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Abstract. Let H be an at least two-dimensional real Hilbert space with the unit sphere SH . For

α ∈ [−1, 1] and n ∈ SH we define an (α, n)-spherical cap by Sα,n = {x ∈ SH : 〈x, n〉 ≥ α}. We

show that the distance between the set of contractions T : Sα,n → Sα,n and the identity mapping is

positive iff α < 0. We also study the fixed point property and the minimal displacement problem in

this setting for nonexpansive mappings.
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1. Introduction and preliminaries

Let (M,ρ) be a metric space. By BM (x, r) we denote the closed ball with center

at x ∈ M and radius r. A mapping T : M → M is said to be k-lipschitzian if there

exists a constant k ≥ 0 such that ρ (Tx, Ty) ≤ kρ (x, y) for all x, y ∈ M . If k = 1,

then the map T is called nonexpansive. A contraction is a k-lipschitzian map with

k < 1. The space M has the fixed point property for nonexpansive mappings (FPP

for short) if any nonexpansive mapping T : M →M has a fixed point. The quantity

dT = inf
x∈M

ρ (x, Tx)

(see [7]) is called the minimal displacement of a mapping T : M →M . The space M

has the almost fixed point property (AFPP for short) if dT = 0 for all nonexpansive

mappings T : M →M . If dT > 0, then we say that the map T has a positive minimal

displacement.

Let C be the set of all contractions from M into itself. Put

IM = inf
T∈C

{
sup
x∈M

ρ (x, Tx)

}
.
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This coefficient describes the degree of accuracy with which the identity can be esti-

mated by contractions. We shall refer to IM as the distance between the identity and

contractions.

Throughout the paper, H denotes a real Hilbert space of dimension at least 2 with

inner product 〈·, ·〉. By BH and SH we denote the closed unit ball and the unit sphere

of H, respectively. The angle between x, y ∈ H \ {0} is defined by

∠ (x, y) = arccos
〈x, y〉
‖x‖ ‖y‖

.

Given n ∈ SH (”the north pole”), and α, β ∈ [−1, 1], we define a spherical segment

by

Sα,β,n = {x ∈ SH : α ≤ 〈x, n〉 ≤ β}
and an (α, n)-spherical cap Sα,n by

Sα,n = Sα,1,n.

In the same way we define spherical rings and caps for any z ∈ SH . The (0, z)-spherical

cap is called a hemisphere.

The Banach contraction principle [1] states that if T : M → M is a contraction

and M is complete, then T has a unique fixed point. Using the notion of IM we get

the following theorem.

Theorem 1.1. If (M,ρ) is a complete metric space such that IM = 0, then M has

the almost fixed point property.

Proof. Let ε > 0 and T : M → M be a nonexpansive mapping. In view of the

definition of IM , there exists a contraction Tε : M → M such that ρ (x, Tεx) ≤ ε

for all x ∈ M . The composition Tε ◦ T is a contraction on M . Therefore, by the

Banach contraction principle, it has a fixed point x0, and consequently ρ (Tx0, x0) =

ρ (Tx0, Tε (Tx0)) ≤ ε. As ε > 0 is arbitrary, this proves the result.

It is easy to see that Theorem 1.1 applies to any nonempty closed convex and

bounded set in a Banach space. However, some non-convex sets also satisfy assump-

tions of Theorem 1.1.

Claim 1.2. If w ∈ SH and ε ∈ (0, 1] , then the mapping Tε : S0,w → S0,w defined by

Tεx =
(1− ε)x+ εw

‖(1− ε)x+ εw‖
is a contraction, which satisfies the inequality

sup {‖x− Tεx‖ : x ∈ S0,w} ≤
√

2ε. (1.1)

Proof. For arbitrary u, v ∈ H \ {0} and z ∈ S0,w, we have∥∥∥∥ u

‖u‖
− v

‖v‖

∥∥∥∥ =

(
2− 2

〈
u

‖u‖
,
v

‖v‖

〉) 1
2

≤

(
‖u‖2 − 2 〈u, v〉+ ‖v‖2

‖u‖ ‖v‖

) 1
2

≤ ‖u− v‖
min {‖u‖ , ‖v‖}
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and ‖(1− ε) z + εw‖2 = (1− ε)2 + 2 (1− ε) ε 〈z, w〉 + ε2 ≥ (1− ε)2 + ε2. From this

we obtain

‖Tεx− Tεy‖ ≤
(1− ε) ‖x− y‖

min {‖(1− ε)x+ εw‖ , ‖(1− ε) y + εw‖}
≤ 1− ε√

(1− ε)2 + ε2
‖x− y‖ ,

where x, y ∈ S0,w. Tε is a contraction because 1−ε√
(1−ε)2+ε2

< 1.

