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1. Introduction

Fixed point theory is an important branch of nonlinear analysis and has been
applied in numerous studies of nonlinear phenomena. Many problems in nonlinear
functional analysis are related to finding fixed points of nonlinear mappings of nonex-
pansive types. We want to construct an iterative process to approximate fixed points
of mappings of nonexpansive types. It is an important question that whether iterative
schemes for mappings of nonexpansive types can be generated, modified, preferably
in a simple way, so that strong convergence is guaranteed. Many authors have con-
sidered problems of iterative algorithms for mappings of nonexpansive types which
converge to some fixed points. The purpose of this paper is to prove a strong conver-
gence theorem for asymptotically quasi-nonexpansive with respect to the Bregman
distance in the intermediate sense.

Let C be a nonempty subset of a real Banach space and T : C → C a mapping. A
point p ∈ C is called a fixed point of T if Tp = p. Throughout this paper, we denote
by F (T ) the set of fixed points of T . Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.
More generally, T is said to be asymptotically nonexpansive (cf. [15]) if there exists a
sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C and n ≥ 1.
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The mapping T is said to be asymptotically nonexpansive in the intermediate sense
(cf. [8]) if

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0. (1.1)

If F (T ) is nonempty and (1.1) holds for all x ∈ C and y ∈ F (T ), then T is said to
be asymptotically quasi-nonexpansive in the intermediate sense. It is worth mention-
ing that the class of asymptotically nonexpansive mappings in the intermediate sense
contains properly the class of asymptotically nonexpansive mappings, since asymptot-
ically nonexpansive mappings in the intermediate sense are not Lipschitz continuous
in general.

Takahashi, Takeuchi and Kubota [37] have introduced a new hybrid iterative
scheme called a shrinking projection method for nonexpansive mappings in Hilbert
spaces. It is an advantage of projection methods that the strong convergence of it-
erative sequences is guaranteed without any compact assumptions. Schu [34] has
introduced a modified Mann iteration to approximate fixed points of asymptotically
nonexpansive mappings in Banach spaces. Motivated by [34, 37], Inchan [20] has intro-
duced a new hybrid iterative scheme by using the shrinking projection method with
the modified Mann iteration for asymptotically nonexpansive mappings in Hilbert
spaces. Moreover, many authors have studied iterative methods for approximating
fixed points of asymptotically quasi-nonexpansive mappings in the intermediate sense
in Banach spaces (see [17, 18, 26]).

In 1967, Bregman [7] has discovered an elegant and effective technique for the
using of the so-called Bregman distance function in the process of designing and
analyzing feasibility and optimization algorithms. This opened a growing area of
research in which Bregman’s technique is applied in various ways in order to design and
analyze not only iterative algorithms for solving feasibility and optimization problems,
but also algorithms for solving variational inequalities, for approximating equilibria
and for computing fixed points of nonlinear mappings. Many authors have studied
iterative methods for approximating fixed points of mappings of nonexpansive types
with respect to the Bregman distance (see [22, 30, 31, 35]). In particular, Reich
and Sabach [32] have established a strong convergence theorem with respect to the
Bregman distance using the concept of the shrinking projection method. We can
apply it to the solution of convex feasibility and equilibrium problems, and to finding
zeroes of two different classes of nonlinear mappings.

However, it has not been studied yet for the cases of asymptotically quasi-
nonexpansive with respect to the Bregman distance in the intermediate sense. From
this background, we introduce a new class of nonlinear mappings which is an extension
of asymptotically quasi-nonexpansive with respect to the Bregman distance in the in-
termediate sense. Motivated by the results above, we design a new hybrid iterative
scheme for finding fixed points of a mapping in the new class by using the shrinking
projection method with the modified Mann iteration in reflexive Banach spaces. We
prove a new strong convergence theorem for the mapping. This theorem is an exten-
sion of results of [37, 38]. This iterative method is expected to be applied to many
other problems in nonlinear functional analysis relating to the Bregman distance.
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In Section 2, we present several preliminary definitions and results. In Section 3, we
recall the notion of the Mosco convergence and two kinds of projection with respect
to the Bregman distance. In Section 4, we introduce the new class of mappings with
respect to the Bregman distance and prove closedness and convexness of the set of
fixed points of mappings in the new class. In Section 5, we prove a strong convergence
theorem for finding a fixed point of the mapping by using the shrinking projection
method with the modified Mann iteration.

