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Abstract. In this paper we propose the study of a scalar integral equation of the type
o0
u(®) =9) + [ (s~ e ds, t>0,
t

and give conditions on g, a and f that ensure the existence of solutions on [0, c0) which are asymp-
totically equal to g(y) at co. As a consequence, we obtain results on the existence of solutions for a
problem of the type

V(1) = a F(y(E), () = (),
where y(co) = tl;nolo y(t). This problem could be thought as a sort of nonlocal problem at oo, and
our conditions on f include the case of a linear equation.
Key Words and Phrases: Nonlocal problem, asymptotic behavior, integral equation, second order
differential equation, Leray-Schauder type fixed point theorem.
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1. INTRODUCTION

In the present paper we propose and study a problem for second order nonlinear
differential equations which could be considered as a merger of two well known prob-
lems. The first of them deals with the existence of asymptotically constant solutions
for second order differential equations of the type

y'(t) =a(t)f(y(t), t=0, (1.1)
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that is, solutions of the problem

{ y'(t) = a(t)f(y(t), t>0,
y(oo) = C,

where C € R, f : R = R and a : [0,00) — R. More precisely, by a solution of (1.2) we
mean a solution of equation (1.1), which is defined on the whole interval R* = [0, 0o)
and is asymptotically equal to C, that is, there exists the limit y(co) = tlggo y(t) and
y(oo) = C.

Problem (1.2) has been studied by many authors during more than six decades
and as some references we mention (apologizing in advance for the omitted ones), for
instance, [3,4,7-12,14-17], and the references therein.

The second problem which we are interested in is of the type

y'(t) = F(t,y(t), tel0,T],
y(0) = g(y),

where F: [0,T] x R — R and ¢ : C([0,T],R) — R. It is known as a nonlocal initial
value problem and, as far as we know, goes back to the early 90’s to a paper by
Byszewski and Laksmikantham [5], who studied a problem similar to (1.3) in the
context of Banach spaces. After them, many papers on nonlocal first order initial
value problems have been published, and this topic is still a subject of research. Let
us mention, for instance, the 2010 paper by Ji and Wen [13], where much progress has
been done in order to obtain a complete answer to this type of problems. Recently,
Byszewski and Winiarska [6] studied a nonlocal initial value problem for a second
order differential equation of the form

y'(t) = F(t,y(t),y'(t), t=0,
y(0) = yo, (1.4)
y'(0) = g(y)-

In the present paper we propose the study of second order differential problems

which are combination of problems (1.2) and (1.3). Specifically, we consider the
following nonlocal problem at oo,

y'(t) = a(t)f(y(t)), tel0,00),
y(oo) = g(y) -

(1.2)

(1.3)

(P)

Again, by a solution of (P) we mean a solution of the differential equation
y'(t) = a()f(y(1))
on RT for which, additionally, there exists the limit
y(oo) = lim y(t) and y(oo) = g(y)-

In section 3 we shall give two results on existence of solutions for (P) under different
sets of assumptions, but such that both include the case of g being constant, showing
in this way that problem (1.2) can also be considered as a sort of nonlocal problem
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at co. In the first case, g is assumed to be bounded, while in the second, we impose
the assumption of g being a contractive mapping.
Our results will be obtained through the study of an integral equation of the type

) =g+ | (s~ Da()f(y(s)) ds, £ >0, (E)

For this reason, in section 2 we give a result about existence of solutions for (E).

A little bit of notation and preliminary results are needed. As customary, we denote
by R* the set [0,00) of nonnegative real numbers. In a Banach space X, B(z,r)
denotes the closed ball in X centered at x with radius r. The space of continuous
R-valued functions defined on R* is denoted by C(R™,R), while the space of bounded
continuous ones is Cp(RT,R). The latter is a Banach space when endowed with the
sup norm |-|| ., (ie., for z € Co(RT,R), ||z|| ., = sup |z(¢)]).

teRT

o0?

