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∗∗∗Dept. Análisis Matemático, Estad́ıstica e Investigación Operativa, y Matemática Aplicada,
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Abstract. In this paper we propose the study of a scalar integral equation of the type

y(t) = g(y) +

∫ ∞
t

(s− t)a(s)f(y(s)) ds, t ≥ 0,

and give conditions on g, a and f that ensure the existence of solutions on [0,∞) which are asymp-

totically equal to g(y) at ∞. As a consequence, we obtain results on the existence of solutions for a
problem of the type

y′′(t) = a(t)f(y(t)), y(∞) = g(y),

where y(∞) = lim
t→∞

y(t). This problem could be thought as a sort of nonlocal problem at ∞, and

our conditions on f include the case of a linear equation.

Key Words and Phrases: Nonlocal problem, asymptotic behavior, integral equation, second order
differential equation, Leray-Schauder type fixed point theorem.

2010 Mathematics Subject Classification: 34A34, 45M05, 47H10, 47N20.

1. Introduction

In the present paper we propose and study a problem for second order nonlinear
differential equations which could be considered as a merger of two well known prob-
lems. The first of them deals with the existence of asymptotically constant solutions
for second order differential equations of the type

y′′(t) = a(t)f(y(t)), t ≥ 0, (1.1)
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that is, solutions of the problem{
y′′(t) = a(t)f(y(t)), t ≥ 0,

y(∞) = C,
(1.2)

where C ∈ R, f : R→ R and a : [0,∞)→ R. More precisely, by a solution of (1.2) we
mean a solution of equation (1.1), which is defined on the whole interval R+ = [0,∞)
and is asymptotically equal to C, that is, there exists the limit y(∞) = lim

t→∞
y(t) and

y(∞) = C.
Problem (1.2) has been studied by many authors during more than six decades

and as some references we mention (apologizing in advance for the omitted ones), for
instance, [3, 4, 7–12,14–17], and the references therein.

The second problem which we are interested in is of the type{
y′(t) = F (t, y(t)), t ∈ [0, T ],

y(0) = g(y),
(1.3)

where F : [0, T ] × R → R and g : C([0, T ],R) → R. It is known as a nonlocal initial
value problem and, as far as we know, goes back to the early 90’s to a paper by
Byszewski and Laksmikantham [5], who studied a problem similar to (1.3) in the
context of Banach spaces. After them, many papers on nonlocal first order initial
value problems have been published, and this topic is still a subject of research. Let
us mention, for instance, the 2010 paper by Ji and Wen [13], where much progress has
been done in order to obtain a complete answer to this type of problems. Recently,
Byszewski and Winiarska [6] studied a nonlocal initial value problem for a second
order differential equation of the form

y′′(t) = F (t, y(t), y′(t)), t ≥ 0,

y(0) = y0,

y′(0) = g(y).

(1.4)

In the present paper we propose the study of second order differential problems
which are combination of problems (1.2) and (1.3). Specifically, we consider the
following nonlocal problem at ∞,{

y′′(t) = a(t)f(y(t)), t ∈ [0,∞),

y(∞) = g(y) .
(P )

Again, by a solution of (P ) we mean a solution of the differential equation

y′′(t) = a(t)f(y(t))

on R+ for which, additionally, there exists the limit

y(∞) = lim
t→∞

y(t) and y(∞) = g(y).

In section 3 we shall give two results on existence of solutions for (P ) under different
sets of assumptions, but such that both include the case of g being constant, showing
in this way that problem (1.2) can also be considered as a sort of nonlocal problem
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at ∞. In the first case, g is assumed to be bounded, while in the second, we impose
the assumption of g being a contractive mapping.

Our results will be obtained through the study of an integral equation of the type

y(t) = g(y) +

∫ ∞
t

(s− t)a(s)f(y(s)) ds, t ≥ 0. (E)

For this reason, in section 2 we give a result about existence of solutions for (E).
A little bit of notation and preliminary results are needed. As customary, we denote

by R+ the set [0,∞) of nonnegative real numbers. In a Banach space X, B(x, r)
denotes the closed ball in X centered at x with radius r. The space of continuous
R-valued functions defined on R+ is denoted by C(R+,R), while the space of bounded
continuous ones is Cb(R+,R). The latter is a Banach space when endowed with the
sup norm ‖·‖∞, (i.e., for x ∈ Cb(R+,R), ‖x‖∞ = sup

t∈R+

|x(t)|).

