
Fixed Point Theory, 18(2017), No. 2, 457-470

DOI 10.24193/fpt-ro.2017.2.36

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

NONLINEAR BOUNDARY VALUE PROBLEM
FOR IMPLICIT DIFFERENTIAL EQUATIONS

OF FRACTIONAL ORDER IN BANACH SPACES

MOUFFAK BENCHOHRA∗,◦, SOUFYANE BOURIAH∗ AND

MOHAMED ABDALLA DARWISH�,•

∗Laboratory of Mathematics, University of Sidi Bel-Abbes

P.O. Box 89 Sidi Bel Abbes 22000, Algeria

E-mail: benchohra@univ-sba.dz, Bouriahsoufiane@yahoo.fr

◦Department of Mathematics, King Abdulaziz University

P.O. Box 80203, Jeddah 21589, Saudi Arabia

�Department of Mathematics, Sciences Faculty for Girls

King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: dr.madarwish@gmail.com

•Department of Mathematics, Faculty of Science

Damanhour University, Damanhour, Egypt

Abstract. In this paper, we establish sufficient conditions for the existence of solutions for a
class of boundary value problem for implicit fractional differential equations with Caputo fractional

derivative. We apply the technique of measure of noncompactness and the fixed point theorems of
Darbo and Mönch. As an application, two examples are included to show the applicability of our

results.

Key Words and Phrases: Boundary value problem, Caputo’s fractional derivative, implicit frac-
tional differential equations in Banach space, fractional integral, existence, Gronwall’s lemma for

singular kernels, measure of noncompactness, fixed point.

2010 Mathematics Subject Classification: 26A33, 34A08, 47H10.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary order (non-integer). In recent years, fractional differential equations arise
naturally in various fields such as engineering, electrochemistry, viscoelasticity, rhe-
ology, fractals, image and signal processing, modeling and control theory, biophysics,
bioengineering and biomedical applications, . . . ; Fractional derivatives provide an
excellent instrument for the description of memory and hereditary properties of var-
ious materials and processes; see the monographs [10, 22, 29, 30, 32], and references
therein.

Recently, fractional differential equations have been studied by Abbas et al. [1, 2,
3, 4], Baleanu et al. [9, 11], Diethelm [19], Kilbas and Marzan [23], Srivastava et al.
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[24], Lakshmikantham et al. [26], Samko et al. [30], and Zhou [35]. More recently,
some authors have considered some classes of boundary value problems for fractional
differential equations. In [14], the authors studied the problem involving Caputo’s
derivative:

cDαu(t) = f(t, u(t),cDα−1u(t)), for each, t ∈ J := [0,∞), 1 < α ≤ 2,

u(0) = u0, u is bounded on J,

where cDα is the Caputo fractional derivative, f : [0, 1]×R×R→ R, is a continuous
function. In [31], by means of Schauder fixed-point theorem, Su and Liu studied the
nonlinear fractional boundary value problem involving Caputo’s derivative:

cDαu(t) = f(t, u(t),cDβu(t)), for each, t ∈ (0, 1), 1 < α ≤ 2, 0 < β ≤ 1,

u(0) = u
′
(1) = 0, or u

′
(1) = u(1) = 0, or u(0) = u(1) = 0,

where f : [0, 1]× R× R→ R is a continuous function.
Many techniques have been developed for studying the existence and uniqueness of

solutions of initial and boundary value problems for fractional differential equations.
Several authors tried to develop a technique that depends on the Darbo or the Mönch
fixed point theorems with the Hausdorff or Kuratowski measure of noncompactness.
The notion of the measure of noncompactness was defined in many ways. In 1930,
Kuratowski [25] defined the measure of noncompactness, α(A), of a bounded subset
A of a metric space (X, d), and in 1955, Darbo [17] introduced a new type of fixed
point theorem for set contractions.