We shall also be needing the following version of the Leray-Schauder Fixed Point
Theorem (see, e.g., [1]): Suppose that X is a Banach space and that T : X — X is
continuous and compact (i.e., T maps bounded sets onto relatively compact ones). If
T satisfies the Leray-Schauder boundary condition on some closed ball B(0, R), that
is, if there exists R > 0 such that

T(x) # Az, whenever ||z|| =R and A>1 , (LS)

then T has a fized point.

In order to check that a certain operator T defined on Cp(R™,R) is compact, it
will be helpful a well known version of the Arzela-Ascoli Theorem which, in the
case that occupies us, is as follows: If F' is a bounded subset of Cy(RT,R) which is
equicontinuos at each t € RV, then each sequence {u,} C F has a subsequence that
converges uniformly on compact subsets of R™ to a given function u € Cp(RT,R).

2. THE INTEGRAL EQUATION

As we mentioned before, our results about existence of solutions for the nonlocal
problem (P) will be based on the existence of solutions for the integral equation (F)
associated to (P).

Theorem 2.1. Suppose that the following set of hypotheses is satisfied:

a:RT — R is continuous, and / tla(t)| dt < oo, (Ha)
0
f R =R is continuous, (Hf-1)
oo
1
fw) >0 for all u >0, and / —— du = 400, (Hf-2)
1 f(u)
|f(w)| < f(w) for all u,w € R with |u| < w, and (Hf-3)
g:C(RT,R) — R is continuous and bounded. (Hg)

Then, the integral equation (E) has a bounded solution on RT.
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Remark 2.2. Of course, this result can be adapted to obtain a similar one about
existence of solutions of a nonlocal problem at oo, but on an interval of the type
[to, OO)

Proof. For simplicity in future arguments, we distinguish two cases. In the first place,
if a(t) = 0 for every t € RT, then equation (F) is y(t) = g(y), which has a bounded
solution if, and only if, there exists ¢y € R such that ¢y = g(ye,), where, for ¢ € R,
Yo : RT — R denotes the function constantly equal to ¢. That is, equation (E) has
a bounded solution if, and only if, the function h : R — R given as h(t) =t — g(y:)
has a zero. Finally, the existence of a zero for h can be obtained as an immediate
consequence of the Intermediate Value Theorem, for g is continuous and bounded and
thus h is continuous and takes positive and negative values.

Suppose now that a is not the null function, what implies that fooo sla(s)|ds > 0,
and let us see that (F) still has a bounded solution. With this in mind, define
T :Cp(RT,R) = Cp(RT,R) as T'= G + S, where

Gy)(t) =gly), t=>0,

SW)(H) = / (s — Dals) fly(s)) ds.

It is clear that T is well defined, and that the set of bounded solutions of (E) is just
the set of fixed points for 7. For that reason, our objective will be to prove that
T has a fixed point, and this will be achieved by using the aforementioned Leray-
Schauder Fixed Point Theorem. Consequently, we proceed to prove the following
three assertions:

(a) T is compact,
(b) T is continuous, and o
(c) T satisfies the Leray-Schauder boundary condition (LS) on some ball B(0, R).

Proof of (a). Let F be a bounded subset of C,(R™,R) and let us see that T'(F) is
relatively compact in Cp(R*,R). To do this, it is sufficient to prove that both, G(F)
and S(F), are relatively compact.

To prove that G(F) is relatively compact, suppose that {y,} is any sequence in
Cp(RT,R) and let us see that it has a subsequence {yy, } such that {G(y,, )} converges
in Cp(RT,R). Having in mind that

1G(@) = Gl = l9(x) = 9()]

for all z,y € Cy(R*,R), it is enough to prove that {g(y,)} has a Cauchy subsequence
in R, and this is true because g is bounded.