We shall also be needing the following version of the Leray-Schauder Fixed Point
Theorem (see, e.g., [1]): Suppose that X is a Banach space and that T : X → X is
continuous and compact (i.e., T maps bounded sets onto relatively compact ones). If
T satisfies the Leray-Schauder boundary condition on some closed ball B(0, R), that
is, if there exists R > 0 such that

T (x) 6= λx, whenever ‖x‖ = R and λ > 1 , (LS)

then T has a fixed point.
In order to check that a certain operator T defined on Cb(R+,R) is compact, it

will be helpful a well known version of the Arzelà-Ascoli Theorem which, in the
case that occupies us, is as follows: If F is a bounded subset of Cb(R+,R) which is
equicontinuos at each t ∈ R+, then each sequence {un} ⊆ F has a subsequence that
converges uniformly on compact subsets of R+ to a given function u ∈ Cb(R+,R).

2. The integral equation

As we mentioned before, our results about existence of solutions for the nonlocal
problem (P ) will be based on the existence of solutions for the integral equation (E)
associated to (P ).

Theorem 2.1. Suppose that the following set of hypotheses is satisfied:

a : R+ → R is continuous, and

∫ ∞
0

t|a(t)| dt <∞, (Ha)

f : R→ R is continuous, (Hf -1)

f(u) > 0 for all u > 0, and

∫ ∞
1

1

f(u)
du = +∞, (Hf -2)

|f(u)| ≤ f(w) for all u,w ∈ R with |u| ≤ w, and (Hf -3)

g : Cb(R+,R)→ R is continuous and bounded. (Hg)

Then, the integral equation (E) has a bounded solution on R+.
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Remark 2.2. Of course, this result can be adapted to obtain a similar one about
existence of solutions of a nonlocal problem at ∞, but on an interval of the type
[t0,∞).

Proof. For simplicity in future arguments, we distinguish two cases. In the first place,
if a(t) = 0 for every t ∈ R+, then equation (E) is y(t) = g(y), which has a bounded
solution if, and only if, there exists c0 ∈ R such that c0 = g(yc0), where, for c ∈ R,
yc : R+ → R denotes the function constantly equal to c. That is, equation (E) has
a bounded solution if, and only if, the function h : R → R given as h(t) = t − g(yt)
has a zero. Finally, the existence of a zero for h can be obtained as an immediate
consequence of the Intermediate Value Theorem, for g is continuous and bounded and
thus h is continuous and takes positive and negative values.

Suppose now that a is not the null function, what implies that
∫∞

0
s|a(s)|ds > 0,

and let us see that (E) still has a bounded solution. With this in mind, define
T : Cb(R+,R)→ Cb(R+,R) as T = G+ S, where

G(y)(t) = g(y), t ≥ 0,

S(y)(t) =

∫ ∞
t

(s− t)a(s)f(y(s)) ds.

It is clear that T is well defined, and that the set of bounded solutions of (E) is just
the set of fixed points for T . For that reason, our objective will be to prove that
T has a fixed point, and this will be achieved by using the aforementioned Leray-
Schauder Fixed Point Theorem. Consequently, we proceed to prove the following
three assertions:

(a) T is compact,
(b) T is continuous, and
(c) T satisfies the Leray-Schauder boundary condition (LS) on some ball B(0, R).

Proof of (a). Let F be a bounded subset of Cb(R+,R) and let us see that T (F ) is
relatively compact in Cb(R+,R). To do this, it is sufficient to prove that both, G(F )
and S(F ), are relatively compact.

To prove that G(F ) is relatively compact, suppose that {yn} is any sequence in
Cb(R+,R) and let us see that it has a subsequence {ynk

} such that {G(ynk
)} converges

in Cb(R+,R). Having in mind that

‖G(x)−G(y)‖∞ = |g(x)− g(y)|

for all x, y ∈ Cb(R+,R), it is enough to prove that {g(yn)} has a Cauchy subsequence
in R, and this is true because g is bounded.