2. Preliminaries

Throughout this paper, N denotes the set of positive integers and R the set of real
numbers. Moreover, E always denotes a real reflexive Banach space with the norm
‖·‖, E∗ the dual space of E and 〈·, ·〉 the pairing between E and E∗. The strong
convergence of a sequence {xn} to x is denoted by xn → x and the weak convergence
by xn ⇀ x.

Let f : E → (−∞,+∞] be a function. The effective domain of f is defined by

domf := {x ∈ E : f(x) < +∞}.

The function f is said to be proper if domf is nonempty. We denote by int domf the
interior of the effective domain of f . We denote by ranf the range of f . The function
f is said to be convex on E if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ E and λ ∈ [0, 1]. The function f is said to be lower semicontinuous on
E if

lim inf
y→x

f(y) ≥ f(x)

for all x ∈ E. If f is proper, convex and lower semicontinuous on E, then f is locally
Lipschitz continuous on int domf (see [6], Theorem 1.7, p. 66). The Fenchel conjugate
function of f is the convex function f∗ : E∗ → (−∞,+∞] defined by

f∗(ξ) := sup{〈ξ, x〉 − f(x) : x ∈ E}.

The function f is said to be cofinite if domf∗ = E∗. If f is proper, convex and lower
semicontinuous on E, then f∗ is also proper, convex and lower semicontinuous on E∗

(see [2], Proposition 1.3, p. 6).
Let f : E → (−∞,+∞] be a proper and convex function. The subdifferential of f

is a mapping ∂f : E → 2E
∗

defined by

∂f(x) := {x∗ ∈ E∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ E}

for all x ∈ E. We know that x∗ ∈ ∂f(x) if and only if f(x) + f∗(x∗) = 〈x∗, x〉 for
x ∈ E (see [3]).

Let x ∈ int domf . For each y ∈ E, the right-hand directional derivative

f◦(x, y) := lim
t↓0+

f(x+ ty)− f(x)

t
.
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exists and defines a sublinear functional on E (see [25], Lemma 1.2, p. 2). For any
y ∈ E, we define the directional derivative of f at x in the direction y by

f ′(x, y) := lim
t↓0

f(x+ ty)− f(x)

t
. (2.1)

The function f is said to be Gâteaux differentiable at x if the limit (2.1) exists for
each y ∈ E. We know that f is Gâteaux differentiable at x if and only if y → f◦(x, y)
is linear in y (see [25], p. 3). In this case, the gradient of f at x is the function
∇f(x) : E → (−∞,+∞) defined by 〈∇f(x), y〉 = f◦(x, y) for every y ∈ E. The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at each
x ∈ int domf . The function f is said to be Fréchet differentiable at x if the limit (2.1)
is attained uniformly in ‖y‖ = 1.

A function f : E → (−∞,+∞] is said to be admissible if it is proper, convex
and lower semicontinuous on E and Gâteaux differentiable on int domf . Under these
conditions we know that ∂f is single-valued and ∂f = ∇f (see [10], Proposition
1.1.10, p. 13). Throughout this paper, we assume that f : E → (−∞,+∞] is always
an admissible function.

A function f : E → (−∞,+∞] is called Legendre (cf. [3]) if it satisfies additionally
the following two conditions:

(L1) int domf 6= ∅, f is Gâteaux differentiable and dom∇f = int domf ;
(L2) int domf∗ 6= ∅ f∗ is Gâteaux differentiable and dom∇f∗ = int domf∗.

Let f be a Legendre function on E. Since E is reflexive, we always have ∇f =
(∇f∗)−1. When this fact is combined with conditions (L1) and (L2), we obtain the
following equalities:

ran∇f = dom∇f∗ = int domf∗ and ran∇f∗ = dom∇f = int domf.

Moreover, conditions (L1) and (L2) imply that f and f∗ are strictly convex on the
interior of their respective domains (see [3] Theorem 5.4). We know that f is Legendre
if and only if f∗ is Legendre (see [3], Corollary 5.5, p. 634).

Example 2.1 ([4], Example 1.1, p. 2). The following functions are Legendre on
E = Rn: Let x = (xj)1≤j≤n ∈ Rn.

(i) Halved energy: f(x) = ‖x‖2/2 = 1
2

∑n
j=1 x

2
j .

(ii) Boltzmann-Shannon entropy: f(x) =

{∑n
j=1(xj ln(xj)− xj), x ≥ 0;

+∞, otherwise.

(iii) Burg entropy: f(x) =

{
−
∑n

j=1 ln(xj), x > 0;

+∞, otherwise.

Note that int domf = Rn in (i), whereas int domf = {x ∈ Rn : xj > 0, j = 1, . . . , n}
in (ii) and (iii).

