_0, u\right) - \angle \left(\tilde{T}u, -x_0\right) = \pi - \angle \left(x_0, u\right) - \angle \left(\tilde{T}u, \tilde{T}x_0\right)$$

$$\geq \pi - 2\angle \left(x_0, u\right) \geq \pi - \angle \left(x_0, u\right) - \angle \left(x_0, v\right) = 2\angle \left(u, n\right) - \pi.$$

Hence

$$\begin{aligned} \left\| u - \tilde{T}u \right\|^2 &= 2 - 2\left\langle u, \tilde{T}u \right\rangle = 2 - 2\cos \angle \left(u, \tilde{T}u \right) \ge 2 - 2\cos\left(2\angle \left(u, n \right) - \pi\right) \\ &= 2 + 2\cos\left(2\angle \left(u, n \right)\right) = 4\left(\cos \angle \left(u, n \right)\right)^2 = 4\left\langle u, n \right\rangle^2 = 4\alpha^2. \end{aligned}$$

From this we obtain $||u - Tu|| \ge 2 |\alpha| - \sqrt{2\varepsilon}$. Since $\varepsilon \in (0, 1)$ is arbitrary, this and (3.1) show that $\sup_{i=1}^{\infty} ||x - Tx|| \ge 2 |\alpha|$, and hence $I_M \ge 2 |\alpha|$.

Observe that for the mapping $T: M \to M$,

$$Tx = \begin{cases} x, & x \in S_{0,n}, \\ x - 2 \langle x, n \rangle n, & x \in M \setminus S_{0,n} \end{cases}$$

we have $\sup_{x \in M} ||x - Tx|| = 2 |\alpha|$, therefore $I_M = 2 |\alpha|$.

ii) H is an infinite-dimensional Hilbert space. We consider a contraction $T: M \to M$. In view of Lemma 1.4, $T(M) \subset S_{0,w}$ for some $w \in S_H$. By Lemma 2.3 and Valentine theorem from the previous section, there is an extension T' of T onto S_H such that $T'|_M = T$ and T' is a nonexpansive mapping. Now, it is enough to repeat the reasoning from the proof of the previous case.

4. FPP, AFPP AND MINIMAL DISPLACEMENT

Let T be a nonexpansive mapping on an (α, n) -spherical cap. The problem of the existence of fixed points of such a mapping is trivial for $\alpha = -1$ and $\alpha = 1$. Namely, if $\alpha = 1$, then $S_{1,n} = \{n\}$. If $\alpha = -1$, then $S_{-1,n} = S_H$ and the map Tx = -x is fixed point free and moreover $d_T = 2$. Next, observe that if $\alpha \in [0, 1)$, then, in view of Corollary 1.3, we have $d_T = 0$. More generally, it is easy to get the following lemma. Lemma 4.1. If $\alpha \in [-1, 1]$ and $T : S_{\alpha,n} \to S_{\alpha,n}$ is a nonexpansive mapping such that $T(S_{\alpha,n})$ is contained in a hemisphere \widetilde{S} which is contained in $S_{\alpha,n}$, then $d_T = 0$. Proof. Define the mapping $\widetilde{T} : \widetilde{S} \to \widetilde{S}$ by the formula $\widetilde{T}x = Tx$. Observe that

$$d_T \le d_{\widetilde{T}} = \inf_{x \in \widetilde{S}} \|x - Tx\| = 0,$$

which finishes the proof.

The situation is also completely clear if H is a finite-dimensional Hilbert space. **Theorem 4.2.** Let $\alpha \in (-1,1)$ and H be a finite-dimensional Hilbert space. Then every continuous mapping $T : S_{\alpha,n} \to S_{\alpha,n}$ has a fixed point.

476

Proof. Observe that $S_{\alpha,n}$ is homeomorphic with B_Y , where $Y = \{n\}^{\perp}$. According to Brouwer's fixed point theorem [5], every continuous self-map of B_Y has a fixed point, which finishes the proof.

If H is an infinite-dimensional Hilbert space, then the situation for nonexpansive mappings $T : S_{\alpha,n} \to S_{\alpha,n}$ is more complicated. We present an example showing that d_T can be positive. But before, recall that in all infinite-dimensional Banach spaces X there exist Lipschitz retractions of B_X onto S_X . This fact was proved by Nowak [11] for some spaces and extended to all spaces by Benyamini and Sternfeld [3]. Let $k_0(X)$ denote the so-called retraction constant, being the infimum of the set of all positive k for which there exists a Lipschitz retraction $R : B_X \to S_X$ with the constant k. It is known that $k_0(H) \ge 4.55$ [8]. On the other hand, there are known some constructions of such retractions [10], [2], [4] and the best known estimation from above is $k_0(H) < 28.99$ [2].