To prove that S(F) is relatively compact we shall make use of the Arzela-Ascoli
Theorem. In the first place, consider any tg € Rt and let us see that S(F') is equicon-
tinuous at to. Indeed, since F' is bounded as a subset of C,(R™,R) and f is continuous
on R, there exists M > 0 such that [|f o y||,, < M for every y € F. Hence, for each
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y € FandteRT,

1S(y)(t) — S(y)(to)| =

/ =00 ) ds— [ (s t0)als) F(u(s) ds

to

<

/t "5~ t)als) F(y(s)) ds

" /Oo\to —t[]a(s)||f(y(s))|ds

to

<2t 17 oul [ lato)lds
0

o0
< 2|tg —t|M/ la(s)|ds,
0

which gives the equicontinuity of S(F).

In the second place, S(F') is bounded in C,(R*,R) because for any y € F and any
t>0,

o (o) oo
SO < [ =0la(e)l £ ()| ds <1 [ slale)lds <M [ slao)]ds < o.
' ' (2.1)

To end the proof of (a), suppose that {u,} is a sequence in S(F') and let us see that
it has a convergent subsequence. Notice that this is not true just because of the
Arzela-Ascoli Theorem; instead, an additional argument using the funnel structure of
the set S(F) is needed. Using the Arzela-Ascoli Theorem we obtain a subsequence
of {un}, {un,}, which converges uniformly on compact subsets of Rt to a certain
function u € Cp(R*,R). In order to show that [u,, — ull £, 0, suppose that
€ > 0 has been given, and use (Ha) to choose to € R* such that

oo

M sla(s)]ds < =
to 2

Then, by (2.1), obtain |uy, (t)| < § for every t > to. Since {uyn, } converges pointwise
to u, we also have |u(t)| < § for every t > ¢y and, consequently,

[tn,, (t) —u(t)] <e, forallt>t.
Now, using that {uy,, } converges uniformly to u on [0, o], obtain ky € N such that
[tn, (t) —u(t)] <e, whenevert e [0,to], and k> kg ,
and hence, combining this inequality with the previous one, we finally obtain that
lun, —ull <e, forall k> ko.

Proof of (b). Fixyop € Cp(RT,R). In order to prove the continuity of T" at yo, observe
that for any y € C,(RT,R), and any t € R*, we have

[ T(y) () =T (o) ()] < [9(y)—ag(yo) |+ /too(s —t)a(s) [f(y(s)) — f(vo(s))] ds|. (2.2)

Consider now a fixed € > 0. Use the continuity of g at yo and the uniform continuity
of fon [[lyoll.o — 1, lyollx + 1] to obtain & € (0,1) such that, if y € C,(R*,R) with
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ly — yoll oo < 0, then [g(y) — g(yo)| < §, and also

|f(y(@) = f(yo(t)| < ;;(/000 s |a(s)|ds>_1, forallt>0.

This, together with (2.2), gives || T'(y) — T'(yo)|l,, < € for all y € Cp(RT,R) with

Iy —yoll o <0
Proof of (c). Due to (Hf-1) and (Hf-2), it is allowed to define a function F' :

(0,00) = R as
1
9= [

and it turns out that F' is differentiable and strictly increasing on (0,00). Since we
also have F(1) =0, and lim F(z) = 400, we can define a real number R > 1 by the
zZ—00

R=F" / —du+/oos|a(s)|ds>,

where My > 1 is chosen with the additional property of being M, > sup{|g(y)| : y €
Cy (R, R)}.

We shall prove that T satisfies the Leray-Schauder condition (LS) on B(0, R). To
do it, suppose that, for certain A\ > 1 and certain y € Cp(RT,R), it is true that
T(y) = M\y. Let us then see that ||y|| < R. Indeed, for any t € RT, we have

o) = 3] < X204 2 [T 6 =0 alo) 7)) s
<M+A/t s as)[ | (u(5))| s

Next, consider the function w : Rt — R defined by the right-hand side of the above
inequality, that is,

expression

w(t) = Mg+ % /too s |a(s)||f(y(s))| ds,

and observe that w is differentiable, w(t) > M, > 0 and |y(¢)| < w(¢) for every
t € RT. Then, by (Hf-3),
-1 -1

w!(t) = S| [ (1) = S alb)] £ (w(),
and using that w(t) > 0 for all ¢ € RT, and (Hf-2), obtain

d w'(t)

— F(w(t) =

T (0)

Next, integration on both sides of the above inequality gives

1
> _Xt la(t)|, for all t € RT.

