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1. Introduction

Recently, Popescu [3] proved very interesting fixed point theorems. The following
is a corollary of one of the theorems.

Theorem 1.1 (Popescu [3]). Let (X, d) be a complete metric space and let T be a
mapping on X. Suppose that there exist real numbers r and s such that 0 ≤ r < 1,
r < s and

d(y, Tx) ≤ sd(y, x) =⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then T has a fixed point.

We note that Theorem 1.1 is a generalization of the Banach contraction principle
[1]. In [3], Popescu raised the following conjecture.

Conjecture 1.2 (Popescu [3]). Theorem 1.1 is still valid in the case where r = s
instead of r < s.

If this conjecture were true, then Theorem 1.1 would be a partial generalization of
Theorem 2 in [4] because d(y, Tx) ≤ rd(y, x) implies (1 + r)−1d(x, Tx) ≤ d(x, y). So
it is very meaningful to study whether this conjecture is true. See also [2, 5].

In this paper, we give a negative answer to the above conjecture. That is, we can
tell that the condition r < s in Theorem 1.1 is best possible.
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2. Results

In this section, we give our main results. We denote by N the set of all positive
integers and by R the set of all real numbers.

Lemma 2.1. Define a set X by

X = {u1, u2, · · · , v1, v2, · · · , a, b}. (2.1)

Let f and g be functions from N into (0,∞) satisfying f(m) ≥ f(n) ≥ g(n) for any
m,n ∈ N with m < n. Let c be a positive real number with c ≥ f(1). Define a function
d from X ×X into [0,∞) by

d(x, y) =



0 if x = y

f(m) + g(n) if x = um, y = un,m < n

f(n) if x = un, y = a

c+ g(m) + g(n) if x = um, y = vn

c+ g(n) if x = un, y = b

c if x = a, y = b

d(um, un) if x = vm, y = vn,m < n

d(un, b) if x = vn, y = a

d(un, a) if x = vn, y = b

d(y, x) otherwise.

Then (X, d) is a complete metric space.

Proof. It is obvious that d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y and d(x, y) = d(y, x) for
any x, y ∈ X. We put u0, u∞, v0 and v∞ by u∞ = v0 = a and u0 = v∞ = b. We also
put f(0) = c, f(∞) = 0 and g(∞) = 0. In order to simplify the proof, we suppose
g(0) is a real number with 0 ≤ g(0) ≤ f(0). Then we note

d(ui, uj) = f(min{i, j}) + g(max{i, j})
for i, j ∈ N ∪ {0,∞} with i 6= j and

d(un, vt) = c+ g(n) + g(t)

for n, t ∈ N ∪ {∞}. So we have

d(ui, uj) ≥ f(min{i, j}) ≥ f(j) ≥ g(j) (2.2)

and

d(ui, uj) ≤ f(min{i, j}) + f(max{i, j}) ≤ 2c (2.3)

for i, j ∈ N ∪ {0,∞} with i 6= j. We shall prove the triangle inequality of d. Suppose
i, j, k ∈ N ∪ {0,∞}, i < j and m,n, s, t ∈ N ∪ {∞}. We also suppose that ui, uj , uk,
um, un, vs and vt are all different. We have from (2.2)

d(ui, uj) = f(i) + g(j) ≤ d(ui, uk) + d(uj , uk).

We have from (2.3)

d(um, un) ≤ c+ c ≤ d(um, vt) + d(un, vt).
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Also we have from (2.2)

d(un, vt) ≤ f(n) + c+ g(t) ≤ d(un, um) + d(vt, um)

and

d(un, vt) ≤ c+ g(n) + f(t) ≤ d(un, vs) + d(vt, vs).

We have shown the triangle inequality of d. Therefore (X, d) is a metric space. Let
us show that X is complete. We consider the following two cases:

• lim
n∈N,n→∞

f(n) = 0

• lim
n∈N,n→∞

f(n) > 0

In the first case, we let {xn} be a Cauchy sequence in X such that xn are all different.
Since

inf{d(un, vt) : n, t ∈ N} = c > 0,

there exist ν ∈ N and a function h from {n ∈ N : n ≥ ν} into N such that limn h(n) =
∞ and either xn = uh(n) for all n ≥ ν or xn = vh(n) for all n ≥ ν. Then {xn}
converges to a or b. In the second case, since

inf{d(x, y) : y ∈ X, y 6= x} ≥ lim
n∈N,n→∞

f(n) > 0

for any x ∈ X, there exists no Cauchy sequence {xn} in X such that xn are all
different. Therefore X is complete. �

Now we give an example which shows that Popescu’s conjecture is false.