Given a function f : E → (−∞,+∞], a bifunction Df : domf × int domf →
[0,+∞) defined by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉
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is called the Bregman distance with respect to f (cf. [7, 14]). In general, the Bregman
distance is not a metric since it is not symmetric and does not satisfy the triangle
inequality.

Example 2.2 ([4], Example 1.5, p. 3). The Bregman distances corresponding to the
Legendre functions of Example 2.1 are as follows: Let x, y ∈ Rn.

(i) Euclidean distance: Df (y, x) = ‖y − x‖2/2.
(ii) Kullback-Leibler divergence: Df (y, x) =

∑n
j=1(yj ln(yj/xj)− yj + xj).

(iii) Itakura-Saito divergence: Df (y, x) =
∑n

j=1(ln(xj/yj) + yj/xj − 1).

Given a function f : E → (−∞,+∞], a modulus of total convexity of f at x ∈
int domf is a function vf (x, ·) : [0,+∞)→ [0,+∞] defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t}.
The function f is said to be totally convex at x ∈ int domf (cf. [9, 13]) if vf (x, t) > 0
for all t > 0. The function f is said to be totally convex when it is totally convex at
every point of int domf . The function f is said to be totally convex on bounded sets
if, for any nonempty bounded set B of E, inf{vf (x, t) : x ∈ B ∩ int domf} > 0 for all
t > 0. We remark in passing that f is totally convex on bounded sets if and only if
f is uniformly convex on bounded sets (see [11], Proposition 4.2, p. 16).

Proposition 2.3 ([29], Lemma 3.1, p. 31). Let f : E → R be a totally convex
function and x ∈ int domf . If the sequence {Df (xn, x)}n∈N is bounded, then the
sequence {xn}n∈N is also bounded.

A function f : E → (−∞,+∞] is said to be sequentially consistent (cf. [12]) if

lim
n→∞

Df (yn, xn) = 0 implies lim
n→∞

‖yn − xn‖ = 0

for any two sequences {xn}n∈N and {yn}n∈N in int domf and domf , respectively,
such that the first one is bounded.

Proposition 2.4 ([10], Lemma 2.1.2, p. 67). A function f : E → (−∞,+∞] is totally
convex on bounded subsets of E if and only if it is sequentially consistent.

3. The Bregman projections

The concept of Bregman projection was first used by Bregman [7], while the ter-
minology is due to Censor and Lent [14]. It has been shown that this generalized
projection is a good replacement for the metric projection in optimization methods
and in algorithms for solving convex feasibility problems.

Let C be a nonempty, closed and convex subset of domf . The left Bregman pro-

jection projfC with respect to f (cf. [7, 14]) from int domf onto C is defined by

projfC(x) := arg min
y∈C

Df (y, x) = {z ∈ C : Df (z, x) ≤ Df (y, x), ∀y ∈ C}

for all x ∈ int domf .
Let {Cn}n∈N be a sequence of nonempty subsets of E. We denote by s-LinCn the

set of limit points of {Cn}, that is, x ∈ s-LinCn if and only if there exists {xn} ⊂ E
such that xn ∈ Cn for each n ∈ N and xn → x as n → ∞. Similarly, we denote
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by w-LsnCn the set of weak cluster points of {Cn}; y ∈ w-LsnCn if and only if there
exists {yni

} ⊂ E such that yni
∈ Cni

for each i ∈ N and yni
⇀ y as i → ∞. Using

these definitions, we define the Mosco convergence (cf. [24]) of {Cn}. If C0 satisfies

s-Li
n
Cn = C0 = w-Ls

n
Cn,

then we say that {Cn} is Mosco convergent to C0 and we write

C0 = M- lim
n
Cn.

If {Cn} is nonincreasing with respect to inclusion, then {Cn} is Mosco convergent to⋂∞
n=1 Cn.

Proposition 3.1 ([33], Theorem 4.5, p. 12). Let f : E → (−∞,+∞] be a totally con-
vex function which is Fréchet differentiable on int domf . Let {Cn}n∈N be a sequence
of nonempty, closed and convex subsets of int domf and C0 a nonempty, closed and
convex subset of int domf . Then the following statements are equivalent:

(i) C0 = M- limn Cn;

(ii) limn→∞ projfCn
(x) = projfC0

(x) for all x ∈ int domf .