To prove that S(F ) is relatively compact we shall make use of the Arzelà-Ascoli
Theorem. In the first place, consider any t0 ∈ R+ and let us see that S(F ) is equicon-
tinuous at t0. Indeed, since F is bounded as a subset of Cb(R+,R) and f is continuous
on R, there exists M > 0 such that ‖f ◦ y‖∞ ≤ M for every y ∈ F . Hence, for each
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y ∈ F and t ∈ R+,

|S(y)(t)− S(y)(t0)| =
∣∣∣∣∫ ∞
t

(s− t) a(s) f
(
y(s)

)
ds−

∫ ∞
t0

(s− t0) a(s) f
(
y(s)

)
ds

∣∣∣∣
≤
∣∣∣∣∫ t0

t

(s− t) a(s) f
(
y(s)

)
ds

∣∣∣∣+

∫ ∞
t0

|t0 − t| |a(s)|
∣∣f(y(s)

)∣∣ ds
≤ 2|t0 − t| ‖f ◦ y‖∞

∫ ∞
0

|a(s)| ds

≤ 2|t0 − t|M
∫ ∞

0

|a(s)| ds ,

which gives the equicontinuity of S(F ).
In the second place, S(F ) is bounded in Cb(R+,R) because for any y ∈ F and any

t ≥ 0,

|S(y)(t)| ≤
∫ ∞
t

(s− t) |a(s)|
∣∣f(y(s)

)∣∣ ds ≤M ∫ ∞
t

s |a(s)| ds ≤M
∫ ∞

0

s |a(s)| ds <∞.

(2.1)
To end the proof of (a), suppose that {un} is a sequence in S(F ) and let us see that
it has a convergent subsequence. Notice that this is not true just because of the
Arzelà-Ascoli Theorem; instead, an additional argument using the funnel structure of
the set S(F ) is needed. Using the Arzelà-Ascoli Theorem we obtain a subsequence
of {un}, {unk

}, which converges uniformly on compact subsets of R+ to a certain

function u ∈ Cb(R+,R). In order to show that ‖unk
− u‖∞

k→∞−−−−→ 0, suppose that
ε > 0 has been given, and use (Ha) to choose t0 ∈ R+ such that

M

∫ ∞
t0

s|a(s)| ds < ε

2
.

Then, by (2.1), obtain |unk
(t)| < ε

2 for every t ≥ t0. Since {unk
} converges pointwise

to u, we also have |u(t)| ≤ ε
2 for every t ≥ t0 and, consequently,

|unk
(t)− u(t)| < ε, for all t ≥ t0.

Now, using that {unk
} converges uniformly to u on [0, t0], obtain k0 ∈ N such that

|unk
(t)− u(t)| < ε, whenever t ∈ [0, t0], and k ≥ k0 ,

and hence, combining this inequality with the previous one, we finally obtain that

‖unk
− u‖∞ < ε, for all k ≥ k0.

Proof of (b). Fix y0 ∈ Cb(R+,R). In order to prove the continuity of T at y0, observe
that for any y ∈ Cb(R+,R), and any t ∈ R+, we have∣∣T (y)(t)−T (y0)(t)

∣∣ ≤ ∣∣g(y)−g(y0)
∣∣+∣∣∣∣∫ ∞

t

(s− t) a(s)
[
f
(
y(s)

)
− f

(
y0(s)

)]
ds

∣∣∣∣ . (2.2)

Consider now a fixed ε > 0. Use the continuity of g at y0 and the uniform continuity
of f on

[
‖y0‖∞ − 1, ‖y0‖∞ + 1

]
to obtain δ ∈ (0, 1) such that, if y ∈ Cb(R+,R) with
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‖y − y0‖∞ < δ, then |g(y)− g(y0)| < ε
2 , and also∣∣f(y(t)

)
− f

(
y0(t)

)∣∣ < ε

2

(∫ ∞
0

s |a(s)| ds
)−1

, for all t ≥ 0 .