Motivated by all the works above, the purpose of this paper, is to establish existence
and uniqueness results to the following implicit fractional-order differential equations:

cDνy(t) = f(t, y(t),cDνy(t)), for each, t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1, (1.1)

ay(0) + by(T ) = c, (1.2)

where cDν is the Caputo fractional derivative, (E, ‖.‖) is a real Banach space, f :
J × E × E → E is given function and a, b are real with a+ b 6= 0 and c ∈ E, and

cDνy(t) = f(t, y(t),cDνy(t)), for every t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1 (1.3)

y(0) + g(y) = y0, (1.4)

where g : C([0, T ], E) −→ E a continuous function and y0 ∈ E. This type of non-local
Cauchy problem was introduced by Byszewski [15, 16] (see also [18]). He observed
that the non-local condition is more appropriate than the local condition (initial)
to describe correctly some physics phenomenons, he proved the existence and the
uniqueness of weak solutions and also classical solutions for this type of problems.
We take an example of non-local conditions as follows:

g(y) =

p∑
i=1

ciy(ti)

where ci, i = 1, ..., p are constants and 0 < t1 < ... < tp ≤ T.
The rest of this paper is organized as follows. In Section 2, we give some notations

and recall some preliminary concepts about fractional calculus and the Kuratowski’s
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measure of noncompactness and auxiliary results. In Section 3, two results are pro-
vided; the first one is based on Darbo’s fixed point theorem combined with the mea-
sure of noncompactness, and the second on Mönch’s fixed point theorem. At last, two
examples are given to demonstrate the application of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.

Let (E; ‖.‖) be a Banach space. We denote by C(J,E) the space of E-valued
continuous functions on J with the usual supremum norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}

for any y ∈ C(J,E).
A measurable function y : J → E is Bochner integrable if and only if ‖y‖ is

Lebesgue integrable.
Let L1(J,E) denote the Banach space of measurable functions y : J → E which

are Bochner integrable normed by

‖y‖L1 =

∫ T

0

‖y(t)‖ dt.

For properties of the Bochner integrable functions, see [34].
Definition 2.1. ([24, 29]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ], E) of order ν ∈ R+ is defined by

Iνh(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)ds,

where Γ is the Euler gamma function defined by

Γ(ν) =

∫ ∞
0

tν−1e−tdt, ν > 0.

Definition 2.2. ([23]). For a function h given on the interval [0, T ], the Caputo
fractional-order derivative of order ν of h, is defined by

(cDνh)(t) =
1

Γ(n− ν)

∫ t

0

(t− s)n−ν−1h(n)(s)ds,

where n = [ν] + 1.
Lemma 2.3. ([27]). Let ν ≥ 0 and n = [ν] + 1. Then

Iν(cDf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk.

Lemma 2.4. ([29]). Let ν > 0, so the homogenous differential equation of fractional
order cDνh(t) = 0, has a solution h(t) = c0 + c1t + c2t

2 + . . . + cn−1t
n−1, where ci,

i = 1, . . . , n are constants and n = [ν] + 1.
Remark 2.5. ([27]) The Caputo derivative of a constant is equal to zero.
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Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J
and

V (J) = {v(t) : v ∈ V, t ∈ J}.
Next we give the definition of the measure of noncompactness and some auxiliary

result; for more details see [6, 8, 12, 13] and the references therein.
Definition 2.6. ([12]). Let E be a Banach space and ΩE the bounded subsets of E.
The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE ,

where diam(Bi) = sup{‖x− y‖ : x, y ∈ Bi}.
The Kuratowski measure of noncompactness satisfies the following properties.

Lemma 2.7. ([6, 12, 13]). Let A and B be bounded sets.

(a) α(B) = 0 ⇔ B is compact (B is relatively compact), where B denotes the
closure of B.

(b) nonsingularity: α is equal to zero on every one element-set.
(c) α(B) = α(B) = α(convB), where convB is the convex hull of B.
(d) monotonicity: A ⊂ B ⇒ α(A) ≤ α(B).
(e) algebraic semi-additivity: α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.
(f) semi-homogencity: α(λB) = |λ|α(B); λ ∈ R, where λ(B) = {λx : x ∈ B}.
(g) semi-additivity: α(A

⋃
B) = max{α(A), α(B)}.

(h) invariance under translations: α(B + x0) = α(B) for any x0 ∈ E.

For our purpose we will need the following fixed point theorem.
Theorem 2.8. ([20]) (Darbo’s Fixed Point Theorem). Let X be a Banach space,
and C be a bounded, closed, convex and nonempty subset of X. Suppose a continuous
mapping N : C → C is such that for all closed subsets D of C,

α(N(D)) ≤ kα(D), (2.1)

where 0 ≤ k < 1. Then N has a fixed point in C.
Remark 2.9. Mappings satisfying the Darbo-condition (2.1) have subsequently been
called k-set contractions.
Theorem 2.10. ([5, 28]) (Mönch’s Fixed Point Theorem). Let D be a bounded, closed
and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.
Lemma 2.11. ([21]). If V ⊂ C(J,E) is a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).