Let C be a nonempty, closed and convex subset of int domf . The right Bregman

projection
−−→
projfC with respect to f (cf. [5, 23]) from int domf onto C is defined by

−−→
projfC(x) := arg min

y∈C
Df (x, y) = {z ∈ C : Df (x, z) ≤ Df (x, y), ∀y ∈ C}

for all x ∈ int domf . Since Df is not convex in the second variable, it is not clear a
priori that the right Bregman projection is well defined. However, this difficulty has
already been overcome by Bauschke, Wang, Ye and Yuan [5] and Mart́ın-Márquez,
Reich and Sabach [23]. They have proved

−−→
projfC = ∇f∗ ◦ projf

∗

∇f(C) ◦ ∇f (3.1)

and established several other properties of
−−→
projfC . The right Bregman projection has

the following variational characterization.

Proposition 3.2 ([23], Proposition 4.11, p. 5459). Let f : E → R be a function such
that f∗ is admissble and totally convex. Let C be a nonempty subset of int domf such
that ∇f(C) is closed and convex. Let x ∈ int domf . If x̂ ∈ C, then the following
conditions are equivalent to each other:

(i) The vector x̂ is the right Bregman projection of x onto C with respect to f ;
(ii) The vector x̂ is a unique solution z of a variational inequality

〈∇f(z)−∇f(y), x− z〉 ≥ 0 for all y ∈ C;

(iii) The vector x̂ is a unique solution z of an inequality

Df (z, y) +Df (x, z) ≤ Df (x, y) for all y ∈ C.
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Remark 3.3. Let f(x) = ‖x‖2/2 for all x ∈ E. If E is a Hilbert space H, then the

right Bregman projection
−−→
projfC is reduced to the metric projection PC from H onto

C, which is defined by

PCx := arg min
y∈C

‖x− y‖ for all x ∈ H.

4. Right Bregman asymptotically quasi-nonexpansive
in the intermediate sense

In this section, we introduce and consider a new class of nonlinear mappings with
respect to the Bregman distance based on asymptotically quasi-nonexpansive map-
pings in the intermediate sense.

Let C be a nonempty subset of domf and T : C → int domf a mapping. The
mapping T is said to be right Bregman quasi-nonexpansive with respect to F (T ) (cf.
[23]) if F (T ) 6= ∅ and

Df (Tx, p) ≤ Df (x, p) for all p ∈ F (T ), x ∈ C.
Let K be a nonempty subset of E and R : E → K a mapping. A mapping R is called
a retraction if Rx = x for each x ∈ K. A mapping R is said to be sunny (cf. [16, 27])
if R

(
Rx + t(x − Rx)

)
= Rx for each x ∈ E and all t ≥ 0. We know that the unique

sunny right Bregman quasi-nonexpansive retraction from int domf onto C is given by
the right Bregman projection defined by (3.1).

Proposition 4.1 ([23], Corollary 4.6, p. 5458). Let f : E → R be a Legendre, cofinite
and totally convex function such that f∗ is totally convex. Let C be a nonempty subset
of int domf . If ∇f(C) is closed and convex, then the right Bregman projection (3.1)
is a unique sunny right Bregman quasi-nonexpansive retraction from int domf onto
C.

Let C be a nonempty subset of int domf and T : C → C a mapping. We introduce
a new class of mappings: the mapping T is said to be right Bregman asymptotically
quasi-nonexpansive in the intermediate sense (in brief, R-BAQNE) if F (T ) 6= ∅ and

lim sup
n→∞

sup
p∈F (T ), x∈C

(
Df (Tnx, p)−Df (x, p)

)
≤ 0. (4.1)

Put

ηn = max

{
0, sup

p∈F (T ), x∈C

(
Df (Tnx, p)−Df (x, p)

)}
.

The inequality (4.1) implies limn→∞ ηn = 0. Hence (4.1) is reduced to the following:

Df (Tnx, p) ≤ Df (x, p) + ηn (4.2)

for all p ∈ F (T ) and x ∈ C, where {ηn} is a sequence such that ηn → 0 as n → ∞.
R-BAQNE mappings are not Lipschitz continuous in general.

Example 4.2. Assume that E = R, C = [1/2, 3/2] and T : C → C defined by

Tx =

{
1, x ∈ [ 12 , 1],

1−
√

x−1
2 , x ∈ (1, 32 ].

(4.3)



398 YUKINO TOMIZAWA

Note that F (T ) = {1} and Tnx = 1 for all x ∈ C and n ≥ 2. If f : R → (−∞,+∞]
is a Legendre function, then T is R-BAQNE since

lim sup
n→∞

sup
x∈C

(
Df (Tnx, 1)−Df (x, 1)

)
≤ lim sup

n→∞
sup
x∈C

Df (Tnx, 1) = 0.