This, together with (2.2), gives ‖T (y) − T (y0)‖∞ ≤ ε for all y ∈ Cb(R+,R) with
‖y − y0‖∞ < δ.
Proof of (c). Due to (Hf -1) and (Hf -2), it is allowed to define a function F :
(0,∞)→ R as

F (z) =

∫ z

1

1

f(u)
du,

and it turns out that F is differentiable and strictly increasing on (0,∞). Since we
also have F (1) = 0, and lim

z→∞
F (z) = +∞, we can define a real number R > 1 by the

expression

R = F−1
(∫ Mg

1

1

f(u)
du+

∫ ∞
0

s |a(s)| ds
)
,

where Mg > 1 is chosen with the additional property of being Mg > sup
{
|g(y)| : y ∈

Cb(R+,R)
}

.

We shall prove that T satisfies the Leray-Schauder condition (LS) on B(0, R). To
do it, suppose that, for certain λ > 1 and certain y ∈ Cb(R+,R), it is true that
T (y) = λy. Let us then see that ‖y‖∞ < R. Indeed, for any t ∈ R+, we have∣∣y(t)

∣∣ =
1

λ

∣∣T (y)(t)
∣∣ ≤ |g(y)|

λ
+

1

λ

∫ ∞
t

(s− t)
∣∣a(s)

∣∣∣∣f(y(s)
)∣∣ ds

≤Mg +
1

λ

∫ ∞
t

s
∣∣a(s)

∣∣∣∣f(y(s)
)∣∣ ds.

Next, consider the function w : R+ → R defined by the right-hand side of the above
inequality, that is,

w(t) = Mg +
1

λ

∫ ∞
t

s
∣∣a(s)

∣∣∣∣f(y(s)
)∣∣ ds,

and observe that w is differentiable, w(t) ≥ Mg > 0 and |y(t)| ≤ w(t) for every
t ∈ R+. Then, by (Hf -3),

w′(t) =
−1

λ
t
∣∣a(t)

∣∣ ∣∣f(y(t)
)∣∣ ≥ −1

λ
t
∣∣a(t)

∣∣ f(w(t)
)
,

and using that w(t) > 0 for all t ∈ R+, and (Hf -2), obtain

d

dt
F
(
w(t)

)
=

w′(t)

f
(
w(t)

) ≥ − 1

λ
t
∣∣a(t)

∣∣, for all t ∈ R+.

Next, integration on both sides of the above inequality gives

F (Mg)− F (w(t)) ≥ − 1

λ

∫ ∞
t

s |a(s)| ds, t ∈ R+,

from which it follows that, for all t ≥ 0,

F (w(t)) ≤ F (Mg) +
1

λ

∫ ∞
0

s
∣∣a(s)

∣∣ ds := K.
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Using that F is strictly increasing, obtain that w(t) ≤ F−1(K), and using again the
strict monotonicity of F−1 and that λ > 1, obtain ‖w‖∞ ≤ F−1(K) < R. This
completes the proof of (c) and, with it, the whole result. �

Remark 2.3. Observe that this Theorem covers the case in which f(u) = u, that
is, the linear case is included in this result. Furthermore, for a and g satisfying the
corresponding hypotheses, (Ha) and (Hg), and for p ∈ (0, 1], an integral equation of
the type

y(t) = g(y) +

∫ ∞
t

(s− t) a(s)
(
y(s)

)p
ds, t ≥ 0,

has at least one solution in R+.

Remark 2.4. The requirement that

∫ ∞
1

1

f(u)
du = ∞, although it is used, it is

uncertain whether it can be dropped. This requirement prevents us from considering,
for instance, f(u) = u2.

Despite this, the way the Theorem has been proved allows us for a small weakening
of this hypothesis, namely, it just suffices to have, for

Mg = max
{

1 , sup
{
|g(y)| : y ∈ Cb(R+,R)

}}
,

there exists R > 1 such that

∫ R

1

1

f(z)
dz =

∫ Mg

1

1

f(z)
dz +

∫ ∞
0

s |a(s)| ds, (2.3)

in order to obtain a solution for the integral equation (E). We leave the details to
the reader.