The inequality (1.1) follows from the estimate

‖x− Tεx‖2 = 2−2 〈x, Tεx〉 ≤ 2−2 〈x, (1− ε)x+ εw〉 = 2−2 (1− ε)−2ε 〈x,w〉 ≤ 2ε,

where x ∈ S0,w.

Claim 1.2 shows that the condition IM = 0 is satisfied for hemispheres of inner

product spaces. Hence, by Theorem 1.1, we obtain:

Corollary 1.3. Hemispheres in Hilbert spaces have the almost fixed point property.

In the sequel, the following lemma will play an important role.

Lemma 1.4. Let T : D → SH , where D ⊂ SH , be a nonexpansive mapping. Then:

(1) If for some x ∈ D we have −x ∈ D and T (−x) 6= −Tx, then T(D) ⊂ S0,w,

where w = Tx+T (−x)
‖Tx+T (−x)‖ .

(2) Let

E = {x ∈ D : −x ∈ D ∧ T (−x) = −Tx} .
For any y ∈ D, the mapping T |E∪{y} is an isometry.

Proof. Choose x ∈ D satisfying conditions −x ∈ D and T (−x) 6= −Tx. Next,

choose an arbitrary y ∈ D. Since T is nonexpansive, 〈Tx, Ty〉 ≥ 〈x, y〉 . Similarly,

〈T (−x) , Ty〉 ≥ 〈−x, y〉 . Adding the last two inequalities, we find that

〈Tx+ T (−x) , T y〉 = 〈Tx, Ty〉+ 〈T (−x) , Ty〉 ≥ 〈x, y〉+ 〈−x, y〉 = 0.

This proves the first statement.

If E = ∅, then the second statement is trivial. Assume that E 6= ∅ and y ∈ D.

Consider two distinct elements x, z such that x ∈ E and z ∈ E ∪ {y}. Since T is

nonexpansive,

〈Tx, Tz〉 ≥ 〈x, z〉 (1.2)

and 〈T (−x) , T z〉 ≥ 〈−x, z〉. Applying T (−x) = −Tx, we get

〈Tx, Tz〉 ≤ 〈x, z〉 . (1.3)

Combining (1.2) and (1.3), we obtain 〈Tx, Tz〉 = 〈x, z〉. Therefore, T |E∪{y} is an

isometry.

Corollary 1.5. Let α ∈ (−1, 0), n ∈ SH and M = Sα,n. If T : M → M is a

nonexpansive mapping, then there exists w ∈ SH such that T (M) ⊂ S0,w, or T is an

isometry.

Proof. Assume that there is no w ∈ SH such that T (M) ⊂ S0,w. Then by Lemma

1.4, for any y ∈ M the mapping T |N∪{y}, where N = Sα,|α|,n, is an isometry. We

shall prove that T is an isometry.
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Clearly, it is sufficient to consider the case u, v ∈ S|α|,n, u 6= v. Choose x ∈ N ∩
span {u, v} such that ‖x− u‖ ≤ ‖x− v‖. Observe that the conditions ‖Tz1 − Tz2‖ =

‖z1 − z2‖ and ∠ (Tz1, T z2) = ∠ (z1, z2) are equivalent for any z1, z2 ∈ M . Since

T |N∪{u} and T |N∪{v} are isometries, ∠ (Tx, Tu) = ∠ (x, u) and ∠ (Tv, T (−x)) =

∠ (v,−x). It is easy to see that ∠ (x, u) + ∠ (u, v) + ∠ (v,−x) = π. Applying the

spherical triangle inequality, we get

π = ∠ (Tx, T (−x)) ≤ ∠ (Tx, Tu) + ∠ (Tu, Tv) + ∠ (Tv, T (−x))

≤ ∠ (x, u) + ∠ (u, v) + ∠ (v,−x) = π,

which shows that ∠ (Tu, Tv) = ∠ (u, v). Therefore, T is an isometry.

2. The property E and the nonexpansive extension property

Given two metric spaces (M,ρ) and (M ′, ρ′), a mapping T from M into M ′ is

called nonexpansive if

ρ′ (Tx, Ty) ≤ ρ (x, y)

for all x, y ∈ M . We say that the pair (M, M ′) has the nonexpansive extension

property if for each subset D ⊂ M and each nonexpansive mapping T : D → M ′,

there is a nonexpansive mapping T ′ : M →M ′ which extends T , that is, T ′|D = T .