However, T is not Lipschitzian with respect to the Bregman distances in Example
2.2. Indeed, suppose that there exists L > 0 such that Df (Ty, Tx) ≤ LDf (y, x) for
all x, y ∈ C. By Taylor’s theorem, there exists t ∈ (0, 1) such that

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉 =
1

2
∇2f(x+ t(y − x))(y − x)2. (4.4)

(i) Let f(x) = ‖x‖2/2 on domf = R and Df (y, x) = ‖y − x‖2/2 for all x, y ∈ R.

Put x = 1 and y = 1 + 1/2(L+ 1). Since Ty = 1− 1/2
√
L+ 1, we have

1

8(L+ 1)
=

1

2

∥∥∥∥ −1

2
√
L+ 1

∥∥∥∥2 =
1

2
‖Ty − Tx‖2 ≤ L

2
‖y − x‖2 =

L

8(L+ 1)2
.

This implies L+ 1 ≤ L, which is a contradiction.
(ii) Let f(x) = x ln(x) − x on domf = [0,+∞) and Df (y, x) = y ln(y/x) − y + x

for all x ∈ (0,+∞) and y ∈ [0,+∞). Note that ∇2f(x) = 1/x. Put x = 1. By (4.4),
we have

Df (y, 1) =
(y − 1)2

2(1 + t(y − 1))
≤ (y − 1)2

2
for y ≥ 1

and

Df (y, 1) =
(y − 1)2

2(1 + t(y − 1))
≥ (y − 1)2

2
for 0 < y ≤ 1.

If y = 1 + 1/2(L+ 1), we have

1

8(L+ 1)
=

1

2

(
−1

2
√
L+ 1

)2

≤ Df (Ty, 1)

≤ LDf (y, 1) ≤ L

2

(
1

2(L+ 1)

)2

=
L

8(L+ 1)2
.

This implies L+ 1 ≤ L, which is a contradiction.
(iii) Let f(x) = − ln(x) on domf = (0,+∞) and Df (y, x) = ln(x/y) + y/x− 1 for

all x, y ∈ (0,+∞). Note that ∇2f(x) = 1/x2. Put y = 1. By (4.4), we have

Df (1, x) =
(1− x)2

2(x+ t(1− x))2
≤ (1− x)2

2
for x ≥ 1

and

Df (1, x) =
(1− x)2

2(x+ t(1− x))2
≥ (1− x)2

2
for 0 < x ≤ 1.

If x = 1 + 1/2(L+ 1), we have

1

8(L+ 1)
=

1

2

(
1

2
√
L+ 1

)2

≤ Df (1, Tx)

≤ LDf (1, x) ≤ L

2

(
−1

2(L+ 1)

)2

=
L

8(L+ 1)2
.
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This implies L+ 1 ≤ L, which is a contradiction.

Remark 4.3. Let f(x) = ‖x‖2/2 for all x ∈ E. If E is a Hilbert space, then R-
BAQNE mappings are reduced to asymptotically quasi-nonexpansive mappings in
the intermediate sense.

Theorem 4.4. Let f : E → (−∞,+∞] be a Legendre and cofinite function which is
totally convex on bounded subsets of E. Let T : int domf → int domf be a closed and
R-BAQNE mapping. Then ∇f

(
F (T )

)
is closed and convex subset of E∗.

Proof. First we show that ∇f
(
F (T )

)
is convex. Let p1, p2 ∈ F (T ) and p =

∇f∗
(
t∇f(p1) + (1 − t)∇f(p2)

)
, where t ∈ (0, 1). It suffices to prove that p ∈ F (T ).

By the definition of the Bregman distance, we have

Df (Tnp, p) = f(Tnp)− f(p)− 〈∇f(p), Tnp− p〉
= t{f(Tnp)− f(p1)− 〈∇f(p1), Tnp− p1〉}

+ (1− t){f(Tnp)− f(p2)− 〈∇f(p2), Tnp− p2〉}
− f(p) + tf(p1) + (1− t)f(p2)

+ 〈∇f(p), p〉 − t〈∇f(p1), p1〉 − (1− t)〈∇f(p2), p2〉
= tDf (Tnp, p1) + (1− t)Df (Tnp, p2)− f(p) + 〈∇f(p), p〉

+ t(f(p1)− 〈∇f(p1), p1〉) + (1− t)(f(p2)− 〈∇f(p2), p2〉). (4.5)

It is known that f(x) + f∗
(
∇f(x)

)
= 〈∇f(x), x〉 for all x ∈ E. By (4.5), we have

Df (Tnp, p) = tDf (Tnp, p1) + (1− t)Df (Tnp, p2)