(ii) α
(∫ T

0
x(s)ds : x ∈ V

)
≤
∫ T
0
α(V (s))ds,
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where V (s) = {x(s) : x ∈ V }, s ∈ J .
We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 2.12. ([33]). Let v : [0, T ] → [0,+∞) be a real function and w(·) is a
nonnegative, locally integrable function on [0, T ] and there are constants a > 0 and
0 < ν < 1 such that

v(t) ≤ w(t) + a

∫ t

0

(t− s)−νv(s)ds,

Then, there exists a constant K = K(ν) such that

v(t) ≤ w(t) +Ka

∫ t

0

(t− s)νw(s)ds,

for every t ∈ [0, T ].

3. Existence of Solutions

Let us defining what we mean by a solution of problem (1.1)-(1.2).
Definition 3.1. A function y ∈ C1(J,E) is said to be a solution of the problem
(1.1)–(1.2) if y satisfied equation (1.1) and conditions (1.2).

For the existence of solutions for the problem (1.1)− (1.2), we need the following
auxiliary lemma:
Lemma 3.2. ([10]). Let 0 < ν ≤ 1 and h : [0, T ] −→ E be a continuous function.
Then the linear problem

cDνy(t) = h(t), t ∈ J

ay(0) + by(T ) = c

has a unique solution which is given by:

y(t) =
1

Γ (ν)

∫ t
0

(t− s)ν−1 h(s)ds

− 1

a+ b

[
b

Γ (ν)

∫ T
0

(T − s)ν−1 h(s)ds− c
]
.

Lemma 3.3. Let f(t, u, v) : J × E × E → E be a continuous function, then the
problem (1.1)− (1.2) is equivalent to the problem:

y(t) = Ã+ Iνg(t) (3.1)

where g ∈ C (J,E) satisfies the functional equation

g(t) = f(t, Ã+ Iνg(t), g(t))

and

Ã =
1

a+ b

[
c− b

Γ (ν)

∫ T

0

(T − s)ν−1 g(s)ds

]
.

Proof. Let y be solution of (3.1). We shall show that y is solution of (1.1) − (1.2).
We have

y(t) = Ã+ Iνg(t).
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So, y(0) = Ã and y(T ) = Ã+
1

Γ (ν)

∫ T
0

(T − s)ν−1 g(s)ds.

ay(0) + by(T ) =
−ab

(a+ b)Γ(ν)

∫ T

0

(T − s)α−1g(s)ds

+
ac

a+ b
− b2

(a+ b)Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds

+
bc

a+ b
+

b

Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds.

= c.

Then

ay(0) + by(T ) = c.

On the other hand, we have

cDνy(t) = cDν(Ã+ Iνg(t)) = g(t)

= f(t, y(t),cDνy(t)).

Thus, y is solution of problem (1.1)− (1.2).
First we list the following hypotheses:

(H1) The function f : J × E × E → E is continuous.
(H2) There exist constants K > 0 and 0 < L < 1 such that

‖f(t, u, v)− f(t, ū, v̄)‖ ≤ K‖u− ū‖+ L‖v − v̄‖
for any u, v, ū, v̄ ∈ E and t ∈ J.

We are now in a position to state and prove our existence result for the problem
(1.1) − (1.2) based on the concept of measure of noncompactness and Darbo’s fixed
point theorem.
Remark 3.4. ([7]) Condition (H2) is equivalent to the inequality

α
(
f(t, B1, B2)

)
≤ Kα(B1) + Lα(B2),

for any bounded sets B1, B2 ⊆ E and for each t ∈ J .
Theorem 3.5. Assume (H1) and (H2) hold. If

(‖b‖+ ‖a+ b‖)T νK
|a+ b|Γ(ν + 1)(1− L)

< 1 (3.2)

and
KT ν

(1− L)Γ(ν + 1)
< 1, (3.3)

then the problem (1.1)− (1.2) has at least one solution on J .
Proof. Transform the problem (1.1) − (1.2) into a fixed point problem. Define the
operator N : C(J,E)→ C(J,E) by

N(y)(t) = Ã+ Iνg(t), (3.4)

where g ∈ C(J,E) satisfies the functional equation

g(t) = f(t, y(t), g(t)),
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and

Ã =
1

a+ b

[
c− b

Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds

]
.