In [12], F. A. Valentine showed that the pair (M, M ′) has the nonexpansive ex-

tension property if it has the following property.

Property E. We say that the pair (M, M ′) has the property E if for any at least

two-element set I, and for any xi ∈M , x′i ∈M ′, ri > 0, i ∈ I such that

ρ′
(
x′i, x

′
j

)
≤ ρ (xi, xj) , i, j ∈ I, (2.1)

the condition ⋂
i∈I

BM (xi, ri) 6= ∅ (2.2)

implies ⋂
i∈I

BM ′ (x′i, ri) 6= ∅. (2.3)

Applying this property, Valentine proved the nonexpansive extension property if

each M and M ′ is:

(1) a Hilbert space,

(2) a sphere of a n-dimensional Euclidean space.

The following theorem from Valentine’s paper will be helpful later on.

Theorem 2.1. If H is finite-dimensional, then the pair of spaces M = M ′ = SH has

the property E.

The next corollary follows straightforwardly from the above theorem.

Corollary 2.2. Let H be finite-dimensional, D ⊂ SH and let T : D → SH be a

nonexpansive mapping. Then there exists a nonexpansive mapping T ′ : SH → SH
such that T ′|D = T .
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The below lemma shows that the pair consisting of a spherical cap and a hemisphere

of a Hilbert space also has the nonexpansive extension property.

Lemma 2.3. Let w ∈ SH . The property E holds for the pair of spaces M = SH and

M ′ = S0,w.

Proof. Consider a set I with at least two elements. Assume that xi ∈ M , x′i ∈ M ′,
ri > 0, i ∈ I satisfy conditions (2.1) and (2.2). Consider a finite at least two-element

subset J of I. Define sets N = SY , N ′ = SY ′ , where Y , Y ′ are subspaces of H such

that {xi : i ∈ J} ⊂ Y , {x′i : i ∈ J} ⊂ Y ′ and dimY = dimY ′ = card (J). Choose an

arbitrary x ∈
⋂
i∈I
BM (xi, ri). It is easy to see that there is m ∈ N such that 〈xi,m〉 ≥ 0

for all i ∈ J . Let x̂ be the orthogonal projection of x onto Y . Put x̌ = x̂+αm, where

α ≥ 0 is chosen so that x̌ ∈ N . It is easy to see that x̌ ∈
⋂
i∈J

BN (xi, ri), and so⋂
i∈J

BN (xi, ri) 6= ∅. By Theorem 2.1, we have⋂
i∈J

BN ′ (x′i, ri) 6= ∅. (2.4)

Let P : H → {w}⊥ be the orthogonal projection. Sets P (BM ′ (x′i, ri)) are closed and

convex. In view of (2.4) and P (BM ′ (x′i, ri)) = P (BSH (x′i, ri)) ⊃ P (BN ′ (x′i, ri)),

these sets have the finite intersection property. The ball B{w}⊥ is weakly compact,

hence

Z :=
⋂
i∈I

P (BM ′ (x′i, ri)) 6= ∅.

Since P̃ = P |M ′ is a bijection from M ′ onto B{w}⊥ , so P̃−1 (Z) ⊂ BM ′ (x′i, ri) for all

i ∈ I. This completes the proof.

3. The distance between the identity and contractions

By Claim 1.2, IM = 0 if M is a hemisphere of a Hilbert space. Using the same

argument one can easily show that IM = 0 if M is a (α, n)-spherical cap and α ∈ (0, 1].

In this section we apply the result from the last section to obtain the distance between

the identity and contractions for (α, n)-spherical caps in case of α ∈ [−1, 0).

Theorem 3.1. If α ∈ [−1, 0), n ∈ SH and M = Sα,n, then IM = 2 |α|.
Proof. Let us consider two cases:

i) H is a finite-dimensional Hilbert space. Let T : M → M be a contraction.

By Corollary 2.2, there exists a nonexpansive mapping T ′ : SH → SH such that

T ′|M = T . In view of Lemma 1.4, T ′ (M) ⊂ S0,w for some w ∈ SH . Given ε ∈ (0, 1),

let Tε : S0,w → S0,w be the mapping defined in Claim 1.2. Put T̃ = Tε ◦ T ′. The

mapping −T̃ is a contraction, so it has a fixed point x0, hence T̃ x0 = −x0.