+ f∗
(
∇f(p)

)
− tf∗

(
∇f(p1)

)
− (1− t)f∗

(
∇f(p2)

)
. (4.6)

By (4.2), we have

tDf (Tnp, p1) + (1− t)Df (Tnp, p2)

≤ tDf (p, p1) + (1− t)Df (p, p2) + ηn

= f(p)− t〈∇f(p1), p〉 − (1− t)〈∇f(p2), p〉
− t(f(p1)− 〈∇f(p1), p1〉)− (1− t)(f(p2)− 〈∇f(p2), p2〉) + ηn

= f(p)− 〈∇f(p), p〉+ tf∗
(
∇f(p1)

)
+ (1− t)f∗

(
∇f(p2)

)
+ ηn

= −f∗
(
∇f(p)

)
+ tf∗

(
∇f(p1)

)
+ (1− t)f∗

(
∇f(p2)

)
+ ηn. (4.7)

By (4.6) and (4.7), we have

Df (Tnp, p) ≤ −f∗
(
∇f(p)

)
+ tf∗

(
∇f(p1)

)
+ (1− t)f∗

(
∇f(p2)

)
+ ηn

+ f∗
(
∇f(p)

)
− tf∗

(
∇f(p1)

)
− (1− t)f∗

(
∇f(p2)

)
= ηn.

This implies
lim
n→∞

Df (Tnp, p) = lim
n→∞

ηn = 0.

By Proposition 2.4, we have ‖Tnp− p‖ → 0 as n→∞. Since T is closed, we have

p = lim
n→∞

Tn+1p = T lim
n→∞

Tnp = Tp
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and hence p ∈ F (T ).
Next we show that ∇f

(
F (T )

)
is closed. Let {xn}n∈N be a sequence in F (T )

such that ∇f(xn) → x∗ ∈ E∗ as n → ∞. Since f is Legendre and cofinite, we
have ran∇f = dom∇f∗ = int domf∗ = E∗. Hence there exists x ∈ E such that
x∗ = ∇f(x). It suffices to prove that x ∈ F (T ). Since {xn} ⊂ F (T ) and T is
R-BAQNE, we have

Df (Tnx, xn) ≤ Df (x, xn) + ηn = f(x) + f∗
(
∇f(xn)

)
− 〈∇f(xn), x〉+ ηn.

By assumption, f∗ is continuous and ∇f(xn)→ ∇f(x) as n→∞. Hence

lim
n→∞

Df (Tnx, xn) ≤ f(x) + lim
n→∞

(f∗
(
∇f(xn)

)
− 〈∇f(xn), x〉+ ηn) = 0.

Moreover,

Df (Tnx, x) = Df (Tnx, xn) + f(xn) + 〈∇f(xn), Tnx− xn〉
− f(x)− 〈∇f(x), Tnx− x〉

= Df (Tnx, xn)− f∗
(
∇f(xn)

)
+ f∗

(
∇f(x)

)
+ 〈∇f(xn)−∇f(x), Tnx〉.

Hence Df (Tnx, x) → 0 as n → ∞. By Proposition 2.4, we have ‖Tnx− x‖ → 0 as
n→∞. Since T is closed, we have x = Tx and hence x ∈ F (T ). �

Theorem 4.5. Let f : E → R be a Legendre and cofinite function which is totally
convex on bounded subsets of E such that f∗ is totally convex. If T : int domf →
int domf is a closed and R-BAQNE mapping, then there exists a unique sunny right
Bregman quasi-nonexpansive retraction from int domf onto F (T ), which is the right
Bregman projection onto F (T ).

Proof. By the assumption of f and T , it follows from Theorem 4.4 that ∇f
(
F (T )

)
is closed and convex in E∗. Proposition 4.1 ensures that there exists the right Breg-

man projection
−−→
projfF (T ) which is a unique sunny right Bregman quasi-nonexpansive

retraction from int domf onto F (T ). �

When a mapping T is right Bregman quasi-nonexpansive, Theorems 4.4 and 4.5
can be reduced to the following existing results.

Corollary 4.6 ([23], Proposition 3.3, p. 5454). Let f : E → (−∞,+∞] be a Le-
gendre and cofinite function and T : int domf → int domf a right Bregman quasi-
nonexpansive mapping. Then ∇f

(
F (T )

)
is a closed and convex subset of E∗.

Corollary 4.7 ([23], Corollary 4.7, p. 5458). Let f : E → R be a Legendre, cofinite
and totally convex function such that f∗ is totally convex. If T : int domf → int domf
is a right Bregman quasi-nonexpansive mapping, then there exists a unique sunny right
Bregman quasi-nonexpansive retraction from int domf onto F (T ), which is the right
Bregman projection onto F (T ).



ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS 401

5. A strong convergence theorem of R-BAQNE mappings

In this section, we prove a strong convergence theorem for finding a fixed point of
an R-BAQNE mapping by the shirinking projection method with the modified Mann
iteration.

Let C be a nonempty subset of E and T : C → C a mapping. The mapping T is
said to be asymptotically regular on C if, for any bounded subset K of C,

lim
n→∞

sup
x∈K

∥∥Tn+1x− Tnx
∥∥ = 0.

Theorem 5.1. Let f : E → R be a Legendre and cofinite function which is totally
convex on bounded subsets on E such that f∗ is admissible, totally convex and Fréchet
differentiable on int domf∗. Let C be a nonempty subset of int domf such that ∇f(C)
is closed and convex. Let T : C → C be a closed and R-BAQNE maping. Suppose that
T is asymptotically regular on C and F (T ) is bounded. Let {xn}n∈N be a sequence
in C generated by

x0 ∈ int domf, chosen arbitrarily,

C1 = C,

x1 =
−−→
projfC1

x0,

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : Df (yn, z) ≤ Df (xn, z) + ηn},
xn+1 =

−−→
projfCn+1

x0, n ∈ N,

(5.1)

where
−−→
projfCn

is the right Bregman projection from int domf onto Cn,

ηn = max

{
0, sup

p∈F (T ), x∈C

(
Df (Tnx, p)−Df (x, p)

)}
and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {xn}n∈N converges strongly to

−−→
projfF (T )x0,

where projfF (T ) is the right Bregman projection from int domf onto F (T ).

Proof. We divide the proof into six steps.
Step 1. We show that ∇f(Cn) is closed and convex for all n ∈ N. It is obvious

that ∇f(C1) = ∇f(C) is closed and convex. Suppose that ∇f(Ck) is closed and
convex for some k ∈ N. We see that, for z ∈ Ck, Df (yk, z) ≤ Df (xk, z) + ηk is
equivalent to

〈∇f(z), xk − yk〉 ≤ f(xk)− f(yk) + ηk. (5.2)

First we prove that ∇f(Ck+1) is closed. Let {zi}i∈N ⊂ Ck+1 with ∇f(zi) → z∗ as
i → ∞. Since f is Legendre and cofinite, we have ran∇f = dom∇f∗ = int domf∗ =
E∗. Hence there exists z ∈ E such that z∗ = ∇f(z). It is sufficient to prove that
z ∈ Ck+1. By (5.2), we have

〈∇f(z), xk − yk〉 = lim
i→∞
〈∇f(zi), xk − yk〉 ≤ f(xk)− f(yk) + ηk

and hence z ∈ Ck+1. Thus ∇f(Cn) is closed for all n ∈ N. Next we prove that
∇f(Ck+1) is convex. Let x, y ∈ Ck+1 and t ∈ (0, 1). Define z = ∇f∗(t∇f(x) + (1 −
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t)∇f(y)). We prove that z ∈ Ck+1. By (5.2), we have

〈∇f(z), xk − yk〉 = 〈t∇f(x) + (1− t)∇f(y), xk − yk〉
= t〈∇f(x), xk − yk〉+ (1− t)〈∇f(y), xk − yk〉
≤ f(xk)− f(yk) + ηk

and hence z ∈ Ck+1. Thus ∇f(Cn) is convex for all n ∈ N. Therefore ∇f(Cn) is
closed and convex. By Proposition 4.1, there exists a unique sunny right Bregman

quasi-nonexpansive retraction from int domf onto Cn which is
−−→
projfCn

. Hence {xn} is
well defined.

Step 2. We show that F (T ) ⊂ Cn for all n ∈ N. It is obvious that F (T ) ⊂ C1 = C.
Suppose that F (T ) ⊂ Ck for some k ∈ N. Since f is convex, the function Df (·, x) is
also convex for all x ∈ int domf . For any p ∈ F (T ), we have

Df (yk, p) = Df (αkxk + (1− αk)T kxk, p)

≤ αkDf (xk, p) + (1− αn)Df (T kxk, p)

≤ αkDf (xk, p) + (1− αn)(Df (xk, p) + ηk)

≤ Df (xk, p) + ηk. (5.3)

and hence p ∈ Ck+1. Therefore F (T ) ⊂ Cn for all n ∈ N. Since F (T ) is nonempty,
Cn is a nonempty, closed and convex subset of int domf .