Clearly, the fixed points of operator N are solutions of problem (1.1)−(1.2). We shall
show that N satisfies the assumption of Darbo’s fixed point Theorem. The proof will
be given in several claims.
Claim 1. N is continuous.
Let {un} be a sequence such that un → u in C(J,E). Then for each t ∈ J

‖N(un)(t)−N(u)(t)‖ ≤ ‖b‖
‖a+ b‖Γ(ν)

∫ T

0

(T − s)ν−1‖gn(s)− g(s)‖ds

+
1

Γ(ν)

∫ t

0

(t− s)ν−1‖gn(s)− g(s)‖ds, (3.5)

where gn, g ∈ C(J,E) are such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

By (H2) we have, for each t ∈ J,
‖gn(t)− g(t)‖ = ‖f(t, un(t), gn(t))− f(t, u(t), g(t))‖

≤ K‖un(t)− u(t)‖+ L‖gn(t)− g(t)‖.
Then

‖gn(t)− g(t)‖ ≤ K

1− L
‖un(t)− u(t)‖.

Since un → u, we get gn(t)→ g(t) as n→∞ for each t ∈ J.
Let η > 0 be such that, for each t ∈ J , we have ‖gn(t)‖ ≤ η and ‖g(t)‖ ≤ η.
Then we have,

(t− s)ν−1‖gn(s)− g(s)‖ ≤ (t− s)ν−1[‖gn(s)‖+ ‖g(s)‖]
≤ 2η(t− s)ν−1.

For each t ∈ J , the function s→ 2η(t−s)ν−1 is integrable on [0, t], then the Lebesgue
Dominated Convergence Theorem and (3.5) imply

‖N(un)(t)−N(u)(t)‖ → 0 as n→∞.
Then

‖N(un)−N(u)‖∞ → 0 as n→∞.
Consequently, N is continuous.
Let the constant R be such that

R ≥ ‖c‖Γ(ν + 1)(1− L) + (‖b‖+ ‖a+ b‖)T νf∗

‖a+ b‖Γ(ν + 1)(1− L)− (‖b‖+ ‖a+ b‖)T νK
, (3.6)

where f∗ = supt∈J ‖f(t, 0, 0)‖.
Define

DR = {u ∈ C(J,E) : ‖u‖∞ ≤ R}.
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It is clear that DR is a bounded, closed and convex subset of C(J,E).
Claim 2. N(DR) ⊂ DR. Let u ∈ DR we show that Nu ∈ DR. We have, for each
t ∈ J

‖Nu(t)‖ ≤ ‖c‖
‖a+ b‖

+
|b|

‖a+ b‖Γ(ν)

∫ T

0

(T − s)ν−1‖g(s)‖ds

+
1

Γ(ν)

∫ t

0

(t− s)ν−1‖g(s)‖ds. (3.7)

By (H2) we have for each t ∈ J ,

‖g(t)‖ = ‖f(t, u(t), g(t))− f(t, 0, 0) + f(t, 0, 0)‖
≤ ‖f(t, u(t), g(t))− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖
≤ K‖u(t)‖+ L‖g(t)‖+ f∗

≤ KR+ L‖g(t)‖+ f∗.

Then

‖g(t)‖ ≤ f∗ +KR

1− L
:= M

Thus, (3.6) and (3.7) imply that

‖Nu(t)‖ ≤ ‖c‖
‖a+ b‖

+

[
‖b‖
‖a+ b‖

+ 1

]
T ν

Γ(ν + 1)

(
f∗ +KR

1− L

)
≤ ‖c‖
‖a+ b‖

+
(‖b‖+ ‖a+ b‖)T νf∗

|a+ b|Γ(ν + 1)(1− L)

+
(‖b‖+ ‖a+ b‖)T νKR
‖a+ b‖Γ(ν + 1)(1− L)

≤ R.

Consequently,

N(DR) ⊂ DR.