Suppose that x0 ∈M . Applying Claim 1.2, we obtain

2 =
∥∥∥x0 − T̃ x0∥∥∥ ≤ ‖x0 − T ′x0‖+ ‖T ′x0 − Tε (T ′x0)‖ ≤ ‖x0 − Tx0‖+

√
2ε.

Hence

‖x0 − Tx0‖ ≥ 2−
√

2ε ≥ 2 |α| −
√

2ε. (3.1)
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Assume now that x0 /∈ M . Consider a two-dimensional subspace W of H such

that x0, n ∈ W . Let u, v ∈ Sα,α,n ∩W , where u 6= v, and ∠ (x0, u) ≤ ∠ (x0, v). Since

∠ (x0, u) + ∠
(
u, T̃u

)
+ ∠

(
T̃ u,−x0

)
≥ π, so

∠
(
u, T̃u

)
≥ π − ∠ (x0, u)− ∠

(
T̃ u,−x0

)
= π − ∠ (x0, u)− ∠

(
T̃ u, T̃ x0

)
≥ π − 2∠ (x0, u) ≥ π − ∠ (x0, u)− ∠ (x0, v) = 2∠ (u, n)− π.

Hence∥∥∥u− T̃ u∥∥∥2 = 2− 2
〈
u, T̃u

〉
= 2− 2 cos∠

(
u, T̃u

)
≥ 2− 2 cos (2∠ (u, n)− π)

= 2 + 2 cos (2∠ (u, n)) = 4 (cos∠ (u, n))
2

= 4 〈u, n〉2 = 4α2.

From this we obtain ‖u− Tu‖ ≥ 2 |α| −
√

2ε. Since ε ∈ (0, 1) is arbitrary, this and

(3.1) show that sup
x∈M
‖x− Tx‖ ≥ 2 |α|, and hence IM ≥ 2 |α|.

Observe that for the mapping T : M →M ,

Tx =

{
x, x ∈ S0,n,

x− 2 〈x, n〉n, x ∈M \ S0,n,

we have sup
x∈M
‖x− Tx‖ = 2 |α|, therefore IM = 2 |α|.

ii) H is an infinite-dimensional Hilbert space. We consider a contraction T : M →
M . In view of Lemma 1.4, T (M) ⊂ S0,w for some w ∈ SH . By Lemma 2.3 and

Valentine theorem from the previous section, there is an extension T ′ of T onto SH
such that T ′|M = T and T ′ is a nonexpansive mapping. Now, it is enough to repeat

the reasoning from the proof of the previous case.

4. Fpp, afpp and minimal displacement

Let T be a nonexpansive mapping on an (α, n)-spherical cap. The problem of the

existence of fixed points of such a mapping is trivial for α = −1 and α = 1. Namely,

if α = 1, then S1,n = {n} . If α = −1, then S−1,n = SH and the map Tx = −x is

fixed point free and moreover dT = 2. Next, observe that if α ∈ [0, 1), then, in view of

Corollary 1.3, we have dT = 0. More generally, it is easy to get the following lemma.

Lemma 4.1. If α ∈ [−1, 1] and T : Sα,n → Sα,n is a nonexpansive mapping such that

T (Sα,n) is contained in a hemisphere S̃ which is contained in Sα,n, then dT = 0.

Proof. Define the mapping T̃ : S̃ → S̃ by the formula T̃ x = Tx. Observe that

dT ≤ dT̃ = inf
x∈S̃
‖x− Tx‖ = 0,

which finishes the proof.

The situation is also completely clear if H is a finite-dimensional Hilbert space.

Theorem 4.2. Let α ∈ (−1, 1) and H be a finite-dimensional Hilbert space. Then

every continuous mapping T : Sα,n → Sα,n has a fixed point.
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Proof. Observe that Sα,n is homeomorphic with BY , where Y = {n}⊥. According

to Brouwer’s fixed point theorem [5], every continuous self-map of BY has a fixed

point, which finishes the proof.

If H is an infinite-dimensional Hilbert space, then the situation for nonexpansive

mappings T : Sα,n → Sα,n is more complicated. We present an example showing

that dT can be positive. But before, recall that in all infinite-dimensional Banach

spaces X there exist Lipschitz retractions of BX onto SX . This fact was proved by

Nowak [11] for some spaces and extended to all spaces by Benyamini and Sternfeld

[3]. Let k0 (X) denote the so-called retraction constant, being the infimum of the set

of all positive k for which there exists a Lipschitz retraction R : BX → SX with the

constant k. It is known that k0 (H) ≥ 4.55 [8]. On the other hand, there are known

some constructions of such retractions [10], [2], [4] and the best known estimation

from above is k0 (H) < 28.99 [2].