Step 3. We show that {xn}n∈N is bounded. Let p ∈ F (T ). By Proposition 3.2
(iii), we have

Df (xn, p) = Df (
−−→
projfCn

(x0), p) ≤ Df (x0, p)−Df (x0,
−−→
projfCn

(x0)) ≤ Df (x0, p).

This implies that {Df (xn, p)}n∈N is bounded. By Proposition 2.3, the sequence
{xn}n∈N is bounded.

Step 4. Put C∗0 :=
⋂∞

n=1∇f(Cn). We show that {xn} converges to

∇f∗(projf
∗

C∗
0
∇f(x0)) as n → ∞. Since {∇f(Cn)} is a nonincreasing sequence with

respect to inclusion of nonempty, closed and convex subsets of E∗, we have

∅ 6= ∇f(F (T )) ⊂M - lim
n
∇f(Cn) =

∞⋂
n=1

∇f(Cn) = C∗0 .

By Proposition 3.1, {projf
∗

∇f(Cn)
∇f(x0)} converges strongly to x∗ = projf

∗

C∗
0
∇f(x0)

as n→∞. Since E∗ has a Fréchet differentiable norm, (∇f)−1 = ∇f∗ is continuous.
We have

xn =
−−→
projfCn

(x0) = ∇f∗ ◦ projf
∗

∇f(Cn)
◦ ∇f(x0)→ ∇f∗(x∗)

as n → ∞. To complete the proof, it is sufficient to show that ∇f∗(x∗) =
−−→
projfF (T )(x0).

Step 5. We show that ∇f∗(x∗) ∈ F (T ). Since xn =
−−→
projfCn

(x0) and xn+1 =
−−→
projfCn+1

(x0) ∈ Cn+1 ⊂ Cn, we have Df (x0, xn) ≤ Df (x0, xn+1). This implies that
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{Df (x0, xn)}n∈N is nondecreasing and the limit of Df (x0, xn) as n → ∞ exists. By
Proposition 3.2 (iii), we have

Df (xn, xn+1) = Df (
−−→
projfCn

(x0), xn+1)

≤ Df (x0, xn+1)−Df (x0,
−−→
projfCn

(x0))

= Df (x0, xn+1)−Df (x0, xn)

for all n ∈ N. This implies

lim
n→∞

Df (xn, xn+1) = 0. (5.4)

By Proposition 2.4, we have

lim
n→∞

‖xn − xn+1‖ = 0. (5.5)

Since xn+1 ∈ Cn+1, by (5.4), we have

lim
n→∞

Df (yn, xn+1) ≤ lim
n→∞

(Df (xn, xn+1) + ηn) = 0.

By Proposition 2.4, we have

lim
n→∞

‖yn − xn+1‖ = 0. (5.6)

By the definition of yn, we have

‖Tnxn − xn+1‖ ≤
1

1− αn
‖xn+1 − yn‖+

αn

1− αn
‖xn+1 − xn‖.

By (5.5), (5.6) and the definition of αn, we have ‖Tnxn − xn+1‖ → 0 as n→∞. This
implies

lim
n→∞

Tnxn = lim
n→∞

xn+1 = ∇f∗(x∗).

Since ∥∥Tn+1xn −∇f∗(x∗)
∥∥ ≤ ∥∥Tn+1xn − Tnxn

∥∥+ ‖Tnxn −∇f∗(x∗)‖
and T is asymptotically regular on C, we have

lim
n→∞

∥∥Tn+1xn −∇f∗(x∗)
∥∥ = 0.

Hence TTnxn − ∇f∗(x∗) → 0 as n → ∞. By the closedness of T , we have
T (∇f∗(x∗)) = ∇f∗(x∗). Therefore ∇f∗(x∗) ∈ F (T ).

Step 6. We show that
−−→
projfF (T )(x0) = ∇f∗(x∗). Put z∗0 =

−−→
projfF (T )(x0). Since

z∗0 ∈ F (T ) ⊂ Cn and xn =
−−→
projfCn

(x0), we have Df (x0, xn) ≤ Df (x0, z
∗
0) for all

n ∈ N. We have

Df (x0,∇f∗(x∗)) = f(x0)− f(∇f∗(x∗))− 〈x∗, x0 −∇f∗(x∗)〉
= lim

n→∞
(f(x0)− f(xn)− 〈∇f(xn), x0 − xn〉)

= lim
n→∞

Df (x0, xn) ≤ Df (x0, z
∗
0).

Therefore z∗0 = ∇f∗(x∗) and hence {xn} converges strongly to z∗0 . �
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