Example 4.3. Let $k > k_0(H)$, $\alpha \in \left(-1, \frac{-k}{\sqrt{1-k^2}}\right)$ and $n \in S_H$. Define the mapping $T: S_{\alpha,n} \to S_{\alpha,n}$ by the formula

$$Tx = \begin{cases} -(T_3 \circ T_2 \circ T_1)(x) & \text{if } x \in S_{0,n}, \\ -T_3(x) & \text{if } x \in S_{\alpha,n} \setminus S_{0,n} \end{cases}$$

where T_1 is the orthogonal projection on the subspace $Y = \{n\}^{\perp}$, T_2 is a Lipschitz retraction of the ball B_Y onto the sphere S_Y with the Lipschitz constant k, and T_3 : $S_{\alpha,0,n} \to S_{\alpha,\alpha,n}$ is the closest point projection. We shall show that T is a nonexpansive mapping. Obviously, if $x, y \in S_{0,n}$ or $x, y \in S_{\alpha,0,n}$, then $||Tx - Ty|| \leq ||x - y||$. Assume now that $x \in S_{0,n}$ and $y \in S_{\alpha,n} \setminus S_{0,n}$. Choose $z \in S_Y$ such that $\angle(x, z) + \angle(z, y) = \angle(x, y)$. Then $\angle(Tx, Tz) \leq \angle(x, z)$ and $\angle(Tz, Ty) \leq \angle(z, y)$, and therefore

$$\angle (Tx, Ty) \le \angle (Tx, Tz) + \angle (Tz, Ty) \le \angle (x, z) + \angle (z, y) = \angle (x, y),$$

so T is a nonexpansive mapping. The mapping T has the minimal displacement equal to $\frac{2}{k}$.

Now we present some lemmas and theorems, which guarantee AFPP in an infinitedimensional Hilbert space H for $\alpha \in (-1, 0)$.

Lemma 4.4. Let $\alpha \in (-1,0)$, $n \in S_H$, $M = S_{\alpha,n}$ and let $T : M \to M$ be an isometry. Then the mapping $\tilde{T} : H \to H$ defined by the formula

$$\tilde{T}(\beta x) = \begin{cases} \beta T x, & x \in M, \\ -\beta T(-x), & x \in S_H \setminus M, \end{cases}$$

where $\beta \in [0, \infty)$, is an isometry such that $\tilde{T}|_M = T$. *Proof.* First, we shall prove that $\tilde{T}|_{S_H}$ is an isometry. Let $u, v \in S_H$. The case $u, v \in M$ is obvious. If $u, v \notin M$, then $\left\|\tilde{T}u - \tilde{T}v\right\| = \|T(-u) - T(-v)\| = \|u - v\|$. Assume now that $u \notin M, v \in M$. Then

$$\angle \left(\tilde{T}u, \tilde{T}v\right) = \angle \left(-T\left(-u\right), Tv\right) = \pi - \angle \left(T\left(-u\right), Tv\right) = \pi - \angle \left(-u, v\right) = \angle \left(u, v\right).$$

Therefore, $T|_{S_H}$ is an isometry. Any two elements of H can be expressed in the forms $\beta x, \gamma y$, where $\beta, \gamma \geq 0$ and $x, y \in S_H$. Then

$$\left\|\tilde{T}\left(\beta x\right)-\tilde{T}\left(\gamma y\right)\right\|^{2}=\beta^{2}-2\beta\gamma\left\langle\tilde{T}x,\tilde{T}y\right\rangle+\gamma^{2}=\beta^{2}-2\beta\gamma\left\langle x,y\right\rangle+\gamma^{2}=\left\|\beta x-\gamma y\right\|^{2}.$$

Thus \tilde{T} is an isometry.

Theorem 4.5. (Baker) [6, Theorem 1.3.8] If T is an isometry from a real normed space X into a strictly convex, real normed space Y such that T(0) = 0, then T is a linear mapping.

Theorem 4.6. Let $\alpha \in (-1,0)$, $n \in S_H$ and $M = S_{\alpha,n}$. If $T : M \to M$ is an isometry, then $d_T = 0$.

