
Fixed Point Theory, 18(2017), No. 1, 407-412

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

FIXED CHORDS AND DISCS IN CONVEX BODIES
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1. Introduction

Baire categories have been successfully used, especially in Analysis. They pene-
trated Convexity when Klee published his pioneering work in 1959 [2]. Since then
several sometimes surprising results have been obtained about most convex bodies,
i.e. all of them except for a set of first Baire category; see the book [6] and the surveys
[1] and [4]. Brouwer and Schauder’s fixed point theorems have also been generically
treated [5]. However, applications in fixed point theory did not abound.

In this paper we present Baire category results belonging to both the theory of
convex bodies and that of fixed points. In fact, there will be 1- or 2-dimensional balls
which will be fixed. Let us become more explicit.

Let X be a connected metric space and C a space of continua in X. A continuous
function f : [0, 1] → C with all sets f(t) pairwise isometric (t ∈ [0, 1]) is a movement

of f(0). We say that C ∈ C is fixed if the only possible movement of C is the constant
function f(t) = f(0) = C for all t. As a referee remarked, finding the fixed continua
in C means finding the strict fixed points of the multivalued mapping F : C → P (C)
defined by F (C) = {f(t) : t ∈ [0, 1], f movement of C}.

Let K be a convex body in R
d. A chord of K is a line-segment xy with x, y ∈ K.

We take X to be K and C the space of all chords of K. Does K possess fixed chords?
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Some examples show different answers. While an ellipsoid with different axis
lengths has a unique fixed chord, the ball has no fixed chord, and the regular n-gon
has n fixed chords for odd n.

Is the ball a great exception (not possessing any fixed chords)? No, we immediately
see that all convex bodies with constant width enjoy the same lack of fixed chords!
And ellipsoids with two equally long axes and a shorter third one are further examples.

How do most convex bodies behave? Have they any fixed chords? If yes, how
many? We shall show here that most convex bodies in the space K of all convex
bodies in R

d have infinitely many fixed chords, no pair of which meet or have same
length.

2. Very many continua with fixed subcontinua

Let us start with a rather general case. We consider the space D of all continua in
R

d, and take X ∈ D.

Theorem 2.1. In most continua of Rd, every subcontinuum is fixed.

Proof. Let Dn be the set of continua in R
d possessing a subcontinuum of diameter at

least 1/n which is not fixed. We prove that Dn is nowhere dense in D, and this will
establish the theorem.

Obviously, every continuum in D can be approximated by a connected geometric
graph, i.e. a connected finite union F of line-segments. This can be done such that
F includes no line-segment of length 1/n. Then, clearly, F /∈ Dn. The set of all
connected geometric graphs including no line-segment of length 1/n is open. Thus,
Dn is nowhere dense.

There are, however, many important continua in R
d with lots of non-fixed sub-

continua. So, for example, take a convex body K ⊂ R
d. In K, all compact convex

subsets are non-fixed, if we disregard a nowhere dense family of exceptions. Neverthe-
less, restricting the set of considered compact convex subsets yields more interesting
results.

3. Many convex bodies without fixed chords

We prove here the following theorem.

Theorem 3.1. The set of convex bodies without any fixed chords is dense in the space

K of all convex bodies.

Proof. Let O ⊂ K be open. Choose a polytope P ∈ O with no pair of parallel faces
(of positive dimension). There exist fixed chords in P : at least the chords of maximal
length will be fixed. Let F be the (finite) family of all fixed chords of P . For every
vertex v of P choose a neighbourhood Nv ⊂ R

d of v such that Nv ∩ Nu = ∅ for
v 6= u, and for arbitrary non-empty subsets N ′

v
⊂ Nv, conv

⋃
v
N ′

v
∈ O. Now choose

c = vw ∈ F . The angle between vw and any edge vu of P must be acute. Let ε > 0.
For ε small enough,

{v∗ ∈ P : ‖v∗ − w‖ > ‖v − w‖ − ε}

has a component Vc ⊂ Nv. Put Pc = P \ Vc.
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Now let c′ ∈ F be different from c. If c and c′ have no common endpoint or
c ∩ c′ = {w}, we proceed with c′ as with c. If c′ = vw′, then Pc has a longest chord
v′w′ among all chords joining w′ to points in Z = Vc ∩ Pc, where Vc denotes the
closure of Vc. Put

m = max
z∈Z

‖z − w′‖,

n = min
z∈Z

‖z − w′‖.

Thus, ‖v′ − w′‖ = m. Let n < s < m. Then

{v∗ ∈ Pc : ‖v
∗ − w′‖ > s}

has a component Vc′ ⊂ Nv, such that the boundary bdVc of Vc is not included in Vc′ .
Consider the convex body Pc \ Vc′ . Its boundary contains two spherical regions, both
in Nv, with w and w′ as centres.

Repeat this procedure for all chords in F . We eventually obtain a convex body in
O without fixed chords.

4. More convex bodies with many fixed chords

We shall see in this section that, in the sense of Baire categories, most convex
bodies do have fixed chords, they even have infinitely many of them.

A chord ∆ of K ∈ K will be called long if for some set V ⊃ ∆ open in R
d, K has

no chord included in V and longer than ∆. Let LK be the set of all long chords of K.

Lemma 4.1. For any K ∈ K, all chords of a component of LK have same length.

We leave the elementary proof to the reader.

Lemma 4.2. For most convex bodies, LK has infinitely many components.

Proof. Let Kn be the set of all convex bodies K for which LK has at most n compo-
nents. We show that Kn is nowhere dense.