Example 4.3. Let k > k0 (H), α ∈
(
−1, −k√

1−k2

)
and n ∈ SH . Define the mapping

T : Sα,n → Sα,n by the formula

Tx =

{
− (T3 ◦ T2 ◦ T1) (x) if x ∈ S0,n,

−T3 (x) if x ∈ Sα,n \ S0,n,

where T1 is the orthogonal projection on the subspace Y = {n}⊥, T2 is a Lipschitz

retraction of the ball BY onto the sphere SY with the Lipschitz constant k, and T3 :

Sα,0,n → Sα,α,n is the closest point projection. We shall show that T is a nonexpansive

mapping. Obviously, if x, y ∈ S0,n or x, y ∈ Sα,0,n, then ‖Tx− Ty‖ ≤ ‖x− y‖.
Assume now that x ∈ S0,n and y ∈ Sα,n \ S0,n. Choose z ∈ SY such that ∠ (x, z) +

∠ (z, y) = ∠ (x, y) . Then ∠ (Tx, Tz) ≤ ∠ (x, z) and ∠ (Tz, Ty) ≤ ∠ (z, y), and

therefore

∠ (Tx, Ty) ≤ ∠ (Tx, Tz) + ∠ (Tz, Ty) ≤ ∠ (x, z) + ∠ (z, y) = ∠ (x, y) ,

so T is a nonexpansive mapping. The mapping T has the minimal displacement equal

to 2
k .

Now we present some lemmas and theorems, which guarantee AFPP in an infinite-

dimensional Hilbert space H for α ∈ (−1, 0).

Lemma 4.4. Let α ∈ (−1, 0), n ∈ SH , M = Sα,n and let T : M → M be an

isometry. Then the mapping T̃ : H → H defined by the formula

T̃ (βx) =

{
βTx, x ∈M,

−βT (−x) , x ∈ SH \M,

where β ∈ [0,∞), is an isometry such that T̃ |M = T .

Proof. First, we shall prove that T̃ |SH is an isometry. Let u, v ∈ SH . The case

u, v ∈ M is obvious. If u, v /∈ M , then
∥∥∥T̃ u− T̃ v∥∥∥ = ‖T (−u)− T (−v)‖ = ‖u− v‖.

Assume now that u /∈M , v ∈M . Then

∠
(
T̃ u, T̃ v

)
= ∠ (−T (−u) , T v) = π − ∠ (T (−u) , T v) = π − ∠ (−u, v) = ∠ (u, v) .
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Therefore, T̃ |SH is an isometry. Any two elements of H can be expressed in the forms

βx, γy, where β, γ ≥ 0 and x, y ∈ SH . Then∥∥∥T̃ (βx)− T̃ (γy)
∥∥∥2 = β2 − 2βγ

〈
T̃ x, T̃ y

〉
+ γ2 = β2 − 2βγ 〈x, y〉+ γ2 = ‖βx− γy‖2 .

Thus T̃ is an isometry.

Theorem 4.5. (Baker) [6, Theorem 1.3.8] If T is an isometry from a real normed

space X into a strictly convex, real normed space Y such that T (0) = 0, then T is a

linear mapping.

Theorem 4.6. Let α ∈ (−1, 0), n ∈ SH and M = Sα,n. If T : M → M is an

isometry, then dT = 0.

Proof. Let T̃ be the isometry defined in Lemma 4.4. By Theorem 4.5, T̃ is a linear

mapping. Clearly, T̃ (H) is a closed subspace of H. Assume that T̃ (H) = H. Then

T (Sα,α,n) ⊂ Sα,α,Tn. For an arbitrary y ∈ Sα,α,Tn there is x ∈ SH such that y = T̃ x.

Since
〈
T̃ x, T̃ n

〉
= 〈x, n〉, we have x ∈ Sα,α,n. It follows that T (Sα,α,n) = Sα,α,Tn.

But Sα,α,Tn ⊂M , so Tn = n, and therefore dT = 0.