Example 2.2. Let r ∈ (0, 1) and put ε = 1− r and κ = 1/r. Define a set X by (2.1).
Define sequences {pn}n∈N∪{0} and {qn}n∈N in R by

pn = rε
n+ κ+ 1

n+ κ+ 2
and qn =

ε

n+ κ+ 1
.

Define a metric d on X by

d(x, y) =



0 if x = y

rm(1 + pm) + rn(1 + qn) if x = um, y = un,m < n

rn(1 + pn) if x = un, y = a

1 + p0 + rm(1 + qm) + rn(1 + qn) if x = um, y = vn

1 + p0 + rn(1 + qn) if x = un, y = b

1 + p0 if x = a, y = b

d(um, un) if x = vm, y = vn,m < n

d(un, b) if x = vn, y = a

d(un, a) if x = vn, y = b

d(y, x) otherwise.
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Define a mapping T on X by

Tx =


un+1 if x = un

vn+1 if x = vn

v1 if x = a

u1 if x = b.

Then (X, d) is a complete metric space, T has no fixed points and T satisfies

d(y, Tx) ≤ rd(y, x) =⇒ d(Tx, Ty) ≤ rd(x, y) (2.4)

for any x, y ∈ X.

Proof. In order to simplify the proof, we define q0. Put v0 = a and u0 = b. We
first note that {pn} is increasing, pn > 0 and qn > 0. Define functions f and g from
N ∪ {0} into (0,∞) by

f(n) = rn(1 + pn) and g(n) = rn(1 + qn).

We note that f is decreasing because

f(n+ 1) < rn+1(1 + ε) = rn(2r − r2) < rn < f(n)

for n ∈ N ∪ {0}. We also note g(n) < f(n) because

f(n)− g(n) =
rnε
(
r(n+ 1)2 + n

)
(n+ κ+ 1)(n+ κ+ 2)

> 0

for n ∈ N ∪ {0}. By Lemma 2.1, (X, d) is a complete metric space. It is obvious that
T has no fixed points. Let us prove (2.4). In the case where n ∈ N∪ {0}, x = un and
y = un+1, since

d(un, un+1) = f(n) + g(n+ 1) = rn(1 + r + rε),

we have

d(Tx, Ty) = d(un+1, un+2) = rd(un, un+1) = rd(x, y).

In the case where m,n ∈ N ∪ {0}, m+ 1 < n, x = um and y = un, we have

d(y, Tx) = rm+1(1 + pm+1) + rn(1 + qn)

> rm+1(1 + pm) + rn+1(1 + qn) = rd(y, x).

We also have

d(x, Ty) = rm(1 + pm) + rn+1(1 + qn+1)

> rm(1 + pm) + rn+1

= rm+1(1 + pm) + rmε(1 + pm) + rn+1

> rm+1(1 + pm) + rmε+ rn+1

> rm+1(1 + pm) + rn+1(1 + ε)

> rm+1(1 + pm) + rn+1(1 + qn)

= rd(x, y).
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In the case where m,n ∈ N, x = um and y = vn, we have

d(y, Tx)− rd(y, x) = ε(1 + p0) + εrn(1 + qn) + rm+1(qm+1 − qm)

> ε+ rm+1(qm+1 − qm) = ε− rm+1ε

(m+ κ+ 1)(m+ κ+ 2)
> 0.

Since {pn} is increasing, we note rf(n) < f(n+ 1) for n ∈ N∪{0}. In the case where
n ∈ N, x = un and y = a, we have

d(y, Tx) = f(n+ 1) > rf(n) = rd(y, x)

and
d(x, Ty) > f(0) > f(n) = d(x, y) > rd(x, y).

In the case where x = a and y = b, we have

d(y, Tx) = f(1) > rf(0) = rd(y, x).

In the other cases, we can prove (2.4) similarly. So we have shown (2.4). �

Remark 2.3. In the case where r = 0, Popescu’s conjecture is true. Indeed the
condition

d(y, Tx) ≤ 0d(y, x) =⇒ d(Tx, Ty) ≤ 0d(x, y)

implies that Tx is a fixed point of T for any x ∈ X.
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