Proof. Let \tilde{T} be the isometry defined in Lemma 4.4. By Theorem 4.5, \tilde{T} is a linear mapping. Clearly, $\tilde{T}(H)$ is a closed subspace of H. Assume that $\tilde{T}(H) = H$. Then $T(S_{\alpha,\alpha,n}) \subset S_{\alpha,\alpha,Tn}$. For an arbitrary $y \in S_{\alpha,\alpha,Tn}$ there is $x \in S_H$ such that $y = \tilde{T}x$. Since $\langle \tilde{T}x, \tilde{T}n \rangle = \langle x, n \rangle$, we have $x \in S_{\alpha,\alpha,n}$. It follows that $T(S_{\alpha,\alpha,n}) = S_{\alpha,\alpha,Tn}$. But $S_{\alpha,\alpha,Tn} \subset M$, so Tn = n, and therefore $d_T = 0$.

Now consider the case where $\tilde{T}(H) \neq H$. Choose an arbitrary $w \in (\tilde{T}(H))^{\perp} \cap S_{0,n}$. Then $T(S_{0,w} \cap M) \subset S_{0,w} \cap M$. Let $\varepsilon \in (0,1)$ and T_{ε} be the mapping defined in Claim 1.2. We have $T_{\varepsilon}(S_{0,w} \cap M) \subset S_{0,w} \cap M$, since

$$\langle T_{\varepsilon}x, n \rangle = \left\langle \frac{(1-\varepsilon)x + \varepsilon w}{\|(1-\varepsilon)x + \varepsilon w\|}, n \right\rangle \ge \frac{1-\varepsilon}{\|(1-\varepsilon)x + \varepsilon w\|} \langle x, n \rangle \ge \alpha$$

for any $x \in S_{0,w} \cap M$. Applying the reasoning similar to that in the proof of Theorem 1.1 for the mapping $T_{\varepsilon} \circ T$ from $S_{0,w} \cap M$ into itself, we obtain $d_T = 0$.

Note that, by Lemma 4.1, the above theorem is also true for $\alpha \in [0, 1]$.

Lemma 4.7. Given $\alpha \in (-1,0)$, let $T: S_{\alpha,n} \to S_{\alpha,n}$ be a nonexpansive mapping for which $T(S_{\alpha,n})$ is contained in a hemisphere \widetilde{S} such that $\widetilde{S} \not\subset S_{\alpha,n}$, and let $T': S_H \to \widetilde{S}$ be a nonexpansive extension of T. If:

- (1) $T'(-n) \neq -n, or$
- (2) T'(-n) = -n and $T|_{S_{\alpha,\alpha,n}}$ is not an isometry onto $S_{\alpha,\alpha,n}$,

then $d_T = 0$.

Proof. (1) Assume that $d_T > 0$. Let $r = \min \left\{ \frac{1}{3} \|n + T'(-n)\|, d_T \right\}$. Given $\varepsilon \in (0, r)$, observe that, if $x \in B_{S_H}(-n, r)$ or $x \in S_{\alpha,n}$, then $\|x_{\varepsilon} - T'x_{\varepsilon}\| > \varepsilon$, and therefore, by Lemma 4.1, there exists $x_{\varepsilon} \in \widetilde{S} \setminus (S_{\alpha,n} \cup B_{S_H}(-n, r))$ such that $\|x - T'x\| \le \varepsilon$. It is easy to see that for any such x_{ε} there exists a unique $y_{\varepsilon} \in S_{\alpha,\alpha,n}$ such that $\|x_{\varepsilon} - y_{\varepsilon}\| = \operatorname{dist}(x_{\varepsilon}, S_{\alpha,\alpha,n})$. From the triangle inequality, we have $Ty_{\varepsilon} \in B_H(x_{\varepsilon}, \|x_{\varepsilon} - y_{\varepsilon}\| + \varepsilon) \cap S_{\alpha,n}$. Using the cosine rule, one can prove that

diam
$$(B_H(x_{\varepsilon}, ||x_{\varepsilon} - y_{\varepsilon}|| + \varepsilon) \cap S_{\alpha,n}) \le 2\sqrt{\frac{\pi^2 \varepsilon^2}{r^2 (4 - r^2)} + 3\varepsilon}$$

The above diameter tends to 0 as $\varepsilon \to 0$, which contradicts with $d_T > 0$.