With this in mind, it can be easily checked that the integral equation

y(t) = g(y) +

∫ ∞
t

(s− t) 1

(s+ 1)
3

(
y(s)

)2
ds, (2.4)

has at least one solution in R+, provided sup
{
|g(y)| : y ∈ Cb(R+,R)

}
< 2. Indeed,

this last assumption gives 1 ≤ Mg < 2, so, having in mind that f(u) = u2 and that
a(t) = (t+ 1)−3, obtain∫ Mg

1

1

f(u)
du+

∫ ∞
0

s |a(s)| ds =

∫ Mg

1

1

u2
dz +

∫ ∞
0

s

(s+ 1)
3 ds

= 1− 1

Mg
+

1

2
=

3

2
− 1

Mg
∈
[

1

2
, 1

)
,

which is in the range of the function

F (z) =

∫ z

1

1

u2
du, z ∈ [1,∞),

for this function F is continuous, strictly increasing, with

F (1) = 0 and lim
z→∞

F (z) = 1.
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3. The second order differential equation

In this section we consider the differential problem (P ) and use the result obtained
in the previous section on the integral equation (E) to obtain now a result on the
existence of solutions for (P ). This will be done by means of the following lemma.

Lemma 3.1. Under hypotheses (Hf -1) and (Ha), the set of solutions of the nonlocal
problem (P ) equals the set of solutions of the integral equation (E).

Remark 3.2. Observe that the solutions of either (P ) or (E) must be continuous
and have finite limit at ∞, so they must be bounded.

Proof. Suppose that y : R+ → R is a solution of (P ). To see that y satisfies (E),
observe first that, if ρ, σ ∈ R+,

y′(ρ)− y′(σ) =

∫ ρ

σ

y′′(s) ds =

∫ ρ

σ

a(s) f
(
y(s)

)
ds. (3.1)

Now the facts that y is bounded and f is continuous on R imply that f◦y is bounded on
R+, which together with (Ha) gives the convergence of the integral

∫∞
σ
a(s) f(y(s)) ds.

This fact and (3.1) yield the existence of the limit y′(∞) = lim
ρ→∞

y′(ρ) as a real number.

Moreover, it must be y′(∞) = 0 because otherwise it would be lim
t→∞

y(t) = +∞ or

lim
t→∞

y(t) = −∞, and we know that none of these two possibilities can occur, since

y(∞) = g(y) ∈ R. Therefore, from (3.1), as ρ→∞, obtain

y′(σ) = −
∫ ∞
σ

a(s)f
(
y(s)

)
ds, σ ≥ 0. (3.2)

Integrate now in (3.2) and use Fubini’s rule, or integration by parts, to arrive at

g(y)− y(t) = −
∫ ∞
t

∫ ∞
σ

a(s) f
(
y(s)

)
ds dσ = −

∫ ∞
t

(s− t) a(s) f
(
y(s)

)
ds,

that is, arrive at the fact that y is a solution of the integral equation (E).
Conversely, suppose that y : R+ → R is a solution of (E). Then y is bounded

and, because of the shape of the integral equation, the behavior of y at ∞ is given by
y(∞) = g(y). Now, by the Fundamental Theorem of Calculus, it is easy to observe
that y′′(t) = a(t)f(y(t)) for all t ∈ R+. That is, y is a solution of the nonlocal problem
(P ). �

Corollary 3.3. Under the set of hypotheses of Theorem 2.1, the nonlocal problem
(P ) has at least one solution.

Remark 3.4. Translating to differential problems the equations treated in Remarks
2.3 and 2.4, we first obtain that, for a and g satisfying the corresponding hypotheses,
(Ha) and (Hg), the problem{

y′′(t) = a(t)
(
y(t)

)p
, t ≥ 0,

y(∞) = g(y),
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has always a solution, provided p ∈ (0, 1]. Also, the problem{
y′′(t) = 1

(t+1)3

(
y(t)

)2
, t ≥ 0,

y(∞) = g(y),
(3.3)

has always a solution, provided sup
{
|g(y)| : y ∈ Cb(R+,R)

}
< 2. We do not know

whether the nonlocal problem (3.3) has always a solution for an arbitrary continuous
and bounded g. It would be interesting to know about it, for it is much related to
the classical Emden-Fowler equation (see, e.g., [4]).