1 o0
F(M,) - Fuw(t) > _X/ sla(s)|ds, t€R",
t
from which it follows that, for all ¢ > 0,

F(w(t)) < F(M,) + 1\/0008 |a(s)| ds == K.
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Using that F is strictly increasing, obtain that w(t) < F~1(K), and using again the
strict monotonicity of F~! and that A > 1, obtain ||w|_ < F~'(K) < R. This
completes the proof of (¢) and, with it, the whole result. O

Remark 2.3. Observe that this Theorem covers the case in which f(u) = u, that
is, the linear case is included in this result. Furthermore, for a and g satisfying the
corresponding hypotheses, (Ha) and (Hg), and for p € (0, 1], an integral equation of
the type

y(t) = g(y) —l—/ (s —t)a(s) (y(s))pds, t>0,
t
has at least one solution in RY.

>~ 1
Remark 2.4. The requirement that / mdu = oo, although it is used, it is
1 u

uncertain whether it can be dropped. This requirement prevents us from considering,
for instance, f(u) = u®.
Despite this, the way the Theorem has been proved allows us for a small weakening

of this hypothesis, namely, it just suffices to have, for
My = max{1, sup{|g(y)| : y € C,(RT,R)}},

h R bihat [ dee [ gt [ sla(s)ds, (23)
there exists R > 1 such that / ——dz = —_— z+/ sla(s)|ds, (2.3
1 f(2) 1 (2) 0

in order to obtain a solution for the integral equation (E). We leave the details to

the reader.
With this in mind, it can be easily checked that the integral equation

v =g+ | T <+11> (y(s))* ds, (2.4)

has at least one solution in R, provided sup{|g(y)| : y € C;(RT,R)} < 2. Indeed,
this last assumption gives 1 < M, < 2, so, having in mind that f(u) = u? and that
a(t) = (t+1)73, obtain

/Mgldu+/oos|a(s)ds/Mgldz+/oosds
1 f(u) 0 pu? 0 (s+1)3
ol 131

M, 22 M

which is in the range of the function

z
1
F(2) :/ ﬁdu, z € [1,00),
1
for this function F' is continuous, strictly increasing, with

F(1)=0and lim F(z)=1.
zZ—00
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3. THE SECOND ORDER DIFFERENTIAL EQUATION

In this section we consider the differential problem (P) and use the result obtained
in the previous section on the integral equation (E) to obtain now a result on the
existence of solutions for (P). This will be done by means of the following lemma.

Lemma 3.1. Under hypotheses (Hf-1) and (Ha), the set of solutions of the nonlocal
problem (P) equals the set of solutions of the integral equation (E).

Remark 3.2. Observe that the solutions of either (P) or (F) must be continuous
and have finite limit at oo, so they must be bounded.

Proof. Suppose that y : RT — R is a solution of (P). To see that y satisfies (F),
observe first that, if p,o € R,

yw—wwafw®@:/%@ﬂm»w (3.1)

Now the facts that y is bounded and f is continuous on R imply that foy is bounded on
R*, which together with (Ha) gives the convergence of the integral [~ a(s) f(y(s)) ds.
This fact and (3.1) yield the existence of the limit y’'(c0) = lim y'(p) as a real number.
p—00
Moreover, it must be y'(c0) = 0 because otherwise it would be 26lim y(t) = 400 or
—00
tlim y(t) = —oo, and we know that none of these two possibilities can occur, since
—00

y(00) = g(y) € R. Therefore, from (3.1), as p — oo, obtain

J (o) = — /Oo a(s)f (y(s)) ds, o> 0. (3.2)

Integrate now in (3.2) and use Fubini’s rule, or integration by parts, to arrive at

o) =0 == [ [ ae) 1u(s)) dsdr =~ [ (s~ Da(s) F(0(5)) s,

that is, arrive at the fact that y is a solution of the integral equation (FE).
Conversely, suppose that y : Rt — R is a solution of (). Then y is bounded
and, because of the shape of the integral equation, the behavior of y at co is given by
y(oo) = g(y). Now, by the Fundamental Theorem of Calculus, it is easy to observe
that y”(t) = a(t) f(y(t)) for all ¢ € RT. That is, y is a solution of the nonlocal problem
(P). O

Corollary 3.3. Under the set of hypotheses of Theorem 2.1, the nonlocal problem
(P) has at least one solution.