Claim 3. N(DR) is bounded and equicontinuous. By Claim 2 we have N(DR) =
{N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we have ‖N(u)‖∞ ≤ R which means
that N(DR) is bounded. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

‖N(u)(t2)−N(u)(t1)‖ =
∥∥∥ 1

Γ(ν)

∫ t1

0

[(t2 − s)ν−1 − (t1 − s)ν−1]g(s)ds

+
1

Γ(ν)

∫ t2

t1

(t2 − s)ν−1g(s)ds
∥∥∥

≤ M

Γ(ν + 1)
(tν2 − tν1 + 2(t2 − t1)ν).

As t1 → t2, the right-hand side of the above inequality tends to zero.
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Claim 4. The operator N : DR → DR is a strict set contraction. Let V ⊂ DR and
t ∈ J , then we have,

α(N(V )(t)) = α((Ny)(t), y ∈ V )

≤ 1

Γ(ν)

{∫ t

0

(t− s)ν−1α(g(s))ds, y ∈ V
}
.

Then Remark 3.4 and Lemma 2.7 imply that, for each s ∈ J ,

α({g(s), y ∈ V }) = α({f(s, y(s), g(s)), y ∈ V })
≤ Kα({y(s), y ∈ V }) + Lα({g(s), y ∈ V }).

Thus

α ({g(s), y ∈ V }) ≤ K

1− L
α{y(s), y ∈ V }.

Then

α(N(V )(t)) ≤ K

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

≤ Kαc(V )

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1ds

≤ KT ν

(1− L)Γ(ν + 1)
αc(V ).

Therefore

αc(NV ) ≤ KT ν

(1− L)Γ(ν + 1)
αc(V ).

So, by (3.3), the operator N is a set contraction. As a consequence of Theorem 2.8,
we deduce that N has a fixed point which is solution to the problem (1.1) − (1.2).
This completes the proof.

Our next existence result for the problem (1.1) − (1.2) is based on concept of
measure of noncompactness and Mönch’s fixed point theorem.
Theorem 3.6. Assume (H1)− (H2) and (3.2) hold. Then the BVP (1.1)− (1.2) has
at least one solution.
Proof. Consider the operator N defined in (3.4). We shall show that N satisfies the
assumption of Mönch’s fixed point theorem. We know that N : DR → DR is bounded
and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of DR. Now let V be a subset of DR such that V ⊂
conv(N(V ) ∪ {0}). V is bounded and equicontinuous and therefore the function
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t→ v(t) = α(V (t)) is continuous on J . By Remark 3.4, Lemma 2.11 and the proper-
ties of the measure α we have for each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤ α{(Ny)(t), y ∈ V }

≤ K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1{α(y(s))ds, y ∈ V }

≤ K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Lemma 2.12 implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively compact
in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in DR. Applying
now Theorem 2.10 we conclude that N has a fixed point y ∈ DR. Hence N has a
fixed point which is solution to the problem (1.1)-(1.2). This completes the proof.
Remark 3.7. Our results for the boundary value problem (1.1)-(1.2) are appropriate
for the following problems:

• Initial value problem: a = 1, b = 0, c = 0.
• Terminal value problem: a = 0, b = 1, c arbitrary.
• Anti-periodic problem: a = 1, b = 1, c = 0.

However, they are not for the periodic problem, i.e. for a = 1, b = −1, c = 0.

4. Nonlocal boundary value problem

Definition 4.1. A function y ∈ C1 (J,E) is called solution of problem (1.3) − (1.4)
if it satisfies the equation (1.3) on J and the condition (1.4).

In the spirit of Lemmas 3.2 and 3.3 we have the following auxiliary lemmas.
Lemma 4.2. Let 0 < ν ≤ 1 and let h : [0, T ]→ E a continuous function. The linear
problem

cDνy(t) = h(t), t ∈ J
y(0) + g(y) = y0

has a unique solution which is given by:

y(t) = y0 − g(y) +
1

Γ (ν)

∫ t

0

(t− s)ν−1 h(s)ds.

Lemma 4.3. Let f : J × E × E → E be a continuous function, then the problem
(1.3)− (1.4) is equivalent to the following functional equation

y(t) = y0 − g(y) + IνH(t)

where H(t) = f(t, y(t), H(t)).
Introduce the following hypothesis:

(H3) There exists 0 < K such that

‖g(u)− g(u)‖ ≤ K‖u− u‖∞ for any u, u ∈ C(J,E).
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Remark 4.4. ([7]) Condition (H3) is equivalent to the inequality

α
(
g(B)

)
≤ KαC(B), for any bounded set B ⊆ C(J ;E).