(2) Since the mapping T' is nonexpansive, we have that $T(S_{\alpha,\alpha,n}) \subset S_{\alpha,\alpha,n}$. We can treat the affine hull of $S_{\alpha,\alpha,n}$ as a Hilbert space G so that $S_{\alpha,\alpha,n}$ is the unit sphere, i.e. $S_G = S_{\alpha,\alpha,n}$. Put $T_1 = T|_{S_G}$. Applying Lemma 1.4 to T_1 , we see that $T_1(S_G)$ is contained in a hemisphere \tilde{S}_G of G, or T_1 is an isometry. In the first case, by Lemma 4.1, we get $d_{T_1} = 0$. In the second case, since T_1 is not onto S_G , so, applying the reasoning from the proof of Theorem 4.6, we obtain $d_{T_1} = 0$. In view of $d_T \leq d_{T_1}$, we have $d_T = 0$, as claimed.

From Lemmas 4.1 and 4.7, we have that if $\alpha \in (-1,0)$ and $T: S_{\alpha,n} \to S_{\alpha,n}$ is a nonexpansive mapping but not an isometry, then d_T can be positive only if $\widetilde{S} \not\subset S_{\alpha,n}$ and $T|_{S_{\alpha,\alpha,n}}$ is an isometry onto $S_{\alpha,\alpha,n}$. We shall use this observation in the proof of the following theorem.

Theorem 4.8. Let $\alpha \in \left(-\frac{1}{2}, 0\right)$ and $T : S_{\alpha,n} \to S_{\alpha,n}$ be a nonexpansive mapping, then $d_T = 0$.

Proof. Suppose that $d_T > 0$. Theorem 4.6 implies that T is not an isometry. From Lemmas 1.4 and 4.1, we have that $T(S_{\alpha,n})$ is contained in a hemisphere \widetilde{S} such that $\widetilde{S} \not\subset S_{\alpha,n}$. By Lemma 4.7, T'(-n) = -n, where $T' : S_H \to \widetilde{S}$ is a nonexpansive extension of T, and $T|_{S_{\alpha,\alpha,n}}$ is an isometry onto $S_{\alpha,\alpha,n}$. Observe that $S_{\alpha,\alpha,n} \subset \widetilde{S}$, hence $n \notin \widetilde{S}$. Let $y \in S_{\alpha,\alpha,n}$ be such that $Ty = -(P \circ T)n$, where P is the closest point projection onto $S_{\alpha,\alpha,n}$. Since P is nonexpansive on $\widetilde{S} \cap S_{\alpha,n}$,

$$||Tn - Ty|| \ge ||(P \circ T)n - (P \circ T)y|| = 2 ||Ty|| = 2\sqrt{1 - \alpha^2}$$

and $||n - y|| = \sqrt{2 - 2\alpha}$.

It is easy to check that if $\alpha \in \left(-\frac{1}{2}, 0\right)$, then ||Tn - Ty|| > ||n - y||, which is a contradiction.

It is an open problem to find the supremum of α such that the minimal displacement is positive.

Acknowledgment. The authors are grateful to Professor Kazimierz Goebel for valuable comments and suggestions.

References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3(1922), 133-181.
- M. Baronti, E. Casini, C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory, 120(2003), 296-308.
- [3] Y. Benyamini, Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88(1983), 439-445.
- K. Bolibok, Minimal displacement and retraction problems in infinite-dimensional Hilbert spaces, Proc. Amer. Math. Soc., 132(2004), no. 4, 1103-1111.
- [5] L. E. J. Brouwer, Über Abbildungen vom Mannigfaltigkeiten, Math. Ann., 71(1911), 97-115.
- [6] R. Fleming, J. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman & Hall/CRC, Boca Raton, 2003.
- [7] K. Goebel, On the minimal displacement of points under lipschitzian mappings, Pacific J. Math., 45(1973), 151-163.

- [8] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- M.D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., 22(1934), 77-108.
- [10] T. Komorowski, J. Wosko, A remark on the retracting of a ball onto a sphere in an infinite dimensional Hilbert space, Math. Scand., 67(1990), 223-226.
- [11] B. Nowak, On the Lipschitz retraction of the unit ball in infinite dimensional Banach spaces onto boundary, Bull. Acad. Polon. Sci., 27(1979), 861-864.
- [12] F.A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math., 67(1945), 83-93.

Received: April 30, 2015; Accepted: October 8, 2015.

480