Remark 3.4. Translating to differential problems the equations treated in Remarks
2.3 and 2.4, we first obtain that, for a and g satisfying the corresponding hypotheses,
(Ha) and (Hg), the problem

{yﬁ>uw@@f,tza
y(o0) = g(y),
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has always a solution, provided p € (0, 1]. Also, the problem

2

{y"(t) = e W®)" 120,
y(o0) = g(y),

has always a solution, provided sup{|g(y)| Ty € Cb(R+,R)} < 2. We do not know

whether the nonlocal problem (3.3) has always a solution for an arbitrary continuous

and bounded g. It would be interesting to know about it, for it is much related to
the classical Emden-Fowler equation (see, e.g., [4]).

(3.3)

Remark 3.5. The hypothesis on the boundedness for g cannot be dropped. As an
example, we may consider the very easy example:

y'(t) =0, t>0,
y(oo) =14 y(0),
This nonlocal problem (in fact, a boundary value problem) has no solution, and fulfills

all the requirements, except that g, defined as g(y) = 1 + y(0), is not bounded on
Cp(RT,R). We could also have considered g(y) = 1 + lim sup y(#).
t—o0

(3.4)

Remark 3.6. As for the function a, we should not expect a weakening of the hypoth-
esis [, sla(s)|ds < oo to, for instance, [~ |a(s)|ds < co. As an example, consider
the following Euler-Cauchy differential equation:

" _ 1
y'(t) = TEEE y, t>0. (3.5)

Observe that a(t) = (t + 1) satisfies
/ \a(s)|ds=/ (s+1)%ds =1 < oo, and
0 0

- = OO5: 1 (s “2ds = 0o
/Os\a(s)ms_/o (s+ 1) = (s 4+ 1) 2 ds = 0.

Now, with the usual technique of assuming a solution of the type y = (¢t +1)", arrive
at the general solution for (3.5) in the form

y(t) =Cit+1)" + Co(t+1)", t>0, (3.6)

where r; = 1’2‘@ <0andry = 1+2‘/5 > 0. Now, if y(00) is to exist and be finite, then
it must be Cy = 0, in which case y = C1(t+1)" — 0 as t — co. So we conclude that 0
is the only possible finite asymptotic value for solutions of the Equation (3.5), no other
asymptotic value is allowed. Hence the corresponding nonlocal problem associated to

Equation (3.5), and to a continuous and bounded g, will not have a solution unless
9(y) = 0.

The conclusion in Corollary 3.3 has been attained via a fixed point theorem of
Leray-Schauder type, and this has obliged us to impose certain hypothesis on f and
g. Had we wanted to use the Banach-Caccioppoli Contraction Principle (see, e.g.,
[1]), the conditions needed would have been of Lipschitz type, and this will be our
choice in the next theorem. We shall need a previous result that we are sure has been
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done before, but being unable to find a reference for it, we have decided to include it
for the sake of completeness.

Lemma 3.7. Suppose that (Ha) is satisfied and that f is a Lipschitz mapping. Then,
for any C € R, the equation

(oo}
v0)=C+ [ (s = alo)f(s) ds (Fo)
t
has a unique solution, which, of course, must be bounded with limit at co given by C.