Remark 3.5. The hypothesis on the boundedness for g cannot be dropped. As an
example, we may consider the very easy example:{

y′′(t) = 0, t ≥ 0,

y(∞) = 1 + y(0),
(3.4)

This nonlocal problem (in fact, a boundary value problem) has no solution, and fulfills
all the requirements, except that g, defined as g(y) = 1 + y(0), is not bounded on
Cb(R+,R). We could also have considered g(y) = 1 + lim sup

t→∞
y(t).

Remark 3.6. As for the function a, we should not expect a weakening of the hypoth-
esis

∫∞
0
s |a(s)| ds < ∞ to, for instance,

∫∞
0
|a(s)| ds < ∞. As an example, consider

the following Euler-Cauchy differential equation:

y′′(t) =
1

(t+ 1)
2 y, t ≥ 0. (3.5)

Observe that a(t) = (t+ 1)
−2

satisfies∫ ∞
0

|a(s)| ds =

∫ ∞
0

(s+ 1)
−2
ds = 1 <∞, and∫ ∞

0

s |a(s)| ds =

∫ ∞
0

(s+ 1)
−1 − (s+ 1)

−2
ds =∞.

Now, with the usual technique of assuming a solution of the type y = (t+ 1)
r
, arrive

at the general solution for (3.5) in the form

y(t) = C1(t+ 1)
r1 + C2(t+ 1)

r2 , t ≥ 0, (3.6)

where r1 = 1−
√

5
2 < 0 and r2 = 1+

√
5

2 > 0. Now, if y(∞) is to exist and be finite, then
it must be C2 = 0, in which case y = C1(t+1)

r1 → 0 as t→∞. So we conclude that 0
is the only possible finite asymptotic value for solutions of the Equation (3.5), no other
asymptotic value is allowed. Hence the corresponding nonlocal problem associated to
Equation (3.5), and to a continuous and bounded g, will not have a solution unless
g(y) ≡ 0.

The conclusion in Corollary 3.3 has been attained via a fixed point theorem of
Leray-Schauder type, and this has obliged us to impose certain hypothesis on f and
g. Had we wanted to use the Banach-Caccioppoli Contraction Principle (see, e.g.,
[1]), the conditions needed would have been of Lipschitz type, and this will be our
choice in the next theorem. We shall need a previous result that we are sure has been
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done before, but being unable to find a reference for it, we have decided to include it
for the sake of completeness.

Lemma 3.7. Suppose that (Ha) is satisfied and that f is a Lipschitz mapping. Then,
for any C ∈ R, the equation

y(t) = C +

∫ ∞
t

(s− t)a(s)f(y(s)) ds (EC)

has a unique solution, which, of course, must be bounded with limit at ∞ given by C.

Proof. Our strategy, for the existence part, will be to obtain first a solution of (EC)
on a certain interval [t0,∞) by means of the Banach-Caccioppoli Theorem, and then,
using that f is Lipschitz, another solution on [0, t0] which glue well with the previous
one. With this in mind, denoting by Lf the Lipschitz constant for f in R+, and based
on hypothesis (Ha), choose a real number t0 > 0 such that Lf

∫∞
t0
s|a(s)| ds < 1, and

consider the map T : Cb([t0,∞),R)→ Cb([t0,∞),R) given as

T (y)(t) = C +

∫ ∞
t

(s− t) a(s) f
(
y(s)

)
ds.

This map is well defined due to (Ha) and the fact that f maps bounded sets onto
bounded sets. It is also contractive since, for any y1, y2 ∈ Cb([t0,∞),R) and any
t ∈ [t0,∞),∣∣T (y1)(t)− T (y2)(t)

∣∣ ≤ ∫ ∞
t

(s− t)
∣∣a(s)

∣∣ ∣∣f(y1(s))− f(y2(s))
∣∣ ds

≤
(
Lf

∫ ∞
t0

s|a(s)| ds
)
‖y1 − y2‖∞.