Now consider the case where T̃ (H) 6= H. Choose an arbitrary w ∈
(
T̃ (H)

)⊥
∩

S0,n. Then T (S0,w ∩M) ⊂ S0,w ∩M . Let ε ∈ (0, 1) and Tε be the mapping defined

in Claim 1.2. We have Tε (S0,w ∩M) ⊂ S0,w ∩M , since

〈Tεx, n〉 =

〈
(1− ε)x+ εw

‖(1− ε)x+ εw‖
, n

〉
≥ 1− ε
‖(1− ε)x+ εw‖

〈x, n〉 ≥ α

for any x ∈ S0,w∩M . Applying the reasoning similar to that in the proof of Theorem

1.1 for the mapping Tε ◦ T from S0,w ∩M into itself, we obtain dT = 0.

Note that, by Lemma 4.1, the above theorem is also true for α ∈ [0, 1].

Lemma 4.7. Given α ∈ (−1, 0), let T : Sα,n → Sα,n be a nonexpansive mapping for

which T (Sα,n) is contained in a hemisphere S̃ such that S̃ 6⊂ Sα,n, and let T ′ : SH → S̃

be a nonexpansive extension of T . If:

(1) T ′ (−n) 6= −n, or

(2) T ′ (−n) = −n and T |Sα,α,n is not an isometry onto Sα,α,n,

then dT = 0.

Proof. (1) Assume that dT > 0. Let r = min
{

1
3 ‖n+ T ′ (−n)‖ , dT

}
. Given ε ∈ (0, r),

observe that, if x ∈ BSH (−n, r) or x ∈ Sα,n, then ‖xε − T ′xε‖ > ε, and therefore, by

Lemma 4.1, there exists xε ∈ S̃\ (Sα,n ∪BSH (−n, r)) such that ‖x− T ′x‖ ≤ ε. It is

easy to see that for any such xε there exists a unique yε ∈ Sα,α,n such that ‖xε − yε‖ =

dist (xε, Sα,α,n). From the triangle inequality, we have Tyε ∈ BH (xε, ‖xε − yε‖+ ε )∩
Sα,n. Using the cosine rule, one can prove that

diam (BH (xε, ‖xε − yε‖+ ε ) ∩ Sα,n) ≤ 2

√
π2ε2

r2 (4− r2)
+ 3ε.

The above diameter tends to 0 as ε→ 0, which contradicts with dT > 0.
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(2) Since the mapping T ′ is nonexpansive, we have that T (Sα,α,n) ⊂ Sα,α,n. We

can treat the affine hull of Sα,α,n as a Hilbert space G so that Sα,α,n is the unit sphere,

i.e. SG = Sα,α,n. Put T1 = T |SG . Applying Lemma 1.4 to T1, we see that T1 (SG) is

contained in a hemisphere S̃G of G, or T1 is an isometry. In the first case, by Lemma

4.1, we get dT1
= 0. In the second case, since T1 is not onto SG, so, applying the

reasoning from the proof of Theorem 4.6, we obtain dT1 = 0. In view of dT ≤ dT1 , we

have dT = 0, as claimed.

From Lemmas 4.1 and 4.7, we have that if α ∈ (−1, 0) and T : Sα,n → Sα,n is a

nonexpansive mapping but not an isometry, then dT can be positive only if S̃ 6⊂ Sα,n
and T |Sα,α,n is an isometry onto Sα,α,n. We shall use this observation in the proof of

the following theorem.

Theorem 4.8. Let α ∈
(
− 1

2 , 0
)

and T : Sα,n → Sα,n be a nonexpansive mapping,

then dT = 0.

Proof. Suppose that dT > 0. Theorem 4.6 implies that T is not an isometry. From

Lemmas 1.4 and 4.1, we have that T (Sα,n) is contained in a hemisphere S̃ such that

S̃ 6⊂ Sα,n. By Lemma 4.7, T ′ (−n) = −n, where T ′ : SH → S̃ is a nonexpansive

extension of T , and T |Sα,α,n is an isometry onto Sα,α,n. Observe that Sα,α,n ⊂ S̃,

hence n /∈ S̃. Let y ∈ Sα,α,n be such that Ty = − (P ◦ T )n, where P is the closest

point projection onto Sα,α,n. Since P is nonexpansive on S̃ ∩ Sα,n,

‖Tn− Ty‖ ≥ ‖(P ◦ T )n− (P ◦ T ) y‖ = 2 ‖Ty‖ = 2
√

1− α2

and ‖n− y‖ =
√

2− 2α.

It is easy to check that if α ∈
(
− 1

2 , 0
)
, then ‖Tn− Ty‖ > ‖n− y‖, which is a contra-

diction.

It is an open problem to find the supremum of α such that the minimal displacement

is positive.
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