Proof. Our strategy, for the existence part, will be to obtain first a solution of (E¢)
on a certain interval [tg, 00) by means of the Banach-Caccioppoli Theorem, and then,
using that f is Lipschitz, another solution on [0, ty] which glue well with the previous
one. With this in mind, denoting by Ly the Lipschitz constant for f in R*, and based
on hypothesis (Ha), choose a real number ¢, > 0 such that Ly ftzo sla(s)|ds < 1, and
consider the map T : Cy([to, 0), R) — Cp([to, 0), R) given as

T =C+ | (s~ D) als) Fy(s)) ds.

This map is well defined due to (Ha) and the fact that f maps bounded sets onto
bounded sets. It is also contractive since, for any yi,y2 € Cp([to,o0),R) and any
te [to, OO),

T (y1) () — T(y2)(t)| < /too(s —t) |a(s)| | f(wi(s)) — f(y2(s))|ds

< (L [ slats)lds) o~ el
to

Hence, by the Banach-Caccioppoli Contraction Principle, T has a fixed point =z €
Cp([to, 00),R). This means that x is a bounded solution of equation (E¢) on [tg, o0)
and then, using Lemma 3.1 with [0,00) replaced by [to,c0), x is a solution of the
problem

y'(t) = a) f(y(t), t=to,
{y< )=c. #)
Now notice that the problem
y'(t) =a(t)f(y(t), tel0 k],
y(to) = (o), (P
y'(to) = 2’ (to),

has a unique solution z : [0,%y] — R, since (P~) is of the form

y'(t) = F(t,y(t)), y(to) = x(to), y'(to) = ' (o), (3.7)

where F(t,y) = a(t) f(y) is continuous on the strip [0, to] xR and satisfies a generalized
Lipschitz condition with respect to the second variable. Indeed, for any ¢ € [0, ¢9] and
y1,Y2 € R, we have |F(t,y1) — F(t,y2)| < L(t)|y1 — ya|, where L : [0,%9] — R is the
continuous function L(t) = Ly |a(t)|.
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Next, the function y : Rt — R given as

2(t), if0<t<t,,
s =120 :
x(t), ift > to,
is a solution of (P) and consequently, by Lemma 3.1, it is also a solution of (E¢).

Finally, the uniqueness part follows directly from well known Gronwall-Bellman
type inequalities. O

Now, we adapt the technique used in [2], in conjunction with the previous result,
in order to obtain the following one.

Theorem 3.8. Suppose, in addition to (Ha), that f and g are Lipschitz mappings
with Lipschitz constants Ly and Lg, respectively. If LgeLf Jo7sla()lds < 1 then the
nonlocal differential problem (P) has a unique solution.

Proof. We shall prove that equation (F) has a unique solution on R*. Consider the
operator G : Co(RT,R) — Cp(RT,R) which maps each y € C,(RT,R) to the unique
solution § € Cy(RT,R) of the equation (E¢), with C' = g(y), given by Lemma 3.7,
that is, ¥ is the unique function in Cp(R™,R) which satisfies

y(t) =g(y) + /too(s —t)a(s) f(y(s))ds forallt € RT. (3.8)

Notice that y is a bounded solution of (F) if, and only if, G(y) = y, and so we
only need prove that G is a contractive map. To do it, use (3.8), and the fact that f
is Lipschitz, to obtain that, for any y;,y2 € Co(R*,R), and any t € RT,

G (t) — Clya)(®)] = 7 (8) — T (o)
< lg(n) — glum)| + / (s — B)a(s)| |7 (7 (5)) — £ @s(s))| ds

< Lyllin = el [ Lyslats)][72(5) - 7a(o)] ds.
t
Again, a Gronwall-Bellman type inequality gives us that

|Gy1)(8) = Gy2)(t)] = [72(8) = Ga(O)] < Ly g1 — yall oo "4 Jo™ #1214,

and this shows that G is a contractive map. (]

Remark 3.9. Again, the restriction on the Lipschitz constant for g cannot be

dropped, for the examples considered in Remark 3.5 are also valid for this situation:

g9(y) = 14+ y(0), and g(y) = 1 + limsupy(¢), are Lipschitz mappings with Lipschitz
t—o0

constants equal to 1 in both cases.
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