Theorem 3.5. Assume (H1)− (H3) hold.
If

K(1− L)Γ(ν + 1) +KT ν

(1− L)Γ(ν + 1)
< 1 (4.1)

and
KT ν

(1− L)Γ(ν + 1)
+K < 1, (4.2)

then the BVP (1.3)− (1.4) has at least one solution defined on J .
Our next existence result for the problem (1.3) − (1.4) is based on concept of

measure of noncompactness and Mönch’s fixed point theorem.
Theorem 4.6. Assume (H1) − (H3) and (4.1) hold, where K < 1. Then the BVP
(1.3)− (1.4) has at least one solution.

5. Example

Example 5.1. Consider the following infinite system

cD
1
2 yn(t) =

(3 + |yn(t)|+ |cD 1
2 yn(t)|)

3et+2(1 + |yn(t)||+ |cD 1
2 yn(t)|)

, for each, t ∈ [0, 1], (5.1)

yn(0) + yn(1) = 0. (5.2)

Set

E = l1 = {y = (y1, y2, . . . , yn, . . .) :

∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
(3 + ‖u‖+ ‖v‖)

3et+2(1 + ‖u‖+ ‖v‖)
, t ∈ [0, 1], u, v ∈ E.

E is a Banach space with the norm ‖y‖ =
∑∞
n=1 |yn|.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ E and t ∈ [0, 1] :

‖f(t, u, v)− f(t, ū, v̄)‖ ≤ 1

3e2
(‖u− ū‖+ ‖v − v̄‖).

Hence condition (H2) is satisfied with K = L = 1
3e2 .

And the conditions

(|b|+ |a+ b|)T νK
|a+ b|Γ(ν + 1)(1− L)

=
1

√
π(e2 − 1

3 )
< 1,

and
KT ν

(1− L)Γ(ν + 1)
=

2

(3e2 − 1)
√
π
< 1

are satisfied with a = b = T = 1, c = 0 and ν = 1
2 .

It follows from Theorem 3.5 that the problem (5.1) − (5.2) has at least one solution
on J .
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Example 5.2. Consider the boundary value problem:

cD
1
2 yn(t) =

e−t

(9 + et)

[
1 +

|yn(t)|
1 + |yn(t)|

− |cD 1
2 yn(t)|

1 + |cD 1
2 yn(t)|

]
, t ∈ J = [0, 1] (5.3)

yn(0) +

m∑
i=1

ciyn(ti) = 1, (5.4)

where 0 < t1 < t2 < . . . < tm < 1 and ci = 1, . . . ,m are positive constants with

m∑
i=1

ci ≤
1

3
.

Set

E = l1 = {y = (y1, y2, . . . , yn, . . .) :

∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
e−t

(9 + et)

[
1 +

‖u‖
1 + ‖u‖

− ‖v‖
1 + ‖v‖

]
, t ∈ [0, 1], u, v ∈ E.

E is a Banach space with the norm ‖y‖ =
∑∞
n=1 |yn|.

Clearly, the function f is continuous.
For each u, ū, v, v̄ ∈ E and t ∈ [0, 1] :

‖f(t, u, v)− f(t, ū, v̄)‖ ≤ e−t

9 + et
(‖u− ū‖+ ‖v − v̄‖)

≤ 1

10
‖u− ū‖+

1

10
‖v − v̄‖.

Hence condition (H2) is satisfied with K = L = 1
10 .

On the other hand, we have for any u, ū ∈ E

‖g(u)− g(ū)‖ ≤ 1

3
‖u− ū‖.

Hence condition (H3) is satisfied with K =
1

3
. Also, condition

K(1− L)Γ(ν + 1) +KT ν

(1− L)Γ(ν + 1)
=

9
√
π + 6

27
√
π

< 1,

is satisfied with T = 1 and ν = 1
2 .

It follows from Theorem 4.6 that the problem (5.3)-(5.4) has at least one solution
defined on J .

Acknowledgement. The authors are grateful to the referee for the careful reading
of the paper.



NONLINEAR IMPLICIT DIFFERENTIAL EQUATIONS 469

References

[1] S. Abbas, M. Benchohra, On the set of solutions for the Darboux problem for fractional order

partial hyperbolic functional differential inclusions, Fixed Point Theory, 14(2013), 253-262.
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