Hence, by the Banach-Caccioppoli Contraction Principle, T has a fixed point x ∈
Cb([t0,∞),R). This means that x is a bounded solution of equation (EC) on [t0,∞)
and then, using Lemma 3.1 with [0,∞) replaced by [t0,∞), x is a solution of the
problem {

y′′(t) = a(t)f(y(t)), t ≥ t0,
y(∞) = C.

(P+)

Now notice that the problem
y′′(t) = a(t)f(y(t)), t ∈ [0, t0],

y(t0) = x(t0),

y′(t0) = x′(t0),

(P−)

has a unique solution z : [0, t0]→ R, since (P−) is of the form

y′′(t) = F (t, y(t)), y(t0) = x(t0), y′(t0) = x′(t0), (3.7)

where F (t, y) = a(t)f(y) is continuous on the strip [0, t0]×R and satisfies a generalized
Lipschitz condition with respect to the second variable. Indeed, for any t ∈ [0, t0] and
y1, y2 ∈ R, we have |F (t, y1) − F (t, y2)| ≤ L(t)|y1 − y2|, where L : [0, t0] → R is the
continuous function L(t) = Lf |a(t)|.
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Next, the function y : R+ → R given as

y(t) =

{
z(t), if 0 ≤ t ≤ t0,

x(t), if t ≥ t0,

is a solution of (P) and consequently, by Lemma 3.1, it is also a solution of (EC).
Finally, the uniqueness part follows directly from well known Gronwall-Bellman

type inequalities. �

Now, we adapt the technique used in [2], in conjunction with the previous result,
in order to obtain the following one.

Theorem 3.8. Suppose, in addition to (Ha), that f and g are Lipschitz mappings

with Lipschitz constants Lf and Lg, respectively. If Lge
Lf

∫ ∞
0
s|a(s)|ds < 1, then the

nonlocal differential problem (P ) has a unique solution.

Proof. We shall prove that equation (E) has a unique solution on R+. Consider the
operator G : Cb(R+,R) → Cb(R+,R) which maps each y ∈ Cb(R+,R) to the unique
solution y ∈ Cb(R+,R) of the equation (EC), with C = g(y), given by Lemma 3.7,
that is, y is the unique function in Cb(R+,R) which satisfies

y(t) = g(y) +

∫ ∞
t

(s− t) a(s) f
(
y(s)

)
ds for all t ∈ R+. (3.8)

Notice that y is a bounded solution of (E) if, and only if, G(y) = y, and so we
only need prove that G is a contractive map. To do it, use (3.8), and the fact that f
is Lipschitz, to obtain that, for any y1, y2 ∈ Cb(R+,R), and any t ∈ R+,∣∣G(y1)(t)−G(y2)(t)

∣∣ = |y1(t)− y2(t)|

≤ |g(y1)− g(y2)|+
∫ ∞
t

(s− t)
∣∣a(s)

∣∣ ∣∣f(y1(s)
)
− f

(
y2(s)

)∣∣ ds
≤ Lg‖y1 − y2‖∞ +

∫ ∞
t

Lfs
∣∣a(s)

∣∣ ∣∣y1(s)− y2(s)
∣∣ ds.

Again, a Gronwall-Bellman type inequality gives us that∣∣G(y1)(t)−G(y2)(t)
∣∣ = |y1(t)− y2(t)| ≤ Lg ‖y1 − y2‖∞ eLf

∫ ∞
0
s|a(s)|ds,

and this shows that G is a contractive map. �

Remark 3.9. Again, the restriction on the Lipschitz constant for g cannot be
dropped, for the examples considered in Remark 3.5 are also valid for this situation:
g(y) = 1 + y(0), and g(y) = 1 + lim sup

t→∞
y(t), are Lipschitz mappings with Lipschitz

constants equal to 1 in both cases.
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[10] C. González and A. Jiménez-Melado, Existence of monotonic asymptotically constant solutions

for second order differential equations, Glasgow Math. J., 49 (2007), 515–523.
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