Let O ⊂ K be open and choose a polytope P ∈ O as in the preceding proof. In P ,
the (finite) set F of fixed chords coincides with the set of long chords. Take vw ∈ F .
In a plane orthogonal to vw, consider a convex (n + 1)-gon Q with v in its relative
interior. In the polytope P ′ = conv(P ∪Q), each chord vu is long if u is a vertex of
Q. If Q and the neighbourhood V of P ′ are small enough, then V ⊂ O and for any
convex body K ∈ V, close to each chord vu there is a long chord, and the n+1 chords
obtained this way are in pairwise different components. This holds due to Lemma 1
and because any chord outside a small neighborhood of vu is strictly shorter than vu.
Thus, V ∩ Kn = ∅ and Kn is nowhere dense indeed.

Hence
⋃

n
Kn is of first category, and the lemma is proven.

Lemma 4.3. For most convex bodies, LK is totally disconnected.

Proof. Let Kn be the set of all convex bodies possessing a long chord whose component
has diameter at least 1/n. Consider the same polytope P as in the proofs of Theorem
2 or Lemma 2. If ε > 0 is small enough, for no convex body K ⊂ P + εB, LK has
a component of diameter at least 1/n. (Here, B is the unit ball centred at 0.) This
yields that Kn is nowhere dense, whence the lemma.
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Theorem 4.4. Most convex bodies have infinitely many fixed chords.

Proof. Since every long chord is fixed if its component contains no other chord, it
suffices to combine Lemma 2 and Lemma 3.

It is interesting to note that isolated long chords and fixed chords are not equivalent
notions, see the Figure 1.

0

x1

x2

x3

x
∞

x4

x5
x6x7

Figure 1. On the circular arc, xn → x∞. In K = conv{0, x∞, x1, x2, ...},
the long chord 0x∞ is fixed, but not isolated.

5. Fixed discs

In order to better visualize the matter and not unnecessarily complicate the proofs
with technicalities derived from arbitrary dimension, let d = 3.

We now consider a 2-dimensional disc included in the convex body K ∈ K instead
of a chord, and define fixed discs analogously.

How many contact points has a fixed disc with the boundary of K ?
It must have at least two contact points, because otherwise it can be moved in its

plane. Interestingly, if a disc in K has exactly one contact point (in bdK), it may be
impossible to move it thereby keeping fixed the contact point!

Consider the intersection (with non-empty interior) L of two congruent distinct
balls B1, B2. The disc D = conv(bdB1 ∩ bdB2) is obviously fixed in L, and the set
D ∩ bdL is infinite.

If 0 is the centre of D and the z-axis is orthogonal to aff D, then

L′ = {(x/2, y, z) : (x, y, z) ∈ L}

has a single fixed disc, namely D/2, which has precisely two contact points with L′.
Suppose that K is a smooth convex body and the plane Π cuts K along a planar

convex body KΠ. Further, assume that KΠ has an inscribed circular disc having 4
contact points with the relative boundary relbd KΠ of KΠ. If no tangent plane at
each of the 4 points is orthogonal to Π and the acute angles between them and Π are
formed alternately toward the two sides of Π as the points are taken in their circular
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order, then we say that the tangent planes of bd K at the 4 points form alternately

acute angles with Π.

Lemma 5.1. If K ∈ K is smooth, the disc D ⊂ K has 2 or 3 contact points with

bdK and the tangent planes at those points to bdK are not orthogonal to affD, then

D is not fixed.

We leave the easy proof to the reader.

Theorem 5.2. Most convex bodies K admit a fixed disc, which has exactly 4 contact

points in bdK.

Proof. First of all, we work in the space K′ of all smooth convex bodies, which is
residual in K by Klee’s theorem [2].

Let Kn be the space of all convex bodies in K′ admitting a disc which cannot be
moved at distance 1/n. We show that, for every n, the complement of Kn in K′

is nowhere dense. Thus, the complement of
⋂

∞

n=1
Kn is of first category, and most

convex bodies belong to all Kn.
Take O ⊂ K′ open, and K ∈ O. Let D ⊂ K be a disc of maximal radius. Then

D is inscribed in K ′ = K ∩ affD, where affD means the plane determined by D.
Therefore, D has at least two contact points on relbd K ′. Let CK be the set of these
contact points. If card CK is 2 or 3, then the tangent planes at (some or all of)
those points must be orthogonal to affD, by Lemma 4, and put C ′ = CK . If in CK

there are at least 4 contact points, choose 4 among them having the centre c of D in
their convex hull, and define C ′ to be this 4-point set. Now, take a 4-point set C ′′

approximating C ′, such that its convex hull contains c in its interior. If C ′ has less
than 4 points, choose the additional points in C ′′ close to those contact points of C ′

where the tangent planes of bd K are orthogonal to affD. Take a convex body K ′ in
K′ close to K with CK′ = C ′′ and having tangent planes alternately acute with affD
at the four contact points. Then D is fixed in K ′ and any convex body close enough
to K ′ belongs to Kn, whence the complement of Kn is nowhere dense.

We have proved above not only that most K have a fixed disc D, but also that
D ∩ bdK contains at least 4 points for these K.

To prove that, for most K, card (D ∩ bdK) = 4, define Kn as set of those K ∈ K
which, besides admitting a disc which cannot be moved at distance 1/n, also have no
5 points among its contact points with bdK at mutual distances at least 1/n. The
proof above provides now card (D ∩ bdK) = 4 for most K ∈ K.

Notice a certain similarity between this proof and the argument in [3].
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